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     Abstract— The article presents analytical equations for 
determining the relative pressure losses in suction and 
discharge processes, both including and excluding the 
liquid compressibility; they were obtained based on an 
analysis of the approach to determine the relative pressure 
losses in the suction and discharge processes in a piston 
compressor. The numerical experiment has confirmed 
their applicability. 
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I.  INTRODUCTION  

A significant amount of energy is currently being spent for 
the pump drives in all countries. The amount of energy 
consumed in different countries is different and, according to 
experts' estimates, reaches up to 20% of all generated 
electricity [1]. For example, about 12% of all electricity 
generated is spent on pump drives in the industrial sector in 
Germany.  
 Piston pumps, including axial-piston and radial-piston 
pumps, have a significant part both in quantity and in energy 
consumption among the existing pumps; they are absolute 
leaders in the volume pumps and are widely used in the 
aviation industry. The suction and discharge processes are the 
most important in the cycle of a volume pump, as they provide 
the bulk of the technical work, and their quality largely 
determines the pump energy efficiency, and its uneven supply. 

Due to the above said, the relevance of this work is beyond 
doubt. 

II. THEORETICAL BASES OF THE ANALYSIS METHODS 

 
Differential equations of relative pressure losses in the 

suction and discharge processes for piston compressors were 
obtained by academician N.A. Dollezhal [2]. To calculate the 
absorption process, he used the first law of thermodynamics 
for working medium with variable mass and without external 
heat exchange and flash gas through the piston seal leakage, 
the equation of an incompressible flow of gas through the hole 
and the equation of ideal gas state. The equation of adiabatic 

compression constp k =υ  was applied for the injection 

process and it can be obtained applying the first law of 
thermodynamics to the working medium with variable mass 
and without external heat exchange and flash gas [3], the 
equation of gas flow through a discharge valve assuming its 
incompressibility, and the equation of ideal gas state. 

Thus, Academician N.A. Dollezhal used two basic 
equations of energy conservation:  

- internal energy - in the form of the first law of 
thermodynamics for working medium with a variable mass; 

- external energy - in the form of the Bernoulli equation for 
the flow of an incompressible fluid (the equation for the flow 
of incompressible fluid through an aperture is derived from the 
Bernoulli equation) assuming that working medium is ideal 
gas. 

The system of three equations with three unknown 

ρ,,Tp  (where р is pressure, Т is temperature, ρ  is 
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density) was solved with respect to dimensionless pressure 

losses χ : for the suction process - 
sc
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injection process - 
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=χ  , where рsс, рij are nominal 

pressures in the process of suction and injection. 
The authors, considering calculations of suction and 

discharge processes in volumetric pump, apply the first law of 
thermodynamics to the working medium with variable weight 
for a stream, which hereinafter also is converted into a system 
of differential equations of internal and external energy 
conservation [4].  

Thus, there is regularity of the fact that to obtain the 
pressure loss equations (in absolute or relative form), it is 
necessary to apply: 

- The first law of thermodynamics to the working medium 
with a variable weight as an internal energy conservation law. 

- The Bernoulli equation as a law of mechanical energy 
conservation. 

- The closing equation in the form of the equation of state - 
for gas and Hooke's equation for a dropping liquid. 

Little effect of external heat transfer during the volumetric 
pumps should be noted; at high heat capacity, droplet does not 
lead to noticeable change in its temperature. Thus, when 
determining equations, pressure losses in positive 
displacement pump can be assumed Т=cоnst, and when 
analyzing suction and injection processes, the equation of the 
first law of thermodynamics can be excluded from 
consideration.  

III.  SUCTION PROCESS 

In general, the flow of fluid in the suction pipeline and in 
the pump cylinder is one-dimensional and non-stationary, 
because the speed of the piston is variable. A system of 
differential equations describing a nonstationary one-
dimensional flow and including the equation of motion and the 
equation of continuity can be represented in the form [5]: 
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where р, Q are pressure and volumetric flow of liquid in the 
pipeline; F is the cross-sectional area of the pipeline; d is its 

diameter; x, t are time and coordinate; λ  is coefficient of 
friction along the length; ρ , с are fluid density and the 

speed of sound in it. 
The system of differential equations (1, 2) in separate 

derivatives has no analytical solution and may be solved with 
special methods such as the method of characteristics [6]. 

When analyzing the suction process of the low pressure 
and low pressure drops due to change in droplet, density can 

be neglected and it is assumed that ρ =const. Then the 

unknown variable is one р ( ρ =const, Т=cоnst) at a known 

value of the velocity υ  along the pipeline axis. In this case, a 
quasi-stationary model of fluid flow in a suction pipeline is to 
be accepted, and the Bernoulli equation for the viscous fluid 
flow to determine the relative pressure losses during the 
suction process is to be used [7]; its differential form is [8]: 

0=+++ gdhwd
dp

gdz υυ
ρ

.   (3) 

Considering that ρ =const, the cross-section I-I is located 

at the free liquid surface in the suction tank, and the cross 
section II-II is located on the bottom of the piston (Fig.1), 
equation (3) integrating gives the following mathematical 
equation: 
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In most cases, there are 01 =υ ; 12 =α ; р1=рsc ; р2=р ; 

hυυ =2 . Considering the above said transformation (4) 

results, there is an equation: 
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where ( ) ( ) ( )
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are the current values of the stroke of the piston; SM is the 
value of the linear dead volume; z2o, z1 are coordinates of the 
piston in TDC, coordinates of the free surface of the liquid in 

the suction tank; iλ  is the value of the friction coefficient 

along the length at the i-th section of the suction line; iℓ , di , 

fi are, respectively, the length, diameter and cross-sectional 
area of the i-th section of the pipeline; ∑ iζ  is the sum of 

local coefficients of resistance, reduced to the speed of the 

piston ( )nυ ; 






 += ϕλϕωυ 2sin
2

sin
2

0Sh
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 is speed of 

the piston; ω  is angular speed of the crankshaft rotation. 
Analyzing the structure of equation (6), the 

following conclusions are offered: 
1. The first term determines part of the pressure losses, 

connected with the fluid lifting from the free surface to 
the bottom of the piston. 

2. The second term shows the pressure losses for 
overcoming the hydraulic resistances and for obtaining 
fluid velocity equal to the velocity of the piston. 

IV.  INJECTION PROCESS 

In general, the pressure р is a function of the specific 
volume υ  and temperature, but, considering that the 
temperature is constant, it is possible to write it as follows: 
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thus 
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Considering equation (8), the Bernoulli equation takes the 
form: 
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After integration, equation (9) is transformed to the 
following form: 
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Parameters with index "1" refer to the cross-section I-I, 
and it is connected with the bottom of the piston to determine 
the relative pressure losses during injection, and parameters 
with index "2" – to cross-section II-II, located immediately 
behind the discharge valve in the discharge line (Fig.1). 

Equation (8) integrating gives the formula: 
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Substituting equation (11) into equation (10) results in:  
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And it represents the following equation in the dimensionless 
form: 
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where z1, z2 are the coordinates of the centers of gravity of the 
corresponding sections. 
 z1= zп, z2 = zн where zп is coordinate of the bottom of the 
piston; zн is the coordinate of the section gravity; рij is nominal 

discharge pressure; пυυ =1  is speed of the piston; 

н

п

f

f1
2

υυ =  is velocity of the fluid in section II-II;  fн is the 

cross-sectional area of the injection pipeline; 12,αα  are 

values of Coriolis coefficients in the corresponding sections 

(values 1α  and 2α  can be taken as 1). 

The amount of hydraulic resistance in the discharge line 

нhw∆  is composed of hydraulic resistances along the length 

ℓhн∆  and local hydraulic resistances. Their meaning is 
determined with the formulas: 

g
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fζ is a coefficient of local resistance of the 

valve; fg is gap area of the discharge valve; λ  is coefficient of 
friction along the length (generally is a function of the 
Reynolds number and relative roughness and is determined 
according to the existing recommendations [9, 10 and so on]). 

The structure of the relative pressure losses during the 
injection process, that were obtained considering the 
compressibility of the liquid, is similar to the structure of the 
relative pressure losses during the suction process. 

V. THE RESULTS ANALYSIS 

The calculation of relative pressure losses in the suction 
and discharge processes of a single-cylinder piston pump, 
acting and having the following parameters, was carried out:  
nominal suction pressure (рsc) is 0.1 МPa; 
nominal discharge pressure (рd) is 20 МPа; 
diameter of the cylinder is 50 mm; 
stroke of the piston is 50 mm; 
crankshaft rotation speed is 250 min-1; 
center of gravity of sections: zsc=1m; z20=2m; zd=2.2m;  
working medium – water with the following properties: 
Е=2·109Pа; 

30 1000
m

kg=ρ  at Т0=293 К, р0=0.1 МPа;  

∑ == miji 1ℓℓ  is length of the suction pipe;  

∑ == 5cscζζ i
 is the sum of local coefficients of resistance at 

suction;  
dsc = 20 mm is a diameter of the suction pipe;  
dd = 20 mm is a diameter of the discharge pipeline;  
Sн = 1 mm is linear dead space; 

5=valζ  is a value of the local coefficient of resistance of 

the discharge valve.  
The relative pressure losses in the suction and discharge 

processes at different angular velocity and discharge pressure 
are shown in Fig. 2, 3 and 4. The presented results draw the 
following conclusions: 

1. As the angular velocity of rotation increases, the 
relative pressure losses increase both during the suction 
process and during the injection process. The maximum values 
of the relative pressure losses are achieved in the middle of the 
processes, when the piston has its maximum speed. 

2. With increasing injection pressure, the density of the 
working fluid increases, and it leads to an increase in the 
absolute values of the pressure losses. However, the relative 
value of the pressure losses decreases; the increase in pressure 
itself exceeds the increase in pressure loss. 

VI.  СONCLUSION 

 Mathematical dependencies are obtained to calculate 
the relative pressure losses in the suction and discharge 
processes for a piston pump. For the injection process, the 
changes in the density of the working medium on the pressure 
are considered. The numerical experiment showed the 
applicability of the equations obtained. 
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