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Abstract— In the article, using the example of a three-mass 
oscillating system, a procedure for the synthesis of motion control 
is presented, based on the determination, by solving the inverse 
dynamic problems, of the control actions that provide the desired 
character of the oscillating motions for individual partial systems. 
It is shown that the received control actions will be functions of 
time, which do not impose any restrictions on the structure of 
controllers, which can be realized by choosing the design 
parameters of the control object and by using closed automatic 
control systems. Since the feedback gains are determined directly 
from the mathematical model of the control object, the control 
system will have a weak sensitivity to parametric and coordinate 
perturbations. The results of numerical simulation of the 
effectiveness of the proposed method for limiting elastic 
oscillation are presented. 

Keywords—control system, three-mass system, inverse problem, 
dynamic load, mechanical system. 

I.  INTRODUCTION  

The actual problem of the creation of many technological 
and transport machines is the limitation of the level of 
oscillating movements of the actuating mechanisms in the 
transient operating modes. This problem is particularly 
important in the development of mining machines operating in 
intensive short-time modes, with frequent starts, breakdowns, 
reversals and latching actuating mechanism, and having 
elements with pronounced elastic properties (long shafts and 
cables). The current level of development of power converter 
technology and electric drive used in control systems of 
mining machines makes it possible to form with the required 
accuracy the prescribed laws of motion of the motor shaft in 
transient operation modes [1-3]. However, a further increase in 
the speed of movement associated with the need to increase 
the productivity of these machines will inevitably lead to the 

appearance of elastic oscillation and dynamic loads in the 
mechanical system and transmission of machines that reduce 
the speed and reliability of the operation of the actuator 
mechanism [4, 5]. 

The actuator mechanisms of many mining machines, 
which include digging excavator mechanisms (lifting hoist, 
traction, crowd, including gear and cable), mine hoisting 
machines one-end and two-terminal, which take into account 
the elasticity of the incoming and running-out branches of the 
cable on the head block and the moment inertia of the head 
block on the copra, are rather complex single-chain or 
branched multi-mass oscillating systems [6-8]. Depending on 
the research tasks, the mechanical system can be represented 
by a three- or four-mass system with variable parameters of 
elasticity and inertia of the actuator mechanism and the 
presence of backlashes in the gearbox. 

To reduce dynamic loads and to limit the elastic oscillation 
of actuator mechanisms in transient operation modes, an active 
method of controlling oscillations is increasingly being used 
based on the use of standard electric drives of similar machines 
with feedbacks on the load in the elastic element [9-11]. The 
main problem in using this method of motion control is the 
problem of synthesis of the optimal structure and parameters of 
feedbacks under different operating conditions. In this 
connection, it is of particular interest to use the method of 
synthesis of control actions based on solving of an inverse 
dynamic problem by means of a mathematical model of the 
object by setting the desired character of the oscillational 
motions [12, 13]. The received control actions will be functions 
of time, which do not impose any restrictions on the structure of 
controllers, and allow taking into account all parametric and 
coordinate perturbations. At the same time, the application of 
this approach to multi-mass oscillating systems, which are 
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described by high-order interrelated differential equations, is a 
rather difficult task. 

In this connection, it seems expedient to synthesize control 
actions by independently solving the inverse dynamic problems 
for individual partial systems of the control object, without 
taking into account their mutual connection. 

In this article, using the example of a three-mass 
oscillating system, we describe the procedure for synthesizing 
control actions based on solving the inverse dynamic problems 
for individual partial systems. 

II. OBJECT AND METHOD OF INVESTIGATION 

The possibilities of the proposed approach will be 
considered using the example of a three-mass oscillating 
system, behavior the mechanical system is described by the 
following system of equations: 
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where 1ϕ  - the coordinate of the movement of the first mass 

(drive); 2ϕ  - the coordinate of movement the intermediate 

mass (gearbox); 3ϕ - the coordinate of the movement of the 

third mass (actuator mechanism); 1J , 2J , 3J - reduced to 

drive inertia of the drive, gearbox and actuator mechanism; 

dvМ  and 
с

М - the driving torque and the load torque; 12c  и 

23c  - coefficients of stiffness of elastic elements; 1b - 

coefficient of viscous friction [13]. 

The structural scheme obtained on the basis of the system of 
equations (1) is shown in Fig. 1. As can be seen from this 
figure, there are cross-links between the individual partial 
subsystems 1 and 2. Therefore, a direct solution of the inverse 
dynamic problem, by expressing the elastic deviation of the 
last mass relative to the drive torque dvM , is not possible. 

 
Fig. 1. Structural scheme of a three-mass mechanical system 

Since the main task of control is to limit the oscillations of 
the latter mass, we first determine the required law of the 
change in the elastic torque 12M , at which a given character 

of the change in the elastic coordinate 23ϕ∆  is provided, using 

the last two equations of system (1) with load torque 0=cM . 

                               
2

12
23

2
2323 J

M=∆+∆ ϕωϕɺɺ ,                        (2) 

where 23ϕ∆  is the elastic deviation of the third mass; 12M  - 
the torque transmitted through the elastic element with a 

stiffness coefficient 12c ; 
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frequency of oscillations of subsystem 1. 

We give the exponential law of the change in the coordinate 

23ϕ∆  at which there are no oscillations: 

                              tt eCeC 21
2123

λλϕ +=∆ ,                           (3) 

where 1C , 2C  are integration constants; 1λ  and 2λ  are 

different real or complex-conjugate numbers, such, that 
0Re <iλ . 

Substituting coordinate (3) and its second derivative in 
equation (2), we find the dependence the required law of 
change of the elastic torque 12M  as a function of time: 
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Expressing, using (3), the exponential dependences teC 1
1

λ  

and teC 2
2

λ  through the coordinate 23ϕ∆  and its derivative 

under the initial conditions 2323 )0( ϕϕ ∆=∆ , 2323 )0( ϕϕ ɺɺ ∆=∆ , 
and substituting them in (4), we obtain the following 
relationship: 

                             232312 ϕϕ ɺ∆+∆= VA KKM .                     (5) 

In this expression, the coefficients )( 21
2
232 λλω −= JK A  and 

)( 212 λλ += JKV  can be interpreted as new values of the 
stiffness and viscous friction coefficients in the oscillating 
system, which will provide the given law of change of the 
coordinate 23ϕ∆ . The structural scheme of the three-mass 
oscillatory system, equipped with passive vibration protection 
of subsystem 1 in the form of an additional elastic element and 
viscous friction damper, is shown in Fig. 2. 

 
Fig. 2. Structural scheme of a passive vibration protection system 

To find the law of change of the drive torque dvM , let us 
consider subsystem 2 (see Fig. 1), the motion of subsystem 2 
is described by the first and second equations of system (1): 
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Solving equations (6) relative to the elastic coordinate 12ϕ∆ , 
we obtain: 
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Here 
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2112
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)(
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JJс +
=ω  - the partial oscillation frequency 

of subsystem 2. Taking into account that 121212 ϕ∆= cM , we 
determine from (4) the law of change of the elastic coordinate 

12ϕ∆ : 
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Dif ferentiating the expression (8) twice in time, we substitute 
the coordinate 12ϕ∆  and its second derivative into equation 
(7). We give the exponential law of the change of the moment 
transmitted through the elastic element with the stiffness 
coefficient 23c in the form: 
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212323

tt eCeCcM λλ += .                         

Af ter some transformations, we find from expression (7) the 
required law of change of the driving torque: 
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The found control law (9) is a function of time that does not 
depend on the structure of the controllers and provides the 
possibility of solving the problem of not only parametric, but 
also structural synthesis of the motion control system. To 
implement motion control on the principle of feedback, we 
express the time dependences (9) through the phase 
coordinates of the system. Substituting the coordinate 12ϕ∆  
and its second derivative in (8), taking into account the initial 
conditions 1212 )0( ϕϕ ∆=∆  and 1212 )0( ϕϕ ɺɺ ∆=∆ , we define 
the values of the exponential functions: 
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Substituting expressions (10) and (11) in (9) and grouping the 
coefficients of 12ϕ∆  and 12ϕɺ∆ , we obtain the dependence for 

determining the drive torque dvM : 
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The coefficients 1AK  and 1VK  in expression (12) can be 
represented as the coefficients of additional feedbacks on the 
elastic coordinate 12ϕ∆  and its derivative. The structural 
scheme of the active oscillation control system based on 
additional feedbacks is shown in Fig. 3. 

 
Fig. 3. Structural scheme of active oscillation control system 

The unknowns in (12) are the coefficients 1λ  and 2λ . 
Determination of the values of these coefficients will be 
performed using the transfer function of the subsystem 1, 
provided that 0=

с
М : 
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From (13), revealing the coefficients of feedbacks, we obtain 
the characteristic equation of the system: 

                     0)( 2121
2 =++− λλλλ ss .                         (14) 

It is known that for a two-mass oscillating system the 
differential equation of the second order is determined by the 
expression: 

                              001
2 =++ asas ,                                 (15) 

where 01 2ξω=a ; 2
00 )(ω=a , 0ω  - frequency of 

oscillations; ξ  - damping coefficient; dtds /= [14]. 

Equating the coefficients of the corresponding powers in (14) 
and (15), we obtain the following relations: 

2102 λλξω −−= ; 21
2

0)( λλω = , 

of which we shall have: 
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A sufficient condition ensuring aperiodic transient processes 
in a two-mass system is the value of the damping coefficient 

707,0≥ξ , which corresponds to obtaining multiple roots of 

the characteristic equation (14). As you know, positive 
feedbacks reduce the stability margin of the control 

system, in this connection, the rigid feedback must be 
negative, and therefore 12

2
21 ωλλ > . 

II I. RESEARCH AND DISCUSSION 

To test the effectiveness of the synthesized control of a 
three-mass oscillating system, numerical simulation of 
transient processes was carried out with the following 

parameters of the mechanical part: 2
1 4 mkgJ ⋅= , 

2
2 6 mkgJ ⋅= , 2

3 65 mkgJ ⋅= , radmNc //800012 = , 

radmNc //200012 = , sec/151 mNb ⋅=  [13]. For the 

specified parameters, the nearest multiple root 2021 −== λλ ; 

with necessary conditions 21 λλ ≠ , we will take 252 −=λ  and 

201 −=λ . 

For the parameters adopted, the stiffness and viscous 
friction coefficients of the passive vibration protection system 
shown in Fig. 2, will have the values mNK A /816−=  and 

smNKV /270 ⋅−= , respectively, and expression (12) will 
take the form: 

1
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1
1212 175971 ϕϕϕ ɺɺ

J

b

J

M dv −=∆+∆− . 

During the simulation, the load torque in the first 12M  and 

second 23M  elastic elements, the speed of the third mass 3ω , 

and the absolute deviations of this mass 3113 ϕϕϕ −=∆  in the 
start-up and load-step modes were determined. As an input, a 
step single signal of the drive torque )(1 tM dv =  passed 

through the delay link 
105.0

1

+s
 was used. 

Executed studies have shown that the use of the passive 
vibration protection system (see Fig. 2) and the active control 
system (see Fig. 3) allows limiting the oscillational 
movements and providing aperiodic transients in the modes of 
start-up and load-step. As an illustration, Fig. 4 and 5 show the 
oscillogramms 12M  and 23M , 3ω  and 13ϕ∆  for the start-up 
mode, and in Fig. 6 and 7 are the same oscillogramms 
obtained when the load is up on the actuating mechanism. 
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Fig. 4. Torque oscillogramms 23M  and 12M  in start-up mode 
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Fig. 5. Speed oscillogramms 3ω  in start-up mode 

In these figures curve 1 describes the transient processes 
occurring in the initial oscillatory system; curve 2 - processes 
in a system equipped with passive vibration protection unit, 
and curve 3 - processes in a system equipped with additional 
feedbacks for controlling oscillations. 
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Fig. 6. Oscillogramms of elastic torques 23M  and 12M  in the load-step 

mode 
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Fig. 7. Oscillogramms of speed 3ω  and absolute deviation 13ϕ∆  in the 

load-step mode 

As can be seen from the oscillogramms, the passive 
vibration protection system (curve 2) almost completely 
eliminates the elastic oscillations in the first partial system and 
ensures a sufficiently rapid damping of the oscillations in the 
second in the start-up mode (see Fig. 4) and the load-step in 
comparison with the initial oscillating system (see Fig. 6). The 
amplitude of the oscillations of the elastic torque 23M  is 

reduced by 60%, and the torque 12M  by 22% compared to the 
initial system (curve 1). In this case, the deviation in the 
motion between the first and third masses 13ϕ∆  is 
monotonous in the start-up (see Fig. 5) and the load-step 
modes (see Fig. 7). However, in this case, a slight increase of 

the time of acceleration of the third mass (curve 2) was 
observed in comparison with the initial system (curve 1) (see 
Fig. 5 and 7).  

An active oscillation control system based on additional 
feedbacks also provides a monotonous character of the change 
in the elastic moments (curve 3) with a transient time of about 
2 sec (see Fig. 4). However, significant amplitude ejections of 
these torques were observed in the start-up mode: the 
maximum value of the amplitude 23M  was 2.7 times, and 

12M  was 3.3 times higher than in the original mechanical 
system (curve 1). In the load-step mode, elastic oscillation in 
partial systems are absent, and the torque vary according to an 
aperiodic law (see Fig. 6). It follows from Fig. 5 and 7, the 
new steady-state value of the third mass velocity 3ω  (curve 3) 
is achieved rather quickly. The deviation in motion between 
the first and third masses in the starting mode (see Figure 5) is 
also monotonic with a large amplitude burst (curve 3), but in 
the load-step mode (see Fig. 7) this burst is not observed, and 
the magnitude deviation is determined by the load. 

It should be noted that the passive vibration protection 
system ensures effective compensation of elastic oscillation 
only for the specified parameters of the protection object. The 
active oscillation control system based on additional feedbacks 
has an invariance to changes in the parameters of the 
oscillating system, since the feedback coefficients are 
determined directly by the mathematical model of the control 
object. 

IV.  CONCLUSION 

The method of synthesis of control actions proposed in this 
article, based on the determination by the solution of the 
inverse dynamic problems of control actions for individual 
partial systems, makes it possible to provide the desired 
character of the oscillating movements of the control object. 
Since the control actions obtained will be functions of time 
that do not impose any restrictions on the structure of the 
controllers, they can be realized by selecting the design 
parameters of the control object and using closed automatic 
control systems, which allows solving the problem of not only 
structural, but also parametric synthesis of motion control 
systems. Since the parameters of the control systems are 
determined directly from the mathematical model of the 
control object, the control obtained will have adaptive 
properties and weak sensitivity to parametric and coordinate 
perturbations. As shown by the conducted studies, the 
synthesized control allows reducing the level of elastic 
oscillations and dynamic loads in a three-mass oscillating 
system. 

The proposed synthesis method can be used to control the 
movement not only of mining machines, but other 
technological and transport machines equipped with modern 
electric drive, the design schemes of which can be represented 
by three-mass oscillating systems. Its application will reduce 
the amplitude of elastic oscillation in transient modes and 
increase the efficiency, reliability and safety of such machines. 
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