

Implementing a Demand Response Ready Smart Home Prototype
on a System-on-Chip Platform

Hongmei Li1, a, Yanli Chai1,b
1 Jiangsu Normal University, Xuzhou, Jiangsu, China

alhmjcn@163.com, b 513705657@qq.com

Keywords: Smart home energy management (SHEM), hardware design, demand response,
real-time pricing, time-of-use tariff, load shifting, smart appliances, energy efficiency.
Abstract: To bridge the gap between undergraduate electrical engineering curriculum and the
modernizing electric power grid, Smart Home Testbed projects are ideal for undergraduate student
design and research programs. Observed the fact that Smart Home Testbed projects are small-scale
and short-term, a three-layer design and its implementation on a Raspberry Pi system-on-chip (SoC)
platform is proposed, aiming at fast prototyping and quick idea verification. Two Smart Home Energy
Management (SHEM) prototypes for time-of-use and real time pricing demand response programs,
respectively, are implemented. An example demonstration project, which consists of a hardware setup,
Python-based SHEM modules and Web based user interface, is shown. The demonstration and case
study verified the effectiveness of the proposed DR ready Smart Home Testbed on the SoC platform.

Introduction
With the increasing penetration level of renewable generations and electric vehicle loads, the

electric power grid has seen significant changes in the recent years [1]. Undergraduate education in
electric power system is also undergoing changes to incorporate the conventional power system
analysis courses with Smart Grid related courses and designs. Smart Home Testbed is a set of
hardware, software and physical appliances to emulate the power consumption and intelligent
controls in a household. It is an experiment platform that could bridge the curriculum gap by
facilitating undergraduate students in conducting Smart Grid related research and development.

One characteristic that distinguishes Smart Grid from the traditional grid is the more flexibility on
the demand side. Demand response (DR) is a set of programs offered by utility companies or load
serving entities (LSE) to directly or indirectly change the energy usage pattern [2]. DR is especially
suitable for reducing peak hour load, so as to maintain system stability and keep generation costs low.

Although the nowadays DR resources are mainly large industrial or commercial load, residential
DR also has a considerable potential. Meanwhile, the rapid development of information technology
(IT) has also brought in opportunities for residential DR implementation, not only to save energy but
also to improve household convenience. Small-sized, high-speed and low-cost System-on-Chip (SOC)
solutions are becoming available for smart home applications [3]. The goals of a Smart Home Testbed
are two-folds: reduce power consumption for the power grid as potential DR resources, and improve
the experience of household appliances. The former one requires a comprehensive understanding of
the present residential DR programs, while the latter one coordinates the household appliances with
various functions.

Research has been carried out on smart home related architecture design, methods and algorithms.
A Cloud based smart home architecture is proposed in [4] which focuses on service reliability of Web
service and Peer-to-Peer technologies. A Simple Object Access Protocol based management system is
proposed in [5] to solve the interoperation problem of various appliances. An energy conservation
oriented smart home design is given in [6] which integrates different groups of smart appliances to
deliver more value-added services for users’ preferences. Moreover, digging into the function blocks
into the architecture of SHEM, coordination and scheduling of the appliances are the basics of energy
management [7]. A mixed-integer linear programming (MILP) based smart home appliance
scheduling model is proposed in [8] to minimize household electricity cost. Predicted real-time

7th International Conference on Energy and Environmental Protection (ICEEP 2018)

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 170

1334

electricity price is considered in optimal residential load control method in [9], which also minimizes
the appliance waiting time. Uncertainties from appliance operation time and renewable intermittency
are taken into account in the scheduling method proposed in [7]. The intelligent aspect of smart home
that tries to enhance the experience of home appliances and improve comfort level is also studied
from both technology and sociology perspectives. Integration of network-based fire detection system
is proposed in [10] for smart home automation. Wireless sensing network, biometric technology and
voice control are proposed in [11] and [12]. Those reference provides insights for researchers,
however, they lack one characteristic to be implemented in undergraduate education courses or
projects.

A fact of the Smart Home projects is that they are generally small-scale and short-term, yet
significant for undergraduate education and research. Therefore, the need for an architecture design
that enables fast prototyping of functions and algorithms to verify sparks from undergraduate students
and generate insights for the industry has not been well satisfied. This motivate fostered the idea of
designing and implementing a layered Smart Home Testbed on a SoC platform with fast-prototyping
scripting language support.

In this paper, a three-layer architecture design of a DR-ready smart home testbed is proposed in
Section I to provide DR capability to the grid, conserve energy and improve household comfort level.
More specific hardware and software designs are described to illustrate the proposed architecture in
Section II. The proposed design is implemented on a Raspberry Pi 2 based SoC platform as a
Undergraduate Student Project and the results are shown in Section III..

Framework Design

A. Design Principles The design of a Smart Home platform involves both hardware layout design
and software architecture design, each has different requirements. On a higher level of abstraction, the
designs should follow a couple of general principles:

1) Modularity. Functions modules to the platform core so that it can be easily added or removed.
2) Common data interface. All modules should follow the same predefined common data interface

to send and receive messages. This is the basis of modularity and simplifies future enhancements.
In this section a layered architecture is presented, followed by two major module designs as

examples.
B. Layered Architecture Design Fig. 1 shows the proposed three-layer architecture for Smart
Home Testbed, which consists of a perception layer, an optimization layer and an actuation layer.

The fundamental basis of the Smart Home Testbed is the Smart Home Energy Management
(SHEM) which coordinates the appliances and optimizes the scheduling for energy related objectives.
The SHEM is the aggregation of all the function modules to provide DR capability and elevate
comfort level. Although in the drawing more demand response related functions are shown, it’s worth
mentioning that intelligent home related functions that improves user’s comfort level is of the same
importance in SHEM.

On top of the SHEM is the perception layer that collects information from an LSE, ambient
environment, connected appliances and the user. Specifically, information received from LSE is
transferred through computer network, while the data from ambient environment are collected using
sensors. Regardless of the different technique used for data collection, these modules share a common
role in the Smart Home Testbed as perceivers. Any future modules that collects related information,
for example a mobile APP based owner’s location tracker, should be categorized into this layer. At the
bottom of SHEM system is the actuation layer which receives control signals conducts the optimal
control actions from the optimization layer. It generally consists of remote power outlet controller,
configurable thermostats for HVAC systems and timers for other appliances.

Moreover, throughout the three layers there are user interfaces (UIs) that provide interactions with
the Smart Home Testbed At the perception layer, the UI provides quick adjustments for operation

Advances in Engineering Research, volume 170

1335

mode and appliances to achieve different objectives. In the actuation layer, the UI provides reports of
well analyzed data and, more preferably, visualizations of energy consumptions and conservations.

Time-of-
use Tariff

Real-time
Pricing Signal

Ambient
Sensors

User's
Preference

Appliance
Status

Perception Layer

Pattern
Recognition

Time-of-use
Algorithm

Real-time Pricing
Algorithm

Maximize Comfort
Level Algorithm

Optimization Layer

Remote Outlet
Controller

HVAC Settings
Controller Advanced Metering

Actuation Layer

Wireless
Communication

Fig. 1. Three-layer Design of Smart Home Testbed

C. Demand Response Capability Design The SHEM on the optimization layer contains a set of DR
models that optimize the household appliance scheduling and consequently form the load profile.
These models accept time-of-use (TOU) or real time price (RTP) signals from LSE as input, and,
based on user’s preferences and the availability of appliances, outputs the optimized states of
appliances.

For a TOU based demand response program, users have the same step-wise electricity tariff across
different days. Prices are generally higher at peak hours and lower at off-peak ones. A heuristic,
delay-by-k hour algorithm for the TOU model is described in Table I. The basic idea is, for an
appliance delayable by e hours being turned on at time t, only choose the hours with the lowest
electricity price and turn it on; for a non-delayable appliance, turn it on immediately.

TABLE I. PROCEDURES OF DELAY-BY-K TOU ALGORITHM

Delay-by-k hour algorithm
Inputs: 24-hour electricity price P(t), appliance parameters

1: for appliance h = 1 to n:
2: if Uh(t) – Uh-1(t) <= 1: # not turning on
3: h = h+1
4: continue
5: else: # turning on
6: if h in {delayables}: # is delayable
7: k = {P(k)∈minr{P(t, t+1, …, t+e+r-1)}}
8: Uh(k) = 1 # turn on when price low
9: else: # otherwise turn on now
10: Uh(t, t+1, …, t+h-1) = 1

For an RTP model, the optimization is different due to the changing electricity price. However,
with 5-minute-in-advance price signals, taking electric water heater (EWH) as an example, the
appliance scheduling problem can be formulated as an optimization model to minimize the total
electricity costs in (1) – (3).

 24

1
min () ()EWHRTP t P m t× ×∫ (1)

s.t. [() ()] () () ()T
T a EWH

dX a X t X t A t q t P m t
dt

= − − − + × (2)

 min max()TT X t T≤ ≤ (3)

where RTP(t) is the last updated real time price at time t, PEWH is the power consumption of EWH, m(t)
is a binary variable indicating the on or off state of EWH; XT is the temperature of the water; A(t) is the

Advances in Engineering Research, volume 170

1336

rate of energy extraction when water is in demand at time t, q(t) is the indicator of water in demand or
not, a is the thermal resistance of tank walls. It’s also worth pointing out that all optimizations are
computed on a thin SoC client, hence a heuristic algorithm is employed to obtain a feasible solution
instead of a global optimum.

Hardware and Software Implementation

A. Functional Requirements At the implementation level, the closed-loop hardware and software
must meet the following functional requirements:

1) LSE to SHEM communication. Communication between the two are intended for electricity
price signal broadcasting and, optionally, DR capacity feedback.

2) SHEM to actuation layer implementation. SHEM must be able to convert its control signals to
the actual actions in the controlled home appliances, such as power outlets.

3) Appliance status storage. The on and off status of the household appliances must be stored
somewhere in the SHEM securely and accessible with privilege granted.

4) User Interface. Energy saving mode and appliance status should be configurable in a friendly
user interface.

5) SHEM optimization algorithms. This includes the DR ready models and algorithms discussed in
Section III.C.

B. SHEM on Raspberry Pi The implementation of these functions largely depends on the hardware
platform chosen for SHEM. For example, if an Arduino-compatible platform is chosen, those
optimization models and algorithms must be written in Arduino’s C-like language, which is more
complicated than the prevailing scripting languages such as Python or Java. A comparison of some
popular hardware platforms are given in Table. II.

TABLE II. COMPARISON OF POPULAR HARDWARE PLATFORMS
 I/O

Pins
Operating
System

USB
Support

Display
Ports

Arduino Yes No No Native No Native

Raspberry Pi Yes Yes Yes HDMI

TI DSP Yes No No Native Configurable

Among the features listed, operating system support carries the most weights because it allows the
user to utilize the hardware resources more readily with interfaces provided by the system, as well as
to take advantage of available software. The second important is the native support for USB, which
enables plug and play of peripherals, such as wireless network dongle, sensors and audio devices.

Raspberry Pi offers support for Debian Linux operating system, which is ideal for SHEM function
implementations. The lately released Raspberry Pi 2 model comes with a 900 MHz ARM Cortex-A7
CPU, 1 GB RAM, 4 USB 2.0 ports, full HDMI port and 40 GPIO pins. Running the customized
Raspbian OS, it has native support for almost all hardware without having to any driver from scratch.
The OS allows the developer to program in C language and meanwhile provides scripting language
support like any other Linux system does. For the aforementioned reasons, Raspberry Pi is an ideal
platform for Smart Home Testbed platform implementation.

Back to the required functions discussed in Section II.A, the following settings or configurations
are done in preparation for the functional requirements. First, eight GPIO ports are connected to an
external remote circuit board that controls the radio frequency wireless power outlets. Second, Python
language is installed as a scripting language support. Third, an SQL database is setup to store the
status of appliances, as well as the historical RTP data. Finally, an Apache HTTP server is set up for
Web UI services. Note that the external remote circuit board mentioned is an actuator of the control
signals. It is off the shelf and adopted for this project, as developing the radio-frequency
communications is beyond the scope of the designated project.

Advances in Engineering Research, volume 170

1337

C. Implementation Details Fig. 2 shows the implementation of the Smart Home Testbed
platform on Raspberry Pi 2. To mimic the electricity market environment with RTP, the spot price in
New York area, shown in Fig. 3, is retrieved from NY-ISO by LSE in order estimate RTP for the next
24 hours at a step size of 5 minutes. Then, the price data is broadcasted to SHEM in the households
through the Internet.

GPIO

Database
Operations

Optimization
Algorithm

Web User
Interface

C Language

Python
Language

PHP
Language

Raspberry Pi

Load Serving Entity Smart Home Testbed Actuation and Interface
Fig. 2. Implementation of the Smart Home Testbed platform

Fig. 3. Sample spot price curves from New York ISO

Fig. 4. The Smart Home hardware prototype wiring

On the Raspberry Pi platform, both C programs and Python programs are employed for different
levels of functions. C programs are more straightforward for lower level hardware control, while
Python programs are fast prototyping for higher level applications. Therefore, C programs are linked
to an open source package called WiringPi to takes over the GPIO output control. Python programs

Advances in Engineering Research, volume 170

1338

are written to implement the demand response algorithms. In the front-end, Web UI is programmed in
the PHP language to provide convenient user setting adjustments.

Verification and Demonstration
The implemented of a Smart Home Testbed following the proposed designs is carried out as an

Undergraduate Student project. A group of 6 senior-year undergraduates (2 from Electrical
Engineering and 4 from Computer Science) constructed and set up this testbed in two months,
mentored by 2 graduate students. In the process of the Testbed project, undergraduate students
automatically split into three sub-groups, each having 2 people. The first group worked on hardware
setup, the second group worked on DR related algorithm development in the SHEM, and the third one
worked on Web UI development.

Fig. 4 shows the hardware wiring of the Raspberry Pi and the radio remote through transistor
amplifiers. Owe to the peripheral supports, only transistors are used to amplify the signals from
GPIOs pins. Fig. 5 shows the Web based UI for setting adjustments. In the ‘User Settings’ tab, an
electricity price threshold can be entered and five preset modes are available to adjust their time of
being turned on. In the ‘Off Periods’ tab, behaviors of appliances during the off-period can be
configured.

Fig. 5. Web UI based user interface

0 2 4 6 8 10 12 14 16 18 20 22
0

10

20

Hour #P
ric

e
(C

en
ts

/k
W

h)

0 2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

Hour #Li
gh

t/C
om

pu
te

r/T
V

P
ow

er
 (k

W
)

0 2 4 6 8 10 12 14 16 18 20 22
0

1

2

Hour #

D
is

hw
as

he
r

Po
w

er
 (k

W
)

0 2 4 6 8 10 12 14 16 18 20 22
0
1
2
3

Hour #

EV

Po
w

er
 (k

W
)

0 2 4 6 8 10 12 14 16 18 20 22
0

5

Hour #

To
ta

l

Po
w

er
 (k

W
)

Fig. 6. Time-of-use appliance scheduling results

Advances in Engineering Research, volume 170

1339

A. Verification of Time-of-Use Algorithm The delay-by-k hour algorithm for time-of-use demand
response programs are verified on the testbed with 5 types of appliances: light, TV, computer, dish
washer and electric vehicle. The first three types are configured as non-delayable, while dish washer
and electric vehicles are delayable by a maximum of 8 hours. The input data contains the time-of-use
tariff in the area, the power consumption and the turn-on time of each appliance. Case study result is
given in Fig. 6, where dashed lines are the power consumption without the algorithm, while the solid
ones are that with the algorithm.

0 2 4 6 8 10 12 14 16 18 20 22 24
-50

0

50

100

150

200

250

Hour #

LM
P

 ($
/M

W
h)

LBMP
Average

0 2 4 6 8 10 12 14 16 18 20 22 24
20

30

40

50

60

70

80

90

Hour #
Te

m
pe

ra
tu

re
 (C

el
si

us
)

Water Temperature
Upper Bound
Lower Bound

Fig. 7. Real time price signal on spot market Fig. 8. Temperature in water heater without RTP

0 2 4 6 8 10 12 14 16 18 20 22 24
0

10

20

30

40

50

60

70

80

90

Hour #

Te
m

pe
ra

tu
re

 (C
el

si
us

)

Upper Bound
Water Temperature
Lower Bound
Heater State

Fig. 9. Optimized temperature in water heater with RTP

From top down, the first figure plots the time-of-use electricity price which peaks at 7:00 PM –
11:00 PM. The second figure shows the aggregated power consumption of the non-delayable
appliances whose peak power shows a concurrency with the electricity price. For the dishwasher
being turned on a 6:00 PM, this algorithm compared the prices in the next 8 hours and found a lower
price hour at 2:00 AM, thus delayed the dishwasher until then. A little different is the EV charging
which takes 10 hours to finish. The algorithm found the lower electricity price hours for EV charging,
which, as a result, is equivalent to avoiding the higher price hours. Finally, the total power
consumption before and after the delay is compared in the last figure, where a noticeable peak
avoiding from the time-of-use DR can be observed.

B. Verification of Real Time Price Response Algorithm An optimization of electric water heater
directed by 5-minute ahead RTP is studied and shown in in Fig. 7 – Fig. 9. Fig. 7 shows the RTP of
New York ISO on November 7, 2015. Fig. 8 shows a typical temperature in a water heater without any
optimization, where water is heated up to the upper temperature limit and reheated when the lower
temperature limit is reached. Shown in Fig. 9 is the optimized water heater on and off states, which
reversely follows the price signal while maintaining the water temperature in the desired regions.

Conclusions
In this paper, a three-layer architecture design is proposed for a fast prototyping Smart Home

Testbed is proposed. Implementation of the layered architecture on a Raspberry Pi SoC shows
practicality for undergraduate students to test and verify ideas relevant to Smart Home designs. An

Advances in Engineering Research, volume 170

1340

undergraduate student project example also verified that a SoC platform based Smart Home Testbed
is suitable and effective for undergraduate level DR related model and algorithm implementation.

Acknowledgements
 This work was financially supported by the College Natural Science Foundation of Jiangsu
Province(16KJB4700004) and Doctoral Foundation of Jiangsu normal University(16XLR049) .

References
[1] H. Cui, R. Long, F. Li, X. Fang, and R. Long, “Distribution Network Reconfiguration with

Aggregated Electric Vehicle Charging Strategy,” in IEEE Power and Energy Society General
Meeting, 2015, vol. 2015–Septe, no. 1, pp. 1–5.

[2] H. Cui, F. Li, Q. Hu, L. Bai, and X. Fang, “Day-ahead coordinated operation of utility-scale
electricity and natural gas networks considering demand response based virtual power plants,”
Appl. Energy, vol. 176, no. 15, pp. 183–195, 2016.

[3] D.-M. Han and J.-H. Lim, “Design and implementation of smart home energy management
systems based on zigbee,” IEEE Trans. Consum. Electron., vol. 56, no. 3, pp. 1417–1425, 2010.

[4] Z. Wei, S. Qin, D. Jia, and Y. Yang, “Research and design of cloud architecture for smart home,”
Proc. 2010 IEEE Int. Conf. Softw. Eng. Serv. Sci. ICSESS 2010, no. 60970, pp. 86–89, 2010.

[5] T. Perumal, a. R. Ramil, and C. Y. Leong, “Design and implementation of SOAP-based
residential management for smart home systems,” IEEE Trans. Consum. Electron., vol. 54, no. 2,
pp. 453–459, 2008.

[6] C. Y. Chen, Y. P. Tsou, S. C. Liao, and C. T. Lin, “Implementing the design of smart home and
achieving energy conservation,” IEEE Int. Conf. Ind. Informatics, pp. 273–276, 2009.

[7] X. Chen, T. Wei, and S. Hu, “Uncertainty-aware household appliance scheduling considering
dynamic electricity pricing in smart home,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 932–941,
2013.

[8] K. C. Sou, J. Weimer, H. Sandberg, and K. H. Johansson, “Scheduling smart home appliances
using mixed integer linear programming,” IEEE Conf. Decis. Control Eur. Control Conf., pp.
5144–5149, 2011.

[9] A. H. Mohsenian-Rad and A. Leon-Garcia, “Optimal residential load control with price
prediction in real-time electricity pricing environments,” IEEE Trans. Smart Grid, vol. 1, no. 2,
pp. 120–133, 2010.

[10] K. C. L. K. C. Lee and H.-H. L. H.-H. Lee, “Network-based fire-detection system via controller
area network for smart home automation,” IEEE Trans. Consum. Electron., vol. 50, no. 4, pp.
1093–1100, 2004.

[11] B. El-Basioni, S. El-kader, and M. Abdelmonim, “Smart home design using wireless sensor
network and biometric technologies,” Inf. Technol., vol. 2, no. 3, pp. 413–429, 2013.

[12] Q. Hu, F. Li, and C. Chen, “A Smart Home Test Bed for Undergraduate Education to Bridge the
Curriculum Gap From Traditional Power Systems to Modernized Smart Grids,” Educ. IEEE
Trans., vol. 58, no. 1, pp. 32–38, 2015.

Advances in Engineering Research, volume 170

1341

