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Abstract: To bridge the gap between undergraduate electrical engineering curriculum and the 
modernizing electric power grid, Smart Home Testbed projects are ideal for undergraduate student 
design and research programs. Observed the fact that Smart Home Testbed projects are small-scale 
and short-term, a three-layer design and its implementation on a Raspberry Pi system-on-chip (SoC) 
platform is proposed, aiming at fast prototyping and quick idea verification. Two Smart Home Energy 
Management (SHEM) prototypes for time-of-use and real time pricing demand response programs, 
respectively, are implemented. An example demonstration project, which consists of a hardware setup, 
Python-based SHEM modules and Web based user interface, is shown. The demonstration and case 
study verified the effectiveness of the proposed DR ready Smart Home Testbed on the SoC platform.  

Introduction 
With the increasing penetration level of renewable generations and electric vehicle loads, the 

electric power grid has seen significant changes in the recent years [1]. Undergraduate education in 
electric power system is also undergoing changes to incorporate the conventional power system 
analysis courses with Smart Grid related courses and designs. Smart Home Testbed is a set of 
hardware, software and physical appliances to emulate the power consumption and intelligent 
controls in a household.  It is an experiment platform that could bridge the curriculum gap by 
facilitating undergraduate students in conducting Smart Grid related research and development. 

One characteristic that distinguishes Smart Grid from the traditional grid is the more flexibility on 
the demand side. Demand response (DR) is a set of programs offered by utility companies or load 
serving entities (LSE) to directly or indirectly change the energy usage pattern [2]. DR is especially 
suitable for reducing peak hour load, so as to maintain system stability and keep generation costs low. 

Although the nowadays DR resources are mainly large industrial or commercial load, residential 
DR also has a considerable potential. Meanwhile, the rapid development of information technology 
(IT) has also brought in opportunities for residential DR implementation, not only to save energy but 
also to improve household convenience. Small-sized, high-speed and low-cost System-on-Chip (SOC) 
solutions are becoming available for smart home applications [3]. The goals of a Smart Home Testbed 
are two-folds: reduce power consumption for the power grid as potential DR resources, and improve 
the experience of household appliances. The former one requires a comprehensive understanding of 
the present residential DR programs, while the latter one coordinates the household appliances with 
various functions.  

Research has been carried out on smart home related architecture design, methods and algorithms. 
A Cloud based smart home architecture is proposed in [4] which focuses on service reliability of Web 
service and Peer-to-Peer technologies. A Simple Object Access Protocol based management system is 
proposed in [5] to solve the interoperation problem of various appliances.  An energy conservation 
oriented smart home design is given in [6] which integrates different groups of smart appliances to 
deliver more value-added services for users’ preferences. Moreover, digging into the function blocks 
into the architecture of SHEM, coordination and scheduling of the appliances are the basics of energy 
management [7]. A mixed-integer linear programming (MILP) based smart home appliance 
scheduling model is proposed in [8] to minimize household electricity cost. Predicted real-time 
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electricity price is considered in optimal residential load control method in [9], which also minimizes 
the appliance waiting time. Uncertainties from appliance operation time and renewable intermittency 
are taken into account in the scheduling method proposed in [7]. The intelligent aspect of smart home 
that tries to enhance the experience of home appliances and improve comfort level is also studied 
from both technology and sociology perspectives. Integration of network-based fire detection system 
is proposed in [10] for smart home automation. Wireless sensing network, biometric technology and 
voice control are proposed in  [11] and [12]. Those reference provides insights for researchers, 
however, they lack one characteristic to be implemented in undergraduate education courses or 
projects. 

A fact of the Smart Home projects is that they are generally small-scale and short-term, yet 
significant for undergraduate education and research. Therefore, the need for an architecture design 
that enables fast prototyping of functions and algorithms to verify sparks from undergraduate students 
and generate insights for the industry has not been well satisfied. This motivate fostered the idea of 
designing and implementing a layered Smart Home Testbed on a SoC platform with fast-prototyping 
scripting language support. 

In this paper, a three-layer architecture design of a DR-ready smart home testbed is proposed in 
Section I to provide DR capability to the grid, conserve energy and improve household comfort level.  
More specific hardware and software designs are described to illustrate the proposed architecture in 
Section II. The proposed design is implemented on a Raspberry Pi 2 based SoC platform as a 
Undergraduate Student Project and the results are shown in Section III.. 

Framework Design 

A. Design Principles    The design of a Smart Home platform involves both hardware layout design 
and software architecture design, each has different requirements. On a higher level of abstraction, the 
designs should follow a couple of general principles: 

1) Modularity. Functions modules to the platform core so that it can be easily added or removed.  
2) Common data interface. All modules should follow the same predefined common data interface 

to send and receive messages. This is the basis of modularity and simplifies future enhancements.  
In this section a layered architecture is presented, followed by two major module designs as 

examples. 
B.  Layered Architecture Design    Fig. 1 shows the proposed three-layer architecture for Smart 
Home Testbed, which consists of a perception layer, an optimization layer and an actuation layer.  

The fundamental basis of the Smart Home Testbed is the Smart Home Energy Management 
(SHEM) which coordinates the appliances and optimizes the scheduling for energy related objectives. 
The SHEM is the aggregation of all the function modules to provide DR capability and elevate 
comfort level. Although in the drawing more demand response related functions are shown, it’s worth 
mentioning that intelligent home related functions that improves user’s comfort level is of the same 
importance in SHEM. 

On top of the SHEM is the perception layer that collects information from an LSE, ambient 
environment, connected appliances and the user. Specifically, information received from LSE is 
transferred through computer network, while the data from ambient environment are collected using 
sensors. Regardless of the different technique used for data collection, these modules share a common 
role in the Smart Home Testbed as perceivers. Any future modules that collects related information, 
for example a mobile APP based owner’s location tracker, should be categorized into this layer. At the 
bottom of SHEM system is the actuation layer which receives control signals conducts the optimal 
control actions from the optimization layer. It generally consists of remote power outlet controller, 
configurable thermostats for HVAC systems and timers for other appliances. 

Moreover, throughout the three layers there are user interfaces (UIs) that provide interactions with 
the Smart Home Testbed At the perception layer, the UI provides quick adjustments for operation 
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mode and appliances to achieve different objectives. In the actuation layer, the UI provides reports of 
well analyzed data and, more preferably, visualizations of energy consumptions and conservations.  

Time-of-
use Tariff

Real-time 
Pricing Signal

Ambient 
Sensors

User's 
Preference

Appliance 
Status

Perception Layer

Pattern 
Recognition

Time-of-use 
Algorithm

Real-time Pricing 
Algorithm

Maximize Comfort 
Level Algorithm

Optimization Layer

Remote Outlet 
Controller

HVAC Settings 
Controller Advanced Metering

Actuation Layer

Wireless 
Communication

 
Fig. 1. Three-layer Design of Smart Home Testbed 

C. Demand Response Capability Design    The SHEM on the optimization layer contains a set of DR 
models that optimize the household appliance scheduling and consequently form the load profile. 
These models accept time-of-use (TOU) or real time price (RTP) signals from LSE as input, and, 
based on user’s preferences and the availability of appliances, outputs the optimized states of 
appliances.  

For a TOU based demand response program, users have the same step-wise electricity tariff across 
different days. Prices are generally higher at peak hours and lower at off-peak ones. A heuristic, 
delay-by-k hour algorithm for the TOU model is described in Table I. The basic idea is, for an 
appliance delayable by e hours being turned on at time t, only choose the hours with the lowest 
electricity price and turn it on; for a non-delayable appliance, turn it on immediately. 

TABLE I.  PROCEDURES OF DELAY-BY-K TOU ALGORITHM 

Delay-by-k hour algorithm 
Inputs: 24-hour electricity price P(t), appliance parameters 

1: for  appliance h = 1 to n: 
2:      if Uh(t) – Uh-1(t) <= 1:              # not turning on 
3:           h = h+1 
4:           continue 
5:       else:                                         # turning on 
6:            if h in {delayables}:          # is delayable 
7:                 k = {P(k)∈minr{P(t, t+1, …, t+e+r-1)}} 
8:                 Uh(k) = 1                     # turn on when price low  
9:              else:                                      # otherwise turn on now 
10:               Uh(t, t+1, …, t+h-1) = 1 

For an RTP model, the optimization is different due to the changing electricity price. However, 
with 5-minute-in-advance price signals, taking electric water heater (EWH) as an example, the 
appliance scheduling problem can be formulated as an optimization model to minimize the total 
electricity costs in (1) – (3). 

 24

1
min ( ) ( )EWHRTP t P m t× ×∫                                                                                                            (1) 

s.t.  [ ( ) ( )] ( ) ( ) ( )T
T a EWH

dX a X t X t A t q t P m t
dt

= − − − + ×                                                                                     (2) 

 min max( )TT X t T≤ ≤     (3) 

where RTP(t) is the last updated real time price at time t, PEWH is the power consumption of EWH, m(t) 
is a binary variable indicating the on or off state of EWH; XT is the temperature of the water; A(t) is the 
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rate of energy extraction when water is in demand at time t, q(t) is the indicator of water in demand or 
not, a is the thermal resistance of tank walls. It’s also worth pointing out that all optimizations are 
computed on a thin SoC client, hence a heuristic algorithm is employed to obtain a feasible solution 
instead of a global optimum. 

Hardware and Software Implementation 

A. Functional Requirements    At the implementation level, the closed-loop hardware and software 
must meet the following functional requirements: 

1) LSE to SHEM communication. Communication between the two are intended for electricity 
price signal broadcasting and, optionally, DR capacity feedback. 

2) SHEM to actuation layer implementation. SHEM must be able to convert its control signals to 
the actual actions in the controlled home appliances, such as power outlets. 

3) Appliance status storage. The on and off status of the household appliances must be stored 
somewhere in the SHEM securely and accessible with privilege granted. 

4) User Interface. Energy saving mode and appliance status should be configurable in a friendly 
user interface. 

5) SHEM optimization algorithms. This includes the DR ready models and algorithms discussed in 
Section III.C. 

B. SHEM on Raspberry Pi    The implementation of these functions largely depends on the hardware 
platform chosen for SHEM. For example, if an Arduino-compatible platform is chosen, those 
optimization models and algorithms must be written in Arduino’s C-like language, which is more 
complicated than the prevailing scripting languages such as Python or Java. A comparison of some 
popular hardware platforms are given in Table. II. 

TABLE II.  COMPARISON OF POPULAR HARDWARE PLATFORMS 
 I/O 

Pins 
Operating 
System 

USB 
Support 

Display 
Ports 

Arduino Yes No No Native No Native 

Raspberry Pi Yes Yes Yes HDMI 

TI DSP Yes No No Native Configurable 

Among the features listed, operating system support carries the most weights because it allows the 
user to utilize the hardware resources more readily with interfaces provided by the system, as well as 
to take advantage of available software. The second important is the native support for USB, which 
enables plug and play of peripherals, such as wireless network dongle, sensors and audio devices. 

Raspberry Pi offers support for Debian Linux operating system, which is ideal for SHEM function 
implementations. The lately released Raspberry Pi 2 model comes with a 900 MHz ARM Cortex-A7 
CPU, 1 GB RAM, 4 USB 2.0 ports, full HDMI port and 40 GPIO pins. Running the customized 
Raspbian OS, it has native support for almost all hardware without having to any driver from scratch. 
The OS allows the developer to program in C language and meanwhile provides scripting language 
support like any other Linux system does. For the aforementioned reasons, Raspberry Pi is an ideal 
platform for Smart Home Testbed platform implementation. 

Back to the required functions discussed in Section II.A, the following settings or configurations 
are done in preparation for the functional requirements. First, eight GPIO ports are connected to an 
external remote circuit board that controls the radio frequency wireless power outlets. Second, Python 
language is installed as a scripting language support. Third, an SQL database is setup to store the 
status of appliances, as well as the historical RTP data. Finally, an Apache HTTP server is set up for 
Web UI services. Note that the external remote circuit board mentioned is an actuator of the control 
signals. It is off the shelf and adopted for this project, as developing the radio-frequency 
communications is beyond the scope of the designated project. 
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C. Implementation Details   Fig. 2 shows the implementation of the Smart Home Testbed 
platform on Raspberry Pi 2. To mimic the electricity market environment with RTP, the spot price in 
New York area, shown in Fig. 3, is retrieved from NY-ISO by LSE in order estimate RTP for the next 
24 hours at a step size of 5 minutes. Then, the price data is broadcasted to SHEM in the households 
through the Internet.  

GPIO

Database 
Operations

Optimization 
Algorithm

Web User 
Interface

C Language

Python 
Language

PHP 
Language

Raspberry Pi

Load Serving Entity Smart Home Testbed Actuation and Interface  
Fig. 2. Implementation of the Smart Home Testbed platform 

 
Fig. 3. Sample spot price curves from New York ISO 

 
Fig. 4. The Smart Home hardware prototype wiring  

On the Raspberry Pi platform, both C programs and Python programs are employed for different 
levels of functions. C programs are more straightforward for lower level hardware control, while 
Python programs are fast prototyping for higher level applications. Therefore, C programs are linked 
to an open source package called WiringPi to takes over the GPIO output control. Python programs 
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are written to implement the demand response algorithms. In the front-end, Web UI is programmed in 
the PHP language to provide convenient user setting adjustments. 

Verification and Demonstration 
The implemented of a Smart Home Testbed following the proposed designs is carried out as an 

Undergraduate Student project. A group of 6 senior-year undergraduates (2 from Electrical 
Engineering and 4 from Computer Science) constructed and set up this testbed in two months, 
mentored by 2 graduate students. In the process of the Testbed project, undergraduate students 
automatically split into three sub-groups, each having 2 people. The first group worked on hardware 
setup, the second group worked on DR related algorithm development in the SHEM, and the third one 
worked on Web UI development.  

Fig. 4 shows the hardware wiring of the Raspberry Pi and the radio remote through transistor 
amplifiers. Owe to the peripheral supports, only transistors are used to amplify the signals from 
GPIOs pins. Fig. 5 shows the Web based UI for setting adjustments. In the ‘User Settings’ tab, an 
electricity price threshold can be entered and five preset modes are available to adjust their time of 
being turned on. In the ‘Off Periods’ tab, behaviors of appliances during the off-period can be 
configured.  

 

   
Fig. 5. Web UI based user interface  
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Fig. 6. Time-of-use appliance scheduling results  
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A. Verification of Time-of-Use Algorithm    The delay-by-k hour algorithm for time-of-use demand 
response programs are verified on the testbed with 5 types of appliances: light, TV, computer, dish 
washer and electric vehicle. The first three types are configured as non-delayable, while dish washer 
and electric vehicles are delayable by a maximum of 8 hours. The input data contains the time-of-use 
tariff in the area, the power consumption and the turn-on time of each appliance. Case study result is 
given in Fig. 6, where dashed lines are the power consumption without the algorithm, while the solid 
ones are that with the algorithm.  
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Fig. 7. Real time price signal on spot market       Fig. 8. Temperature in water heater without RTP  
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Fig. 9. Optimized temperature in water heater with RTP 

From top down, the first figure plots the time-of-use electricity price which peaks at 7:00 PM – 
11:00 PM. The second figure shows the aggregated power consumption of the non-delayable 
appliances whose peak power shows a concurrency with the electricity price. For the dishwasher 
being turned on a 6:00 PM, this algorithm compared the prices in the next 8 hours and found a lower 
price hour at 2:00 AM, thus delayed the dishwasher until then. A little different is the EV charging 
which takes 10 hours to finish. The algorithm found the lower electricity price hours for EV charging, 
which, as a result, is equivalent to avoiding the higher price hours. Finally, the total power 
consumption before and after the delay is compared in the last figure, where a noticeable peak 
avoiding from the time-of-use DR can be observed. 

B. Verification of Real Time Price Response Algorithm    An optimization of electric water heater 
directed by 5-minute ahead RTP is studied and shown in in Fig. 7 – Fig. 9. Fig. 7 shows the RTP of 
New York ISO on November 7, 2015. Fig. 8 shows a typical temperature in a water heater without any 
optimization, where water is heated up to the upper temperature limit and reheated when the lower 
temperature limit is reached. Shown in Fig. 9 is the optimized water heater on and off states, which 
reversely follows the price signal while maintaining the water temperature in the desired regions. 

Conclusions 
In this paper, a three-layer architecture design is proposed for a fast prototyping Smart Home 

Testbed is proposed. Implementation of the layered architecture on a Raspberry Pi SoC shows 
practicality for undergraduate students to test and verify ideas relevant to Smart Home designs. An 
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undergraduate student project example also verified that a SoC platform based Smart Home Testbed 
is suitable and effective for undergraduate level DR related model and algorithm implementation. 
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