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Abstract— The paper covers the area of block-structured 

adaptive grid generation for finite difference, finite element and 

finite volume methods. It deals with a problem of development of 

information technologies and algorithms for generating such 

grids in complex geometries. Its key idea is to bring together the 

different existing techniques for computer-aided geometric 

design of domains, grid generation, grid concentration and grid 

subdivision. The methods used for a construction of domain 

geometries, working with block-structured quasi-continuous 

grids, a subdivision of block-structured adaptive grids into 

vertex-centered control volumes, generation of ghost nodes and 

cells, calculation of distances to boundaries are discussed. It is 

described of the software interfaces of the geometry editor and 

the mesh generator that were developed in the SIGMA 

preprocessor. The results of the generation of three-dimensional 

adaptive grids for the domain of external flow near a hemisphere, 

flow around a surface of the high-speed aircraft of Falcon HTV-2 

type and for the domain of the gap between a wheel and a body 

of an aircraft are analyzed. The presented methods and 

algorithms for grid generation have the following advantages: 1. 

The grids are structured and mesh cells are hexahedra in the 

entire complex curvilinear computational domain. 2. The grids 

can be applied for finite difference methods. 3. The grid lines are 

adjusting with the flow in the whole domain. 

Keywords— block-structured adaptive grid, finite difference 

grid, computer-aided geometric design, complex domain, mesh 

subdivision, preprocessing 

I.  INTRODUCTION 

Development of unified computer-aided software packages 
for generating adaptive grids currently represents a large-scale 
problem of applied mathematics, computational physics, 
mechanics, biology and medicine [1–3]. Existing open-source 
and commercial software packages mainly use mesh 
generation methods that are universally applicable for 
complex geometry and focus on the generation of unstructured 
finite element or finite volume grids [4–6]. Structuring and 
adaptation of a mesh, as well as the hexahedral shape of its 
cells, usually can be held only near some boundaries of the 
domain. At the same time, for some problems of mathematical 
physics (e.g. high-speed aerodynamics problems), it is 
important to hold the structuring and hexahedral shape of the 
mesh cells in the entire domain [7–9], the applicability of the 
mesh for finite difference methods [8–10], geometric and 
dynamic adaptation of the mesh in the entire domain [11]. 

Therefore, quadrilateral and hexahedral mesh generation has 
become a topic of intense research [12, 13]. 

Software package SIGMA has been successfully applied 
for numerical solutions of a wide range of problems in 
aerospace engineering for over ten years (e.g. see [14, 15]). It 
is developed by Computational Mathematics and 
Mathematical Physics Department of Bauman Moscow State 
Technical University. It includes a full set of modules that are 
required for the numerical simulation. SIGMA preprocessor 
includes a three-dimensional geometric simulation module, 
which allows generating a wide range of geometric shapes; a 
module, which allows setting properties and initial conditions 
and adaptive mesh generator. Let us consider the methods and 
algorithms that underlie the preprocessor module. 

II. CONSTRUCTION OF DOMAIN GEOMETRIES 

For the generation of block-structured adaptive grids, the 
equations of boundary curves and surfaces need to be written 
in parametric form. These equations are built on the spline 
interpolation methods, which are based on a created grid of 
control points. The control points are located on the boundary 
surfaces and form the structured surface mesh. 

The SIGMA preprocessor module has a graphical interface 
that allows creating a computational domain visually. The 
domain is constructed from a set of initial hexahedral blocks 
(primitives) by their combining and subsequent deformation. 
In the current version of SIGMA, such primitives can be a 
cube, cylinder, cylindrical and spherical segments. The 
deformation is performed by changing of coordinates of 
control points of the primitives. We can enter these 
coordinates or read from a file. 

It is possible to load the incoming information about 
geometric shapes of bodies from the solid simulation software. 
In this case, it is used the STL geometry definition file format. 
The functions for generation of points in given sections and 
along lines between the two specified points on a triangulated 
surface are implemented for the construction of the structured 
mesh of control points on the imported surfaces (Fig. 1). Then 
the predetermined thickness curvilinear blocks are generated 
based on data about the normals in cells. Fig. 1 illustrates the 
process of importing the geometry from STL file, the created 
grid of control points, view of the surface cubic splines and 
the construction of the curvilinear blocks. 
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(a) STL geometry and grid of control points (b) surface spline (c) curvilinear blocks 

Fig. 1. Import of geometry and domain construction 

III. ADAPTIVE GRID GENERATION 

A. Introduction of Adaptive Coordinates 

A three-dimensional non-orthogonal coordinate system X
i
, 

i=1,2,3 is introduced to generate an adaptive mesh. In this 
coordinate system, the boundaries of each curvilinear block 
are the coordinate surfaces. To go to these coordinates, we use 
the explicit form of algebraic transformation, which refers to 
the Lagrangian coordinate transformation of transfinite 
interpolation methods [1–3, 16]. There are functions that allow 
finding the Jacobian matrix of the transformation, neighboring 
nodes, tangent and normal vectors at the boundary points. 

Generally, it is impossible to build an acceptable global 
transformation from a single block without singularities. 
Therefore, we use the following approach for the grid 
generation. A domain consists of hexagonal blocks which are 
continuously joined at the boundaries. The parameterizations 
and coordinate directions of the boundary surfaces of the 
blocks should be matched. 

B. Grid Concentration 

A preliminary transformation of an initial uniform mesh 
into a non-uniform one is introduced to control the distribution 
of nodes near the boundaries. We use the functions to grid 
concentration in adaptive coordinates [1], which are based on 
the numerical solution of equations with a small parameter in 
the highest derivatives. In addition to using the standard 
parameters of these functions, there is an option to manually 
input a domain of concentration (for example, the boundary 
layer thickness). In this case, the parameters of concentration 
functions are found by solving the equations in accordance 
with the inputted values. 

C. Generation of Block Structured Quasi-Continuous Grids 

It is impossible to ensure the continuity of adaptive 
coordinate lines for some computational domains; therefore, 
the introducing of additional internal discontinuities is 

necessary. The mesh nodes on these internal discontinuities 
are generated twice. The parameters of each of these nodes 
correspond to the parameters of the adaptive coordinate 
system in which it was generated. The physical coordinates of 
these nodes are the same. Each node has a link to its twin. 
There are different classes of geometry topologies with 
internal discontinuities in SIGMA preprocessor (Fig. 2). The 
corner nodes with the extreme values of some adaptive 
coordinates are separately selected among the twin nodes 
(Fig. 2 (a) and (b)). Also, we separately select the nodes 
wherein the adaptive coordinate lines are closed (Fig. 2 (c)). 

Let the coordinate lines X
1
 and X

2
 of different adaptive 

coordinate systems (green and red on the Fig. 2) be 
perpendicular to an internal discontinuity. Let a derivative of a 
function at an ordinary node j be approximated by the central 
differences: 

1 1 1
.R L

R L

j j

j j

f ff

X X X

Then the derivative at a node j on the internal discontinuity 
can be approximated for example as follows: 

1 1 1 2 2
.R D

R T D

j j j j

j j j j

f f f ff

X X X X X

Here jR and jL are the two neighbors of the node j in the 
direction X

1
, jD is the neighbor of the twin jT of the node j in 

the direction X
2
. 

Results of a solution at the node j on the internal 
discontinuity correspond to only one of the two twin nodes. 
The second node is a subsidiary and its parameters are used 
only for the calculations of the difference approximations and 
searching for the appropriate neighbors. 
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(a) O-grid block (b) triangular block (a quarter of an O-grid block) (c) closed domain 

Fig. 2. Different classes of geometry topologies with internal discontinuities. It shows the cross sections along the adaptive coordinate X3 

 

 

  

(a) vertex-centered control volumes (b) quadrilateral facet 

Fig. 3. Generation of vertex-centered control volumes 

D.  Generation of Tetrahedral Elements 

The block-structured hexahedral mesh can be subdivided 
into a consistent set of tetrahedra for the using of tetrahedral 
finite element or finite volume solvers. There are exactly two 
possible configurations that lead to subdivisions into five 
tetrahedra and 46 into six tetrahedra. Therefore, the 
tetrahedralization leads to a larger number of elements (from 
five to six times). The subdividing algorithms are similar to 
the algorithms described in [17–19]. The adaptive grids retain 
adaptation grid lines to borders of a geometry and allow one to 
obtain solutions of better quality than with grids generated by 
ordinary finite element mesh generators. 

E. Generation of Vertex-Centered Control Volumes 

The elements centered on the mesh nodes (vertex-centered 
volumes [20, 21]) are used by some finite volume methods to 
calculate the fluxes through the red facets between the 
corresponding values in the blue mesh nodes (Fig. 3 (a)). The 
construction of these elements is based on the already 
generated adaptive mesh by finding the midpoints of elements. 
Despite the fact that the application of the control volumes 
centered on the mesh nodes requires roughly 6 times as much 
storage as the case where the control volumes coincide with 
the initial mesh cells, but produces more accurate results in the 
boundary layer because of the finer mesh size in the near-wall 
domain. Half the control volume is used near the wall [22]. 

The coordinates of a middle point O (Fig. 3 (b)) of a 
quadrilateral facet ABCD are calculated as follows: 

O A B C D

1
.

4
r r r r r

A normal vector to the facet at the point O is calculated by 
the cross product of line segments joining the midpoints K,M 
and L,N of the two opposite edges of the facet (Fig. 3 (b)): 

O

KM LN
.

KM LN
n

The square of the facet is equal to: 

KM LN .S

The volume V of a hexahedral element is calculated by the 
divergence theorem: 

6

1

.

k

k

kV S

dV dSa a n

The vector a is selected to be the position vector 
a = r = {x,y,z}. We use the midpoint rule for approximating 
integrals, so: 

6 6 3

O O

1 1 1

3 .

k

k ik ik k

k k iV S

V V dV dS r n Sa a a n

Finally, we obtain: 

6 3

O O
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Fig. 4. Determining the location of a ghost node jG Fig. 5. SIGMA preprocessor interface 

 

 
F. Generation of Ghost Nodes and Cells 

Ghost nodes and cells can be introduced for the numerical 
implementation of boundary conditions. The initial data for 
the generation of a ghost node jG are a boundary node jB, its 
inner neighbor jI, and the boundary element for which these 
nodes are the vertices. The calculation of the position vector of 

the ghost node 
Gj

r  generally for a non-orthogonal adaptive 

grid is based on the following formulas (Fig. 4): 

,

,

2 ,

B I

G I

j j

j j

c

c

s r r

s n

r r n

where n is the unit outer normal vector at the boundary 
node jB. 

In the case of the generation of ghost nodes and cells for 
tetrahedral mesh, the parameter c is equal to one of the heights 
of a tetrahedral boundary element h = 3V/S, where V is the 
volume of the element, and S is the square of the facet that lies 
on the boundary. 

Other parameters of the ghost nodes and cells built on their 
base are set equal to the corresponding boundary nodes and 
cells. A step along the adaptive coordinate between ghost and 
boundary nodes is also assumed to be equal to the appropriate 
step between the boundary node and its inner neighbor. 

G. Calculation of Distances to Boundaries 

Some models of physical phenomena require taking into 
account a distance from a mesh node to a boundary (e.g. some 
turbulence models use the distance to a wall). The 
preprocessor uses the following simplest algorithm to 
calculate the distance from the internal mesh node jI to the 
boundary. 

1) It is finding the closest boundary node jB to the node jI. 

2) It is checking that the vector 
I Bj jv r r  entirely lies 

within the computational domain. For this to be done, the 

scalar product d v n  is found, where n is the unit outer 

normal vector at the node jB for finite difference grids or the 

unit outer normal vector averaged over all boundary facets 

where jB is one of their vertices for finite volume or finite 

element grids. If d > 0 the vector v crosses the boundary and it 

is required to find the next closest node on the boundary. 

3) The value of d  is chosen as the desired distance. 

IV. SIGMA PREPROCESSOR INTERFACE 

The SIGMA preprocessor that allows generating two-
dimensional and three-dimensional adaptive grids has been 
developed based on the described algorithms. The 
preprocessor is written in C++ using the STL, Boost, OpenGL 
and OpenMP libraries. The preprocessor consists of the two 
parts: the first is a geometry editor, and the second is a mesh 
generator. 

The geometry editor has a graphical interface (Fig. 5) that 
allows creating computational domains visually, selecting 
borders and subdomains for the definition of boundary and 
initial conditions and preparing data for a mesh generation. 

When a user creates a primitive, the preprocessor requests 
its type, bounding box dimensions in adaptive and physical 
coordinate systems, as well as the number of control points for 
each coordinate direction. In accordance with the inputted 
values, the adaptive and physical coordinates of the control 
points are calculated. Later the user can edit these coordinates, 
as well as the primitive's dimensions. The preprocessor 
supports the ability to add and remove primitives, select a 
domain to zoom in on from the global view, translate and 
rotate of the domain. An inputted computational domain can 
be saved or loaded from a file. 

Before input of the domain geometry in the preprocessor, 
it is convenient to prepare in advance the tables of geometrical 
objects and their attributes. The first table is a set of control 
points of the domain with the values of their physical 
coordinates. The second table is a list of the primitives of 
which the domain will consist, their types and dimensions as 
well as the number of control points attributable to each 
primitive. The number of primitives is determined mainly by 
the number of discontinuities or breaks of the computational 
domain borders, as well as the various initial data in the 
domain or boundary conditions on its borders. The third table 
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(a) block structured mesh (b) tetrahedral mesh (c) vertex-centered control volumes 

Fig. 6. Different types of grids for the domain of the external flow near a hemisphere  

 
 

(a) mesh for the surface of the high-speed aircraft of Falcon HTV-2 [23] (b) mesh for the domain of the gap between a wheel and a body of an aircraft 

Fig. 7. Examples of generated block structured adaptive grids 

is the bounding box dimensions of domains where the 
distribution of mesh nodes should differ from the uniform (e.g. 
this may be a domain where the user wants to concentrate the 
mesh nodes). 

The mesh generator is a cross-platform console 
application. The domain geometry data and parameters of the 
generated mesh prepared in the geometry editor are transferred 
to the mesh generator using the class serialization methods of 
the Boost library. The data of classes are serialized in the 
XML format and may be edited by the user in a text or XML 
editor. The mesh generation parameters are the domain of 
mesh generation, the total number of partitions and the 
number of partitions in certain subdomains of the adaptive 
coordinate system, the mesh type and formats, the mesh data 
that will be calculated. A two-dimensional mesh can be 
generated in a given section of the adaptive coordinate system 
for a constructed three-dimensional domain. 

V. EXAMPLES OF GRID GENERATION 

Fig. 6-7 show some results of the generation of three-
dimensional adaptive grids. We have generated the 
sufficiently coarse grids for easy viewing of their structures. 

Fig. 6 shows the different types of grids for the domain of 
external flow near a hemisphere. For the generation the block-
structured hexahedral adaptive mesh, the nine curvilinear 
blocks were constructed by the method described in Sec. II. 
They are shown in Fig. 1 (c). The central block is located 
along the equator of the hemisphere. Two triangular O-grid 
blocks each consisting of the three common blocks are located 
on the forebody portion of the hemisphere above and below 
the central block. And the two remaining blocks are located 
behind the corresponding triangular blocks at the top and 
bottom of the central block. Fig. 6 (b)-(c) shows the possibility 
of converting the generated block structured hexahedral 
adaptive mesh into the finite element or finite volume grids. 
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Generally, each hexahedron is divided into five tetrahedra. 
In exceptional cases, if it is not possible to dock the adjacent 
elements by means of the division into five tetrahedra, the 
division into six tetrahedra may apply. An essential feature of 
the resulting tetrahedral mesh in comparison with those 
obtained by means of the most grid generators both open-
source and commercial is that the grid lines are adjusted with 
the flow in the whole computational domain (see Fig. 6 (b)). It 
makes it possible to select more precisely various features of 
the flow, such as shock waves, contact discontinuities and the 
depression waves. Fig. 6 (c) shows the red cells of the mesh 
consisting of vertex-centered control volumes (see 
subsections III.E). Thus, these red cells are circumscribed 
around the nodes of the initial mesh shown in Fig. 6 (a). It is 
seen that for the corner nodes of O-grid blocks (see 
subsections III.C) a hexahedral element is degenerated into a 
triangular prism. However, a calculation with such elements is 
not a significant problem for finite volume methods. It is 
evident also that the vertex-centered finite volume elements 
are smaller in size than others near the boundaries. 

Fig. 7 shows the block-structured adaptive grids for the 
real complex curvilinear computational domains: the outer 
surface of the high-speed aircraft of the Falcon HTV-2 
type [23] and for the domain of the gap between a wheel and a 
body of an aircraft. The last domain has a local expansion near 
the flow inlet boundary to capture the shock wave. In such 
gaps, the mesh should be sufficiently fine to reach the 
necessary accuracy of the solution of temperature and heat 
flux fields. 

An essential feature of all shown grids is that they were 
generated from not only one curvilinear blocks, but also their 
combination. It makes it possible to use them with finite-
difference methods for complex curvilinear computational 
domains. 

VI. CONCLUSIONS 

The computer technologies to generate block-structured 
adaptive grids have been developed. They include the methods 
of computer-aided geometric design of domains, grid 
generation techniques, approaches to the grid concentration, 
methods of working with block structured quasi-continuous 
grids for the certain types of curved domains, aspects of 
subdivision block-structured adaptive grids into tetrahedral 
elements and vertex-centered control volumes, the algorithms 
for generation of ghost nodes and cells and calculation of 
distances from internal mesh nodes to domain boundaries. The 
generated grids can be two-dimensional, two-dimensional 
axisymmetric (in cylindrical coordinates) or three-dimensional. 
They are applied for the finite difference, finite element or 
finite volume methods. The developed computer technologies 
have been implemented in the SIGMA preprocessor that 
includes the modules of generation of a wide range of three-
dimensional geometric shapes, setting properties, parameters 
and initial conditions and adaptive mesh generator. 

The main advantages of the proposed technologies of 
adaptive grid generation in comparison with other approaches 
are the structuring and hexahedral shape of the mesh cells in 
the complex curvilinear computational domains, the 

applicability of the mesh for finite difference methods, the 
adjusting with the flow grid lines in the entire domain. 
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