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Abstract.  In this paper, we solve multi-objective programming problems with equilibrium 
constr-aints by means of homotopy interior point algorithm. We also prove the global convergence of 
this homotopy interior point algorithm under assumptions. Moreover, the results of the numeric 
example shows that this method is feasible and effective. 

Introduction 

Given functions : , : , : , :n m p n m s n m l n m mf R R g R R G R R F R R+ + + +→ → → → .In this paper,we 

are devoted to the study of the multiobjective optimization problems with equilibrium 

constrains(MOPECS): 

(MOPECS)    

min ( , ),
. . ,

( ),

n m

f x y
s t Z R

y S x

+⊆
∈

                                                 (1) 

where { }( , ) : ( , ) 0n mZ x y R g x y+= ∈ ≤ is a nonempty closed convex set.  

( ) ( , ) ( ) 0,Ty S x F x y v y∈ ⇔ − ≥ { } { }( ) : ( , ) 0 , : ( , ) ,m n mC x y R G x y X x R x y Z y R= ∈ ≤ = ∈ ∈ ∈ . 

For x X∈ , ( )S x is the solution set of a parametric variational inequality problem． 

( )PVI    ( ) ( , ) ( ) 0, ( ).Ty S x F x y v y v C x∈ ⇔ − ≥ ∀ ∈          (2) 

Where,for some my R∈ , { }: ( , )nX x R x y Z= ∈ ∈ . 

( 1H ) , 1,2, ,x X i l∀ ∈ = L , ( , )iG x ⋅ is a convex function in the second argument； 

( 2H ) 2

1
( , ) , ( , ) ( ( , ) ( , ) )

l
T

y yy i y i
i

x y F x y G x y G x y
=

∀ ∈Ω ∇ + ∇ + ∇∑ is positive define,where 

{ }( , ) : ( , ) 0, ( , ) 0n mx y R g x y G x y+Ω = ∈ ≤ ≤ ; 

( 3H )对于 { }2(0,1], ( ), ( ), ( ), ( , )it t g i I h tθθ θ θ θ∈ ∈Ω ∇ ∈ ∇ is full column rank,where 

{ }{ }( ) 1,2, , : ( ) 0iI i s gθ θ= ∈ =L ． 

The KKT system of (2) as follows: 

                        
( , ) ( , ) 0,

0, ( , ) 0, ( , ) 0,
yF x y G x y u

u G x y UG x y
+ ∇ =

 ≥ ≤ =
                                (3) 
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where ( )U doag u= . 

The problem(1) is equivalent to:  

min ( , ),
. . ( , ) 0,

( , ) ( , ) 0,
0, ( , ) 0, ( , ) 0.

y

f x y
s t g x y

F x y G x y u
u G x y UG x y

≤
+ ∇ =

≥ ≤ =

                        (4) 

We construct the following homotopy equation 

( , ) ( , )
( , ) 0,

( , )
yF x y G x y u

h t
UG x y te

θ
+ ∇ 

= = +   

where ( ), , Tx y uθ = , ( )1,1, ,1 , (0,1].T le R t= ∈ ∈L  

Let ( ) ( , , ), ( ) ( , , ),f f x y u g g x y uθ θ= = the problem(1) is given by [7] : 

                                                              

min ( ),
. . ( ) 0,

( ) 0,

f
s t g

h

θ
θ
θ

≤
=

                             (5) 

when 0t → ,the problem(5) is equal to (1). In the following, we solve the (5). 

Preparation 

Assumption: 

( 4H ) Ω is nonempty,bounded,connected； 

( 5H ) ( )iη θ  is positive linear independent about ( )g θ∇ ; 

( 6H ) Ω holds on weak quasi-normal cone condition,there is a nonempty set 0
1Ω ⊂ Ω  and positive 

linear independent mapping ( )iη θ ， { }1, 2, ,i m∈ L  

( )
( ) 0i i i

i I x
x u uη θ

∈

 
+ ≥ 

 
∑ 0

1∩Ω = Φ， θ∀ ∈ ∂Ω . 

Main results 

To solve the KKT system, we construct a homotopy equation as follows: 
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ω ω θ θ

λ λ λ
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 − ∇ + ∇ + ∇ + + −
 
 
 = =−
 
 − − − − 
 

∑

. 

(6) 
 

When 1t = , 
(0)

(0) (0)

( , ) ( ) 0;
( ,1) 0;

( ) ( ) 0;

h t
h

Ug x U g x

θ θ β θ θ
θ

∇ + − =
=

− =  

9 9
(0)4 4( ) 0.λ λ− =  

If 0β ≠ , contradicts to quasi-normal cone condition. So (0)θ θ= . 
When 0t = ,the homotopy equation turns to the KKT system. When (0)ω  is 

given,Let (0)
(0)( , , ) ( , )H t H t

ω
ω ω ω= . { }(0) (0 )

1 (0) ( , ) ( ) (0.1] : ( , ) 0H t t H t
ω ω

ω ω− = ∈Ω × = . 
Theorem2.1 Suppose that (0) ( , )H t

ω
ω  is defined as in (6), ,f g and h are two times continuously 

differentiable functions,Assumptions ( 1H )-( 6H ) hold． Then,for almost all initial points 
(0) (0) (0) (0)( , , , )Tu vθ λ ∈ { }0

1 (1) 0mR++
++Ω × Λ × × ,0 is a regular value of (0)H

ω
,and  consists of some 

smooth curves. In addition,there is a smooth curve noted by (0 )ω
Γ ,which is starting from  (0)( ,1)ω ． 

Lemma2.2 Suppose that ( 3H )_( 4H ), for all initial points (0) (0) (0) (0)( , , , )Tu vθ λ  
∈ 0

1 (1) ++Ω × Λ { }0mR++× × , If 0 is a regular value of (0)H
ω

,then the projection of the smooth curve (0 )ω
Γ  

on the component λ  is bounded． 
Theorem2.3 Suppose that (0) ( , )H t

ω
ω be defined as (6), ,f g and h  be two times continuously 

differentiable functions, and Assumptions ( 1H )-( 6H ) hold．For almost all the initial point 
(0) (0) (0) (0)( , , , )Tu vθ λ ∈ { }0

1 (1) 0mR++
++Ω × Λ × × ,if 0 is a regular value of (0)H

ω
,then the curve 

(0 ) ( ) (0,1]t
ω

Γ ∈Ω ×  is bounded. 
Theorem2.4  Suppose that , ,f g F are two times continuously differentiable functions,and G is 

triply continuously differentiable,Assumption ( 1H )-( 6H ) hold．Then when 0t → , the solution of 
the KKT system,and for almost all the initial point 

(0) (0) (0) (0)( , , , )Tu vθ λ ∈ { }0
1 (1) 0mR++

++Ω × Λ × × , (0)
1 (0)H

ω
− contains a curve 

(0 )ω
Γ (0)( ,1)ω ．When 0t → ,the limit set Γ  of (0 )ω

Γ is nonempty, and every point of Γ is the solution 
of  the KKT system． 

Proof:By theorem2.1,for almost all the initial point 
(0) (0) (0) (0)( , , , )Tu vθ λ ∈ { }0

1 (1) 0mR++
++Ω × Λ × × ,0 is a regular value of (0)H

ω
,and (0)

1 (0)H
ω
−  consists of 

some smooth curves. Among them, there is a smooth curve noted by (0 )ω
Γ  which starting from 

(0)( ,1)ω ． 
By the classification theorem of one dimensional smooth manifolds, (0 )ω

Γ  is diffeomorphic to a 
unit circle or unit interval． 
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Because (0 ) (0)( ,1)H
ω

ω
ω ω

ω

∂
=

∂
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(0) 4
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( ) 0 ( ( )) 0
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m l
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i

T

T
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h
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I

θβ θ θ

θ
θ θ

λ

+

+ +
=

 ∇ + ∇ 
 
 ∇

=  ∇ 
 

− 
 

∑

, 

(0)( ) 0g θ < ,it is easy to know that (0) ( ,1) /H
ω

ω ω∂ ∂  is non-singular．So, (0 )ω
Γ  is diffeomorphic to a 

unit interval． 
Let the limit point of (0 )ω

Γ  be * *( , )tω ,the following three cases are possible: 
 1） { }* * *( , ) ( ) 1t tω ∈Ω × ； 
 2） { }* * *( , ) ( ) 0t tω ∈Ω × ； 
 3） * * *( , ) ( ) (0,1]t tω ∈∂Ω × ． 

In the set { }(1) 1Ω × , (0) ( ,1) 0H
ω

ω =  has a unique possible case (0)( ,1)ω ．By theorem2.3,case 3） 
will not happen．So,case 2) is the unique possible case and *ω  is the solution of the KKT system 
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