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Abstract — In the article the developed mathematical models 
of heat exchange in the multilayer structures of spherical shape 
are presented. The mathematical description of the 
polymerization temperature process of composite materials is 
made at three production stages. Heat exchange is considered 
when the perfect coupling takes place between layers (boundary 
conditions of the fourth kind). Such products are widely used in 
the aviation industry and space technology. This work continues 
to research modeling of thermal physical processes in multilayer 
structures. The peculiarities of the application of the method of 
finite integral transformations and the method of isothermal 
surfaces for solving the set model problems are considered. 
Universality of the obtained mathematical apparatus allows 
creating software for carrying out experiments on computer 
facilities. 

Keywords— heat exchange, polymerization, coupling 
conditions, multilayer structures  

I.  INTRODUCTION  

The study of heat exchange processes is one of the main 
sections of modern research in the aviation, space and other 
industries [1,2]. As it is known, many production processes 
are to a greater or lesser extent related to changes in the 
temperature state and heat transfer. It should be noted that 
studies of the kinetics of a number of physical and chemical-

technological processes are similar to the problems of 
stationary and non-stationary thermal conductivity. 

Analytical theory of heat exchange is the scientific basic 
for the study of thermal processes proceeding in modern 
thermal-technical installations. Knowledge of the mechanisms 
of heat transfer allows to find the most optimal conditions for 
carrying out thermal processes, to create materials with set 
physical properties, to control technological processes of 
production, and to solve many other technical problems [3-
12]. 

The problems of heat transfer for multilayer structures of 
spherical shape refer to problems with boundary conditions of 
the fourth kind. In connection with the development of high-
temperature thermal physics, they become of primary 
importance when conducting thermal and strength calculations 
of the structures of aviation and space technology, calculations 
of multilayer composite materials widely used in many 
industries. It should be noted that analytical solutions are best 
suited for obtaining multilayer materials with set properties; 
they explicitly contain the basic physical parameters (thermal 
diffusivity, heat capacity, thermal conductivity, etc.). 

In the article the mathematical models, that are informative 
in fundamental principles of heat exchange processes, are 
developed and investigated. To achieve the goal, it is proposed 
to apply the method of finite integral transformations and the 
method of isothermal surfaces that make it possible to solve 
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problems connected with obtaining multilayer structures with 
regard to phase transitions. 

 
II. CHARACTERISTICS OF TECHNOLOGY 
 

In the process of multilayer structures production of 
spherical shape, it is necessary to observe certain technical and 
technological requirements, to take into account the heat 
release during polymerization. So, for example, if the heat 
emission at polymerization is not taken into account, this 
causes a change in the temperature mode of production and the 
appearance of residual thermal stresses and deformations 
during cooling. 

The temperature polymerization process includes three 
stages (modes): I - preheating mode; II - polymerization; III - 
cooling mode. 

At the first stage, the temperature of the product rises from 
the temperature of the medium to the polymerization 
temperature under the effect of heat. 

At the second stage, a polymerization front is formed, 
which moves inward the structure. 

At the third stage, the finished product is cooled to the 
temperature of the medium. 

At each stage, the speed rates of temperature increase and 
the corresponding temperature modes are determined. The 
peculiarity of thermal physical processes at each stage creates 
the need to use various mathematical models, in this case, at 
the beginning, models for the first and third stages are 
developed, and then models for the second stage are created 
on their basis. 

 
III. Statement and solution of the task at the first stage 

 
At the first stage of multilayer structures production by the 

polymerization method, non-interconnected heat and mass 
exchange takes place. Therefore, heat exchange and mass 
transfer are considered separately, although they are solved 
according to the same scheme. In this paper, let us consider 
heat exchange. 

As it is known, the mathematical model of heat exchange 
in multilayer structures of a spherical shape is described by 
partial differential equations of parabolic type and have the 
form (central symmetry) (Fig. 1): 

 
Fig. 1. N – layer sphere 
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,1,...,2,1 −= Nj  
where Ui – temperature; ri – current radius of the layers; τ – 

time; 2
iа – thermal diffusivity of the layer; qi – power of the 

source; ci – specific heat of the layer; ρi – material density of 
the layer; N – number of layers; Ri – radii of the layers; λi – 
coefficient of thermal conductivity of layers; R0 – radius of the 
surface of the inner layer; αi – coefficient of thermal 
interaction of the surface layer with the medium; Uc1 – 
temperature outside the inner layer; RN – radius of the surface 
of the outer layer; UN – temperature of the external surface of 
the product; UcN – temperature outside the outer layer of the 
product. 

To solve the problems of thermal conductivity in 
multilayered bodies with inhomogeneous boundary 
conditions, we use the algebraic sum of the solution of the 
stationary problem of thermal conductivity with 
inhomogeneous boundary conditions and the non-stationary 
problem of thermal conductivity with homogeneous boundary 
conditions, because a direct solution of the original problem 
leads to slowly convergent series, which lengthens the 
calculations [13]. 

We seek the solution of the problem (1) - (5) in the form 
),,()(),( ττ iiiiii rPrSrU +=  ,,...,2,1 Ni =                     (6)   

where Si(r i) – solution of the stationary problem with 
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1,...,2,1 −= Nj – matching boundaries. 

When solving the stationary problem (7) - (10), we use the 
method of finite integral transformations. 
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Pi(r i,τ) –a solution of a non-stationary problem with 
homogeneous boundary conditions: 

        ;
),(2),(),(

2

2
2

ii

i

i

ii

ii

ii
i

ii

c

q

r

rP

rr

rP
a

rP

ρ
ττ

τ
τ

+














∂
∂

+
∂

∂
=

∂
∂

      (11)            

,,...,2,1 Ni = ,1 iii RrR ≤≤− ;0>τ  

                                );()()0,( iiiiii rSrfrP −=                       (12) 

                              ;0),(
),(

011
1

01
1 =−

∂
∂ τατλ RP

r

RP
              (13) 

                        ;0),(
),( =−

∂
∂ τατλ NNN

N

NN
N RP

r

RP
           (14) 

);,(),( 1 ττ jjjj RPRP +=  

                ;
),(),(

1

1
1

+

+
+ ∂

∂
=

∂
∂

j

jj
j

j

jj
j r

RP

r

RP τ
λ

τ
λ                     (15) 

1,...,2,1 −= Nj – matching boundaries. 

The solution of problem (11) - (15) is obtained by the 
method of finite integral transformations. 

As a result, the solution of the original problem (1) - (5) 
has the following form: 
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where µn – roots of the characteristic equation; 
φ – angle of cross section of spherical shape product; 
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IV STATEMENT AND SOLUTION OF THE TASK AT 

THE THIRD STAGE 
  
At the third stage of production of multilayer spherical 

structures, the multilayer sphere with central symmetry is 
cooled from the polymerization temperature to the ambient 
temperature (shop). Cooling starts from the outer surface of 

the product from the polymerization temperature of the binder 
to the ambient temperature (the electric heating is simply 
turned off and the product, together with the installation inside 
which it is, cools down to the shop temperature). 
Under such assumptions, the formulation and solution of the 
heat transfer problem are the following: find the solution of 
the equation, taking into account the fact that the cooling 
progresses to the center of symmetry (Fig. 2): 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Full sphere with polymerized layer 
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where r – variable in the radial direction; 
λ1 – thermal conductivity of the product; 
λ2 – thermal conductivity of the medium; 
Uc – temperature of the ambient medium (shop). 
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We seek the solution of problem (21) - (25) in the form of 
stationary and non-stationary components:  
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The solution of the stationary problem is obtained using 
the method of finite integral transformations. 

P(r,τ) – solution of the non-stationary problem with 
homogeneous boundary conditions: 
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The solution is obtained by the method of finite integral 
transformations. 

Passing to the original, we obtain the solution of the 
original problem (21) - (25) in the form: 
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V. STATEMENT AND SOLUTION OF THE TASK AT 

THE SECOND STAGE 
 
To solve the problem of the second stage, we use the 

method of isothermal surfaces, as well as mathematical 
models of the problems of the first (1) and the third stages and 
their analytical solutions. 

The mathematical model of heat exchange in a 
polymerized layer (the central symmetry) of a product of a 
hollow spherical shape has the form: 
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The analytical solution of the problem of the third stage of 
production is sought in the form of stationary and non-
stationary components: 
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For the mathematical modeling and solution of the non-

stationary problem of heat exchange, the isothermal surface 
method is used at the second stage of production of multilayer 
constructions of a hollow spherical shape [14]. 

The main point of this method consists in replacing the 
true temperature distribution Uk,n inside each area Dk,τ by not 
stationary, at fixed positions of the 
boundary ),(: ,, niniiS τξξτ =  n =1,2,3…. 

Fixing arbitrarily the positions of the 
boundary ),(: ,, niniiS τξξτ =  we replace the area of 

continuous change of this boundary by a discrete set{ },,niξ  

representing the increasing and bounded above sequence. 
In areas  { },,0, nrD ini ξτ <<=  we find the non-stationary 

temperature distribution Uk,n(r,τ) and using them, the function 
of a continuous argument ),( iξττ =  is replaced by a function 

of a discrete argument ).( ,nii ξττ =  

604

Advances in Engineering Research (AER), volume 157



Due to this, a discrete spectrum is allocated in the 
continuous spectrum of the Eigen values of the problem. This 
allows selecting and normalizing the minimal system of Eigen 
functions in the continuous spectrum in the corresponding 
domains. The obtained values Uk,n(r,τ) of the approximate one 

satisfy the condition of the problem for jττ = (see. Fig.3). 

 

 
Fig. 3. The movement of the boundary of the polymerization 

zone in the spherical layer ( ) ( )[ ] .****
jjNjj VrRr τττξτ =−==  

 
Speed V of polymerization boundary movement is 

experimentally determined for each type of binder. This makes 
it possible to determine approximately the positions of the 

polymerization boundary for each instant of time jτ  

according to the formula:  

( ) ( ) ***
jNjj VrRr −== τξτ  

where τ* j – critical time corresponding to the position of the 
polymerization boundary. 

The temperature in the autoclave at the second stage of 
composites production corresponds to the polymerization 
temperature of the selected type of binder, that is, until the 
completion of the second stage of production remains 
constant. 

The main point of the method of isothermal surfaces is that 
the continuous spectrum of the polymerization boundary 
moving ,)(0 Nj RrR ≤≤ τ  is replaced by a discrete 

set ( ){ } ( ){ }***
jjr τξτ =  (the position of the polymerization 

boundary at fixed moments of time τ* j). 
These fixed uneven lines (Fig. 3) are marked by concentric 

circles. 
Thus, the method of isothermal surfaces makes it possible 

to trace the nonlinear problem of non-stationary thermal 
conductivity to two already solved linear problems in 

intervals Nj Rrr ≤≤*  and *
0 jrrR ≤≤  using the method of 

finite integral transformations. 
Consider three positions of arbitrary timejτ  and critical 

time τ* j: 

1)  ;*
jj ττ <  2) ;*

jj ττ =  3) .*
jj ττ >  

When *
jj ττ < , the area under consideration (see Fig. 3) 

coincides with the area of complete polymerization; 
consequently, the mathematical model of the second stage of 
the process coincides with (35) - (39) and the solution of the 
problem has the form (40) - (43). 

When *
jj ττ = , a temperature value ),( **

jrU τ  coincides 

with the temperature of intensive polymerization of the binder, 
that is, with the temperature of the second stage of spherical 
composites production. 

When *
jj ττ > , the considered area coincides with the non-

polymerized multilayered area (see Fig. 3). Consequently, the 
mathematical model coincides with (1) - (5) and the problem 
in this zone is solved by the method of integral 
transformations and has the form (16). 

 
VI. CONCLUSION 

 
Thus, the obtained complex of mathematical models 

allows one, with a certain degree of accuracy, to investigate 
the dynamics of heat exchange in multilayer structures of 
spherical shape under the influence of given and time-varying 
temperatures and boundary conditions. With the help of 
analytical solutions, it is possible to estimate the temperature 
distribution in each layer of the product. The application of the 
method of finite integral transformations and the method of 
isothermal surfaces made it possible to simulate the 
spatiotemporal dependences of thermal fields in multilayer 
structures with specific thermal physical properties in 
analytical and numerical form, using finite-difference 
schemes. 
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