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Abstract—Considering a kind of dynamic optimization, an 
improved krill herd (KH) algorithm which is called GSA-KH is 
proposed in this paper. The improvements consist of three parts: 1) 
a good point set is constructed to obtain the initial krill population 
which can promote the representativeness of the initial population; 
2) the speed factor is updated according to the changes of the krill 
population to accelerate the convergence; 3) an adaptive Cauchy 
mutation is employed so that the algorithm can escape the local 
optimum reasonably. Simulations on six test functions illustrate 
that the convergence and accuracy of GSA-KH algorithm are 
increased greatly than standard KH algorithm. Then the 
proposed algorithm is applied to solving a dynamic optimization 
cases. 

Keywords—dynamic optimization; krill herd algorithm; adaptive 
cauchy mutation; CVP method; good point sets method; speed factor 

I. INTRODUCTION 

Considering a typical dynamic optimization problem of 
continuous process as follows [1]: 
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Generally, there are two types of methods for solving the 
problem: direct methods and indirect methods. Direct methods 
convert an infinite dimensional dynamic optimization problem 
into a finite dimensional nonlinear programming problem 
through discretization [2-4]. Indirect methods use maximum 
principle to derive the necessary conditions for optimal control 
by constructing Hamiltonian function, and convert the original 
problem into a two-point boundary value problem. The gradient 
computation is the key to solve this optimization. But because 
of the dependence on initial points and huge cost for solving 
gradient, these methods usually consume large running time or 
even cannot obtain the optimal solution. 

In recent years, the intelligent optimization algorithms 
develop rapidly because of its simple principle, good 

robustness and powerful global searching ability. These 
algorithms are widely used in various types of optimization 
problems. Pham [6] proposed an evolutionary algorithm for 
solving the dynamic optimization of chemical processes, and 
the algorithm enhances population diversity by introducing a 
new breeding operation. Rajish, et al. [7] successfully used ant 
colony optimization (ACO) algorithm with region-reduction 
strategy to solve dynamic optimization problems. In 2012, 
Gandomi and Alavi proposed krill herd (KH) algorithm [8] for 
global optimization problem. They compared KH algorithm 
with eight well-known methods, and found that the KH 
algorithm was capable of efficiently solving a wide range of 
benchmark optimization problems. As a new algorithm, there 
are some papers about the improvement of KH algorithm [9-11], 
but applications of the algorithm are seldom.  

In this paper, an improved KH algorithm named GSA-KH 
algorithm is proposed for solving a kind of dynamic 
optimization problem as equation (1). Compared with standard 
KH algorithm, the new one makes three points of 
improvements. Good point set is used to set initial population, 
speed factor is adjusted according to the changes of krill 
population, and adaptive Cauchy mutation is adopted in order 
to avoid falling into local optimum. Then GSA-KH algorithm is 
tested by several test functions. Finally, the proposed algorithm 
is applied to solving a chemical dynamic optimization problem. 

II. PROBLEM TRANSFORMATION 

The control vector parameterization (CVP) method utilizes 
finite number of parameters to approximate control 
variable 0( ) ( [ , ])fu t t t t  which is changing with time 

continuously [12]. Time interval is divided into n  subintervals 

1[ , ]k kt t ( 1, 2, , )k n  . The control variable in every 
subinterval is represented by a simple polynomial which can be 
determined by finite number of parameters, so the control 

variable can be denoted as follows:
1
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  , where k  

is a simple polynomial, k  is a finite dimensional parameter 
vector. And equation (1) can be rewritten as follows: 
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where J  and f  are both implicit functions of k . 

III. IMPROVED KRILL HERD ALGORITHM 

A. Standard KH Algorithm 

KH algorithm is proposed according to the herding 
behavior of krill individuals. The positions of krill individuals 
are determined by three main actions [13]: 

i. Movement induced by other krill individuals; ii. Foraging 
activity; iii. Random diffusion.  

The moving process of krill individuals can be described 
with Lagrangian model as below: 
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where 1 2( , , , )i i i iDx x x X represents the position vector of ith 
( 1, 2,i n  ) krill; D  is the dimension of search space, n  is 
the number of krill population; iN  is the motion induced by 

other krill individuals, iF  is the foraging motion, and iD  is the 
random physical diffusion. 

1) Movement induced by other krill individuals 
The direction of motion induced is estimated from a target 

swarm density (target effect), the local swarm density (local 
effect), and a repulsive swarm density (repulsive effect). So the 
movement induced by other krill individuals can be formulated 
as follows: 

new max local target old( )i i i n iN   N α α N ,                  (4) 

where maxN is the maximum speed, n  is the inertia motion 

weight in range [0,1] , local
iα represents the local effect, 

target
iα represents the target effect, and old

iN represents the last 
motion induced. 

2) Foraging activity 
The foraging motion is determined by two factors: the 

estimated food location and the previous experience about the 

foraging location of itself. This motion can be described as 
follows: 

new food best old( )i f i i f iV   F β β F
,                  (5) 

where fV  is the maximum foraging speed, f  is the inertia 

weight of the foraging motion in the range of [0,1] , food
iβ  

represents the effect of food, best
iβ  represents the effect of 

previous best foraging location of itself, and old
iF  represents 

the last foraging motion. 

3) Random diffusion 
The physical diffusion is considered as a random process. 

The motion can be expressed as follows: 

max
i DD δ .                                     (6) 

where maxD is the maximum diffusion speed, δ  is the random 
directional vector and its arrays are random values in the 
range of [ 1,1] . The motion is described as follows: 
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I
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where maxI  is the maximum generation.  

4) Motion process of the KH algorithm 
In general, the defined motions frequently change the 

position of a krill individual toward the global optimum. The 
foraging motion and the motion induced by other krill 
individuals contain two global and two local strategies. They 
are working in parallel which make KH a powerful algorithm. 
The position vector of a krill individual during interval t  to 
t t  is formulated as follows: 

( ) ( )i i it t t   X X V ,                     (8) 
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where t  is speed factor, it decides the scale of search for the 
space, tC  is usually a constant between [0, 2] ; jUB  and jLB  

are upper and lower bounds of the jth variable.  

In addition to the four parts above, genetic reproduction 
mechanisms are incorporated into the algorithm to improve the 
performance. And more detailed information can be referred to 
[8]. 

B. GSA-KH Algorithm 

In this part, the three points of improvements of KH 
algorithm are described in detail. 

1) Good point sets method 
The definition of good point set [14] is expressed as follows: 

sG  is assumed as a D-dimensional unit cube in the Euclidean 

space, let 1( ) {({ * }, ,{ * }), 1, 2, }n DP k r k r k k n   , sr G , 

(where { * }ir k  means the decimal part of it), if the 

deviation ( )n of ( )nP k satisfies 1( ) ( , )n = C r n      (where 

( , )C r  is a constant related with r and  ), then ( )nP k  is 
called a good point set, and r  is called a set of good points. The 
process is: let {2cos(2 ),1 }kr k / p k D   , if p is the 
minimum prime number of the numbers satisfying 3 2p D  , 
then r  is a set of good points, and a good point set can be 
found.  

A two-dimensional initial population with 100 individuals 
is generated by good point sets method. As shown in figure 1 
and figure 2, it is obvious that the initial population generated 
by good point sets method is more even. So good point sets 
method is a nice way to generate initial populations. 

The map from a D-dimensional unit cube to the search 
space is defined as follows: 

( * ) { * }* ( )j j j j jf r k LB r k UB LB   ,          (11) 

where 1, 2, ,k n  , n  is the number of initial population, 
1, 2, ,j D  , D  is the dimension of the search space, 

( * )jf r k  represents the jth variable of kth krill individual. 
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FIGURE I. THE INITIAL POPULATION GENERATED BY A GOOD 

POINT SET 
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FIGURE II. THE INITIAL POPULATION GENERATED BY A RANDOM 

WAY 

2) Speed factor 
In KH algorithm, the speed factor can be considered as a 

remarkable advantage of the algorithm in comparison with 
other intelligent algorithms. It determines how carefully the 
space is searched. The adjustment is denoted as follows: 

min({ , i 1, 2, , })j ijlb X n   ,                   (12) 

max({ , i 1, 2, , })j ijub X n   ,                  (13) 
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In this way, the speed factor adjusts with the changes of 
lb  and ub , who update according to the changes of krill 
population.It is worth noting that the adjustment doesn’t change 
the lower and upper bounds of the variables, which means lb  
and ub  don’t replace LB  and UB .  

3) Adaptive Cauchy mutation 
KH algorithm is lack of effective mutation mechanism for 

avoiding local optimum. The traditional mutation operator is 
Gaussian mutation which is formulated as follows: 

* (0,1)ij ijX X G  ,                          (15) 

where 1,2, ,i n  , 1, 2, ,j D  ,   is a constant which 

controls the step of mutation,  (0,1)G  is a random number 
generated by Gaussian distribution with zero mean and unit 
variance.  

A fast evolutionary programming algorithm is proposed in 
[15]. The proposed algorithm uses Cauchy mutation operator 
instead of Gaussian mutation operator. 
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FIGURE III. COMPARISON BETWEEN GAUSSIAN AND CAUCHY 

FUNCTIONS 

It is obvious from figure 3 that Cauchy mutation has a 
higher probability of escaping from a local optimum or moving 
away from a plateau. Cauchy mutation spends enough time in 
exploiting the local neighborhood of current location, avoids 
the blindness of random mutation. So Cauchy mutation is 
introduced to the improved algorithm.  

The average speed of population is usually defined as 
follows: 

1

( ) / .
n

j ij
i

V V n


 
                             (16) 

where ijV  is the jth dimensional speed component of ith kril, 

jV  is the average speed of jth dimension. 

The formula of adaptive Cauchy mutation is denoted as 
follows: 

* C(0,1)ij ij jX X V 
,                       (17) 

where C(0,1)  is a random number generated by Cauchy 
distribution with zero mean and unit variance. 

A. Main Procedure of the Algorithm 

After the addition of three points of improvements, the main 
procedure of the algorithm is described as follows: 

Step 1: Determine the values of max max, , , , , ,n fn D I N   

,fV maxD  and the maximum number of mutation M . 

Step 2: Generate the initial krill population with good point 
sets method.  

Step 3: Evaluate each krill individual, find the krill with best 
fitness value, and let 1I  .  

Step 4: Execute three motion operators and crossover 
operator.  

Step 5: Update the krill individual, evaluate each krill 
individual and find the krill with best fitness value again.  

Step 6: Calculate the average speed of the krill population, 
and let 1k  .  

Step 7: Execute the adaptive Cauchy mutation at the current 
best krill (best fitness value). Compare the new krill after 
mutation with the current best krill, if it is better, replace the 
current best krill.  

Step 8: Let 1k k  , if k M , return to Step 7, else go to 
Step 9.  

Step 9: Let 1I I  , if maxI I , return to Step 3, else end 
the algorithm. 

B. Algorithm Test 

In order to verify the performance of GSA-KH algorithm, 
six test functions are introduced to test the improved algorithm 
[16]. The specific test functions are listed in table 1. The 
standard KH algorithm is used to compare and analyze the 
performance. 
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TABLE I. MEAN BEST FITNESS VALUES AND STANDARD DEVIATIONS 

Function Function name Search space 
Optimal 

value 
KH GSA-KH 

mean std mean std 

1f  Rosenbrock [-2.048,2.048] 0 8.68e+1 5.96e+1 2.52e+1 5.02e+1 

2f  Schwefel1.2 [-100,100] 0 5.73e+3 3.22e+3 1.41e+3 3.29e+3 

3f  Quartic [-1.28.1.28] 0 9.34e-2 7.85e-2 4.13e-2 2.88e-2 

4f  Schwefel2.4 [0,10] 0 8.61e+1 1.77e+1 1.46e-5 9.26e-6 

5f  Ackley [-32,32] 0 1.47e+0 8.04e-1 1.14e-3 6.85e-3 

6f  Griewank [-600,600] 0 1.27e-1 2.38e-1 5.84e-2 1.73e-2 

The parameters setting of GSA-KH algorithm is almost the 
same with that of KH algorithm. The maximum speed of three 
motions is: max 0.01,N  max0.02, 0.005fV D  . tC  is 

usually set as 0.5. The inertia weight ( ,n f  ) is equal to 0.9 at 

the beginning and decrease to 0.1 linearly with the iteration. 

The maximum number of mutation M  is determined 
according to the actual situation. A better result may be 
obtained with a bigger M , but more computational cost will be 
consumed at the same time. The number of krill population is 
20, the dimension of krill individuals is 20, and the maximum 
generation is max 300I  . 

In order to eliminate the randomness of results, the 
algorithm is carried out 30 trials. In table 1, the mean best 
fitness values and standard deviations are given. It can be seen 
that the convergence accuracy of GSA-KH algorithm is better 
than that of KH algorithm. 

IV. CASE STUDIES 

In this section, the GSA-KH algorithm is applied to solve a 
dynamic optimization case. The maximum number of mutation 
M  is 20. The algorithm is carried out 20 times. And the state 
variables are computed by Runge-Kutta method. 

Considering a first-order irreversible chemical reaction 
carried out in a continuous stirred tank reactor (CSTR) [5]. The 
optimal problem can be modelled as follows: 

f
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T
f 0.78, (0) [0.09 0.09] , 0 5.t x u            (21) 

where 1x  represents the deviation from dimensionless 

steady-state temperature and 2x  is the deviation from the 
dimensionless steady-state concentration, the control variable 
u  represents the manipulation of the flow-rate of the cooling 
fluid. 

The time interval f[0, ]t  is divided into 13 subintervals, the 
control variable in every subinterval is replaced with a constant. 
Then the optimal problem can be solved by the proposed 
algorithm, the best fitness value obtained is 0.135345. The 
optimum value obtained is 0.13309 [5]. 

The optimal control trajectory is shown in figure 4. And the 
curve of best fitness value versus number of generations is 
shown in figure 5, the curve gradually becomes flatly at about 
70 generations. 
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FIGURE IV. OPTIMAL CONTROL PROFILE  
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FIGURE V. BEST FITNESS VALUES VS. GENERATIONS 

It can be seen from figure 5 that the algorithm arrives at a 
stable stage within 70 generations. This point shows that the 
algorithm has a nice convergence rate. To make a comparison 
with previous researches, a summary of the results is listed in 
table 2, where “Best” and optimum mean the best values ever 
obtained in previous researches and in this paper, respectively. 
FE represents function evaluations. According to table 2, it is 
obvious that GSA-KH algorithm performs well on both 
convergence accuracy and rate. 

TABLE II. SUMMARY OF RESULTS 

Case Best Method Optimum FE 

Case 1 0.13309 

EA [17] 0.135586 2270 

IDP [5] 0. 13309 — 

GSA-KH 0.135345 2800 

V. CONCLUSION 

In this paper, a novel method for dynamic optimization 
based on improved KH algorithm is proposed. Firstly, three 
points of improvements are added into the KH algorithm. An 
initial population is generated by good point sets method. 
Speed factor is adjusted with the changes of krill populations. 
Adaptive Cauchy mutation is used to increase the ability of the 
algorithm avoiding local optimum. Then the performance of 
GSA-KH algorithm is verified by several test functions. At last, 
combining with CVP method, the algorithm demonstrates its 
feasibility and robustness through the successful application to 
two dynamic optimization cases of chemical processes. It is no 
doubt that the proposed algorithm can be regarded as a reliable 
and efficient tool for solving this type of problems. 
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