
Development of Preprocessor of SIGMA Software

for Computer Simulation in Aerospace Engineering

Yury I. Dimitrienko and Andrey A. Zakharov
Department of computational mathematics and mathematical physics,

Bauman Moscow State Technical University

Moscow, Russia

azaharov@bmstu.ru

Abstract— The paper covers the area of block-structured

adaptive grid generation for finite difference, finite element and

finite volume methods. It deals with a problem of development of

information technologies and algorithms for generating such

grids in complex geometries. Its key idea is to bring together the

different existing techniques for computer-aided geometric

design of domains, grid generation, grid concentration and grid

subdivision. The methods used for a construction of domain

geometries, working with block-structured quasi-continuous

grids, a subdivision of block-structured adaptive grids into

vertex-centered control volumes, generation of ghost nodes and

cells, calculation of distances to boundaries are discussed. It is

described of the software interfaces of the geometry editor and

the mesh generator that were developed in the SIGMA

preprocessor. The results of the generation of three-dimensional

adaptive grids for the domain of external flow near a hemisphere,

flow around a surface of the high-speed aircraft of Falcon HTV-2

type and for the domain of the gap between a wheel and a body

of an aircraft are analyzed. The presented methods and

algorithms for grid generation have the following advantages: 1.

The grids are structured and mesh cells are hexahedra in the

entire complex curvilinear computational domain. 2. The grids

can be applied for finite difference methods. 3. The grid lines are

adjusting with the flow in the whole domain.

Keywords— block-structured adaptive grid, finite difference

grid, computer-aided geometric design, complex domain, mesh

subdivision, preprocessing

I. INTRODUCTION

Development of unified computer-aided software packages
for generating adaptive grids currently represents a large-scale
problem of applied mathematics, computational physics,
mechanics, biology and medicine [1–3]. Existing open-source
and commercial software packages mainly use mesh
generation methods that are universally applicable for
complex geometry and focus on the generation of unstructured
finite element or finite volume grids [4–6]. Structuring and
adaptation of a mesh, as well as the hexahedral shape of its
cells, usually can be held only near some boundaries of the
domain. At the same time, for some problems of mathematical
physics (e.g. high-speed aerodynamics problems), it is
important to hold the structuring and hexahedral shape of the
mesh cells in the entire domain [7–9], the applicability of the
mesh for finite difference methods [8–10], geometric and
dynamic adaptation of the mesh in the entire domain [11].

Therefore, quadrilateral and hexahedral mesh generation has
become a topic of intense research [12, 13].

Software package SIGMA has been successfully applied
for numerical solutions of a wide range of problems in
aerospace engineering for over ten years (e.g. see [14, 15]). It
is developed by Computational Mathematics and
Mathematical Physics Department of Bauman Moscow State
Technical University. It includes a full set of modules that are
required for the numerical simulation. SIGMA preprocessor
includes a three-dimensional geometric simulation module,
which allows generating a wide range of geometric shapes; a
module, which allows setting properties and initial conditions
and adaptive mesh generator. Let us consider the methods and
algorithms that underlie the preprocessor module.

II. CONSTRUCTION OF DOMAIN GEOMETRIES

For the generation of block-structured adaptive grids, the
equations of boundary curves and surfaces need to be written
in parametric form. These equations are built on the spline
interpolation methods, which are based on a created grid of
control points. The control points are located on the boundary
surfaces and form the structured surface mesh.

The SIGMA preprocessor module has a graphical interface
that allows creating a computational domain visually. The
domain is constructed from a set of initial hexahedral blocks
(primitives) by their combining and subsequent deformation.
In the current version of SIGMA, such primitives can be a
cube, cylinder, cylindrical and spherical segments. The
deformation is performed by changing of coordinates of
control points of the primitives. We can enter these
coordinates or read from a file.

It is possible to load the incoming information about
geometric shapes of bodies from the solid simulation software.
In this case, it is used the STL geometry definition file format.
The functions for generation of points in given sections and
along lines between the two specified points on a triangulated
surface are implemented for the construction of the structured
mesh of control points on the imported surfaces (Fig. 1). Then
the predetermined thickness curvilinear blocks are generated
based on data about the normals in cells. Fig. 1 illustrates the
process of importing the geometry from STL file, the created
grid of control points, view of the surface cubic splines and
the construction of the curvilinear blocks.

646Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

International Conference "Actual Issues of Mechanical Engineering" (AIME 2018)
Advances in Engineering Research (AER), volume 157

(a) STL geometry and grid of control points (b) surface spline (c) curvilinear blocks

Fig. 1. Import of geometry and domain construction

III. ADAPTIVE GRID GENERATION

A. Introduction of Adaptive Coordinates

A three-dimensional non-orthogonal coordinate system X
i
,

i=1,2,3 is introduced to generate an adaptive mesh. In this
coordinate system, the boundaries of each curvilinear block
are the coordinate surfaces. To go to these coordinates, we use
the explicit form of algebraic transformation, which refers to
the Lagrangian coordinate transformation of transfinite
interpolation methods [1–3, 16]. There are functions that allow
finding the Jacobian matrix of the transformation, neighboring
nodes, tangent and normal vectors at the boundary points.

Generally, it is impossible to build an acceptable global
transformation from a single block without singularities.
Therefore, we use the following approach for the grid
generation. A domain consists of hexagonal blocks which are
continuously joined at the boundaries. The parameterizations
and coordinate directions of the boundary surfaces of the
blocks should be matched.

B. Grid Concentration

A preliminary transformation of an initial uniform mesh
into a non-uniform one is introduced to control the distribution
of nodes near the boundaries. We use the functions to grid
concentration in adaptive coordinates [1], which are based on
the numerical solution of equations with a small parameter in
the highest derivatives. In addition to using the standard
parameters of these functions, there is an option to manually
input a domain of concentration (for example, the boundary
layer thickness). In this case, the parameters of concentration
functions are found by solving the equations in accordance
with the inputted values.

C. Generation of Block Structured Quasi-Continuous Grids

It is impossible to ensure the continuity of adaptive
coordinate lines for some computational domains; therefore,
the introducing of additional internal discontinuities is

necessary. The mesh nodes on these internal discontinuities
are generated twice. The parameters of each of these nodes
correspond to the parameters of the adaptive coordinate
system in which it was generated. The physical coordinates of
these nodes are the same. Each node has a link to its twin.
There are different classes of geometry topologies with
internal discontinuities in SIGMA preprocessor (Fig. 2). The
corner nodes with the extreme values of some adaptive
coordinates are separately selected among the twin nodes
(Fig. 2 (a) and (b)). Also, we separately select the nodes
wherein the adaptive coordinate lines are closed (Fig. 2 (c)).

Let the coordinate lines X
1
 and X

2
 of different adaptive

coordinate systems (green and red on the Fig. 2) be
perpendicular to an internal discontinuity. Let a derivative of a
function at an ordinary node j be approximated by the central
differences:

1 1 1
.R L

R L

j j

j j

f ff

X X X

Then the derivative at a node j on the internal discontinuity
can be approximated for example as follows:

1 1 1 2 2
.R D

R T D

j j j j

j j j j

f f f ff

X X X X X

Here jR and jL are the two neighbors of the node j in the
direction X

1
, jD is the neighbor of the twin jT of the node j in

the direction X
2
.

Results of a solution at the node j on the internal
discontinuity correspond to only one of the two twin nodes.
The second node is a subsidiary and its parameters are used
only for the calculations of the difference approximations and
searching for the appropriate neighbors.

647

Advances in Engineering Research (AER), volume 157

(a) O-grid block (b) triangular block (a quarter of an O-grid block) (c) closed domain

Fig. 2. Different classes of geometry topologies with internal discontinuities. It shows the cross sections along the adaptive coordinate X3

(a) vertex-centered control volumes (b) quadrilateral facet

Fig. 3. Generation of vertex-centered control volumes

D. Generation of Tetrahedral Elements

The block-structured hexahedral mesh can be subdivided
into a consistent set of tetrahedra for the using of tetrahedral
finite element or finite volume solvers. There are exactly two
possible configurations that lead to subdivisions into five
tetrahedra and 46 into six tetrahedra. Therefore, the
tetrahedralization leads to a larger number of elements (from
five to six times). The subdividing algorithms are similar to
the algorithms described in [17–19]. The adaptive grids retain
adaptation grid lines to borders of a geometry and allow one to
obtain solutions of better quality than with grids generated by
ordinary finite element mesh generators.

E. Generation of Vertex-Centered Control Volumes

The elements centered on the mesh nodes (vertex-centered
volumes [20, 21]) are used by some finite volume methods to
calculate the fluxes through the red facets between the
corresponding values in the blue mesh nodes (Fig. 3 (a)). The
construction of these elements is based on the already
generated adaptive mesh by finding the midpoints of elements.
Despite the fact that the application of the control volumes
centered on the mesh nodes requires roughly 6 times as much
storage as the case where the control volumes coincide with
the initial mesh cells, but produces more accurate results in the
boundary layer because of the finer mesh size in the near-wall
domain. Half the control volume is used near the wall [22].

The coordinates of a middle point O (Fig. 3 (b)) of a
quadrilateral facet ABCD are calculated as follows:

O A B C D

1
.

4
r r r r r

A normal vector to the facet at the point O is calculated by
the cross product of line segments joining the midpoints K,M
and L,N of the two opposite edges of the facet (Fig. 3 (b)):

O

KM LN
.

KM LN
n

The square of the facet is equal to:

KM LN .S

The volume V of a hexahedral element is calculated by the
divergence theorem:

6

1

.

k

k

kV S

dV dSa a n

The vector a is selected to be the position vector
a = r = {x,y,z}. We use the midpoint rule for approximating
integrals, so:

6 6 3

O O

1 1 1

3 .

k

k ik ik k

k k iV S

V V dV dS r n Sa a a n

Finally, we obtain:

6 3

O O

1 1

1
.

3
ik ik k

k i

V r n S

648

Advances in Engineering Research (AER), volume 157

Fig. 4. Determining the location of a ghost node jG Fig. 5. SIGMA preprocessor interface

F. Generation of Ghost Nodes and Cells

Ghost nodes and cells can be introduced for the numerical
implementation of boundary conditions. The initial data for
the generation of a ghost node jG are a boundary node jB, its
inner neighbor jI, and the boundary element for which these
nodes are the vertices. The calculation of the position vector of

the ghost node
Gj

r generally for a non-orthogonal adaptive

grid is based on the following formulas (Fig. 4):

,

,

2 ,

B I

G I

j j

j j

c

c

s r r

s n

r r n

where n is the unit outer normal vector at the boundary
node jB.

In the case of the generation of ghost nodes and cells for
tetrahedral mesh, the parameter c is equal to one of the heights
of a tetrahedral boundary element h = 3V/S, where V is the
volume of the element, and S is the square of the facet that lies
on the boundary.

Other parameters of the ghost nodes and cells built on their
base are set equal to the corresponding boundary nodes and
cells. A step along the adaptive coordinate between ghost and
boundary nodes is also assumed to be equal to the appropriate
step between the boundary node and its inner neighbor.

G. Calculation of Distances to Boundaries

Some models of physical phenomena require taking into
account a distance from a mesh node to a boundary (e.g. some
turbulence models use the distance to a wall). The
preprocessor uses the following simplest algorithm to
calculate the distance from the internal mesh node jI to the
boundary.

1) It is finding the closest boundary node jB to the node jI.

2) It is checking that the vector
I Bj jv r r entirely lies

within the computational domain. For this to be done, the

scalar product d v n is found, where n is the unit outer

normal vector at the node jB for finite difference grids or the

unit outer normal vector averaged over all boundary facets

where jB is one of their vertices for finite volume or finite

element grids. If d > 0 the vector v crosses the boundary and it

is required to find the next closest node on the boundary.

3) The value of d is chosen as the desired distance.

IV. SIGMA PREPROCESSOR INTERFACE

The SIGMA preprocessor that allows generating two-
dimensional and three-dimensional adaptive grids has been
developed based on the described algorithms. The
preprocessor is written in C++ using the STL, Boost, OpenGL
and OpenMP libraries. The preprocessor consists of the two
parts: the first is a geometry editor, and the second is a mesh
generator.

The geometry editor has a graphical interface (Fig. 5) that
allows creating computational domains visually, selecting
borders and subdomains for the definition of boundary and
initial conditions and preparing data for a mesh generation.

When a user creates a primitive, the preprocessor requests
its type, bounding box dimensions in adaptive and physical
coordinate systems, as well as the number of control points for
each coordinate direction. In accordance with the inputted
values, the adaptive and physical coordinates of the control
points are calculated. Later the user can edit these coordinates,
as well as the primitive's dimensions. The preprocessor
supports the ability to add and remove primitives, select a
domain to zoom in on from the global view, translate and
rotate of the domain. An inputted computational domain can
be saved or loaded from a file.

Before input of the domain geometry in the preprocessor,
it is convenient to prepare in advance the tables of geometrical
objects and their attributes. The first table is a set of control
points of the domain with the values of their physical
coordinates. The second table is a list of the primitives of
which the domain will consist, their types and dimensions as
well as the number of control points attributable to each
primitive. The number of primitives is determined mainly by
the number of discontinuities or breaks of the computational
domain borders, as well as the various initial data in the
domain or boundary conditions on its borders. The third table

649

Advances in Engineering Research (AER), volume 157

(a) block structured mesh (b) tetrahedral mesh (c) vertex-centered control volumes

Fig. 6. Different types of grids for the domain of the external flow near a hemisphere

(a) mesh for the surface of the high-speed aircraft of Falcon HTV-2 [23] (b) mesh for the domain of the gap between a wheel and a body of an aircraft

Fig. 7. Examples of generated block structured adaptive grids

is the bounding box dimensions of domains where the
distribution of mesh nodes should differ from the uniform (e.g.
this may be a domain where the user wants to concentrate the
mesh nodes).

The mesh generator is a cross-platform console
application. The domain geometry data and parameters of the
generated mesh prepared in the geometry editor are transferred
to the mesh generator using the class serialization methods of
the Boost library. The data of classes are serialized in the
XML format and may be edited by the user in a text or XML
editor. The mesh generation parameters are the domain of
mesh generation, the total number of partitions and the
number of partitions in certain subdomains of the adaptive
coordinate system, the mesh type and formats, the mesh data
that will be calculated. A two-dimensional mesh can be
generated in a given section of the adaptive coordinate system
for a constructed three-dimensional domain.

V. EXAMPLES OF GRID GENERATION

Fig. 6-7 show some results of the generation of three-
dimensional adaptive grids. We have generated the
sufficiently coarse grids for easy viewing of their structures.

Fig. 6 shows the different types of grids for the domain of
external flow near a hemisphere. For the generation the block-
structured hexahedral adaptive mesh, the nine curvilinear
blocks were constructed by the method described in Sec. II.
They are shown in Fig. 1 (c). The central block is located
along the equator of the hemisphere. Two triangular O-grid
blocks each consisting of the three common blocks are located
on the forebody portion of the hemisphere above and below
the central block. And the two remaining blocks are located
behind the corresponding triangular blocks at the top and
bottom of the central block. Fig. 6 (b)-(c) shows the possibility
of converting the generated block structured hexahedral
adaptive mesh into the finite element or finite volume grids.

650

Advances in Engineering Research (AER), volume 157

Generally, each hexahedron is divided into five tetrahedra.
In exceptional cases, if it is not possible to dock the adjacent
elements by means of the division into five tetrahedra, the
division into six tetrahedra may apply. An essential feature of
the resulting tetrahedral mesh in comparison with those
obtained by means of the most grid generators both open-
source and commercial is that the grid lines are adjusted with
the flow in the whole computational domain (see Fig. 6 (b)). It
makes it possible to select more precisely various features of
the flow, such as shock waves, contact discontinuities and the
depression waves. Fig. 6 (c) shows the red cells of the mesh
consisting of vertex-centered control volumes (see
subsections III.E). Thus, these red cells are circumscribed
around the nodes of the initial mesh shown in Fig. 6 (a). It is
seen that for the corner nodes of O-grid blocks (see
subsections III.C) a hexahedral element is degenerated into a
triangular prism. However, a calculation with such elements is
not a significant problem for finite volume methods. It is
evident also that the vertex-centered finite volume elements
are smaller in size than others near the boundaries.

Fig. 7 shows the block-structured adaptive grids for the
real complex curvilinear computational domains: the outer
surface of the high-speed aircraft of the Falcon HTV-2
type [23] and for the domain of the gap between a wheel and a
body of an aircraft. The last domain has a local expansion near
the flow inlet boundary to capture the shock wave. In such
gaps, the mesh should be sufficiently fine to reach the
necessary accuracy of the solution of temperature and heat
flux fields.

An essential feature of all shown grids is that they were
generated from not only one curvilinear blocks, but also their
combination. It makes it possible to use them with finite-
difference methods for complex curvilinear computational
domains.

VI. CONCLUSIONS

The computer technologies to generate block-structured
adaptive grids have been developed. They include the methods
of computer-aided geometric design of domains, grid
generation techniques, approaches to the grid concentration,
methods of working with block structured quasi-continuous
grids for the certain types of curved domains, aspects of
subdivision block-structured adaptive grids into tetrahedral
elements and vertex-centered control volumes, the algorithms
for generation of ghost nodes and cells and calculation of
distances from internal mesh nodes to domain boundaries. The
generated grids can be two-dimensional, two-dimensional
axisymmetric (in cylindrical coordinates) or three-dimensional.
They are applied for the finite difference, finite element or
finite volume methods. The developed computer technologies
have been implemented in the SIGMA preprocessor that
includes the modules of generation of a wide range of three-
dimensional geometric shapes, setting properties, parameters
and initial conditions and adaptive mesh generator.

The main advantages of the proposed technologies of
adaptive grid generation in comparison with other approaches
are the structuring and hexahedral shape of the mesh cells in
the complex curvilinear computational domains, the

applicability of the mesh for finite difference methods, the
adjusting with the flow grid lines in the entire domain.

References
[1] V.D. Liseikin, Grid Generation Methods. Springer-Verlag, Heidelberg,

1999.

[2] R. Shneiders, “Refining quadrilateral and hexahedral element meshes”,
Proceedings of 5th International Conference on Numerical Field
Simulations, pp. 699-708, 1996.

[3] M. Farrashkhalvat, J.P. Miles, Basic Structured Grid Generation.
Butterworth-Heinemann, Oxford, 2003.

[4] C. Geuzaine, J.-F. Remacle, “Gmsh: a three-dimensional finite element
mesh generator with built-in pre- and post-processing facilities”,
International Journal for Numerical Methods in Engineering, vol. 79,
no. 11, pp. 1309-1331, 2009.

[5] H. Si, “TetGen, a Delaunay-based quality tetrahedral mesh generator”,
ACM Trans. on Mathematical Software, vol. 41, no. 2, Article no. 11,
February 2015.

[6] S.V. Reznik, K.V. Mikhailovskiy, P.V. Prosuntsov, “Modeling the heat
and mass transfer in the pores of the thermal protection carbon-carbon
frame during the gas-phase deposition of silicon carbide”, MATEC Web
Conf., vol 92, Article no. 01075, 2017.

[7] V.V. Kulik, A.N. Parkin, E.S. Navasardyan, “Numerical modeling
procedure for micromachined cryogenic cooler elements using ANSYS
Fluent software and viscous flow in a small-diameter channel with heat
transfer as an example”, Chem. Petrol. Eng., vol. 52, no. 7-8, pp. 531-
538, November 2016.

[8] I.K. Marchevskii, V.V. Puzikova, “Numerical simulation of the flow
around two circular airfoils positioned across the stream using the LS-
STAG method”, J. Mach. Manuf. Reliab., vol. 46, no. 2, pp. 114-119,
2017.

[9] V.V. Shumaev, V.V. Kuzenov, “Development of the numerical model
for evaluating the temperature field and thermal stresses in structural
elements of aircrafts”, J. Phys.: Conf. Series, vol. 891, no. 1, Article no.
012311, 2017.

[10] V.V. Kuzenov, A.O. Dobrynina, V V Shumaev, “Calculating processes
of laminar and turbulent heat transfer around the elements of the
aircraft”, J. Phys.: Conf. Series, vol. 980, no. 1, Article no. 012023,
2018.

[11] V.V. Kuzenov, S.V. Ryzhkov, “Radiation-hydrodynamic modeling of
the contact boundary of the plasma target placed in an external magnetic
field”, Appl. Phys., no. 3, pp. 26-30, 2014.

[12] R. Schneiders, “A grid-based algorithm for the generation of hexahedral
element meshes”, Engineering with Computers, vol. 12, pp. 168-177,
1996.

[13] J.F. Thompson, B.K. Soni, N.P. Weatherill, Handbook of grid
generation, CRC Press, Boca Raton, 1999.

[14] Yu.I. Dimitrienko, M.N. Koryakov, A.A. Zakharov, “Application of
finite difference TVD methods in hypersonic aerodynamics”, LNCS,
vol. 9045, pp. 161-168, 2015.

[15] Yu.I. Dimitrienko, M.N. Koryakov, A.A. Zakharov, “Computational
simulation of conjugated problem of external aerodynamics and internal
heat and mass transfer in high-speed aircraft composite constructions”,
International Journal of Mechanical Engineering and Robotics Research,
vol. 6, no. 1, pp. 58-64, 2017.

[16] P.R. Eiseman, “Control point grid generation”, Computers Math. Applic,
vol. 24, no. 5/6, pp. 57-67, 1992.

[17] G. Albertelli, R.A. Crawfis, “Efficient subdivision of finite-element
datasets into consistent tetrahedra”, in IEEE Visualization, November
1997, R. Yagel, H. Hagen, Eds. Phoenix, AZ, pp. 213-220.

[18] J. Dompierre, P. Labbé, M.G. Vallet, R. Camarero, “How to subdivide
pyramids, prisms and hexahedra into tetrahedra”, in 8th International
Meshing Roundtable. Lake Tahoe, Californie, 10–13 October 1999.

[19] S.S. Bahrainian, “Construction of hexahedral block topology and its
decomposition to generate initial tetrahedral grids for aerodynamic
application”, JAST, vol. 5, no. 2, pp. 81-90, 2008.

651

Advances in Engineering Research (AER), volume 157

[20] T.J. Barth, “Aspects of unstructured grids and finite-volume solvers for
the Euler and Navier-Stokes equations”, in VKI Lecture Series,
no. 1994-05. Belgium: Von Karman Institute for Fluid Dynamics, 1994.

[21] A. Jameson, D. Mavripils, “Finite volume solution of the two-
dimensional Euler equations on a regular triangular mesh”, AIAA Paper,
no. 85-0435, 1985.

[22] K.N. Volkov, “Unstructured-grid finite-volume discretization of the
Navier-Stokes equations based on high-resolution difference schemes”,
Computational Mathematics and Mathematical Physics, vol. 48, no. 7,
pp. 1181-1202, 2008.

[23] http://flagman.top/ru/about-war/lockheeds-marilyn-hypersonic-weapons/

652

Advances in Engineering Research (AER), volume 157

