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Abstract. This paper proposes a two-stage iterative decoding scheme named matrix transform belief 
propagation scheme (MT-BP) based on conventional belief propagation (BP) algorithm for low-
density parity-check (LDPC) codes. By introducing information measurement, location vectors and 
parity check matrix transform, the proposed method can establish additional parity check equations 
and take more information bits of variable nodes into consideration compared with conventional BP 
algorithm. The simulations are performed on random regular LDPC codes and algebraic quasi-cyclic 
codes (QC-LDPC), the experimental results show MT-BP method can efficiently reduce the bit error 
rate (BER). 

Keywords: Error floor, two-stage iterative decoding scheme, belief propagation, LDPC, parity check 
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1. Introduction 

It is well-known that low-density parity-check (LDPC) codes are currently the most promising and 
widely-used channel codes [1-4]. They can be represented by a bipartite graph named Tanner graph, 
where the messages pass along the edges connecting variable nodes (VNs, denoted by , ∈ ,…, ) to 
check nodes (CNs, denoted by , ∈ ,…, ). The most classic iterative decoding method for LDPC 
codes is BP algorithm [5]. However, some factors are influential to the decoding performance 
including error floor, for example, trapping sets, girth and rate. A great deal of research is dedicated 
to improving the decoding performance and practical applications. For example, in [6], authors show 
that it is efficient to lower the error floor by adding redundant rows to parity check matrix, but these 
methods need to know the location of TS at first. [7] proposes a technique for breaking TS through 
removing certain check nodes. Concisely, the method first locates the bit involved in the TS, then 
removes the check nodes (CNs) connected with the chosen variable nodes (VNs). In [8], authors show 
that once TS can be identified, a sum-product algorithm (SPA) decoder can be custom-designed to 
improve the decoding performance. However, all above-mentioned methods must know the location 
of TS first, which is time-consuming to implement with long LDPC codes. Besides, [9] proposes a 
scheme for bit recovery of LDPC codes by adding new check nodes to connect the most erroneous 
and the most reliable bits. However, the error level of the codeword bit is estimated through Monte 
Carlos simulations, so it requires new simulations for a new code, which has a high complexity. 

To balance the decoding complexity and decoding performance, a scheme named BP-MT is 
proposed in this paper. Firstly, we define IM of VNs and IM of CNs, which are used to simply 
represent the probability that a bit of VN is correct and a parity check equation holds, respectively. 
Then, based on IM, we construct location vectors and perform matrix transform on parity check 
matrix H to obtain a new parity check matrix Hnew. The meaning of matrix transform is that based 
on existing parity check equations, we establish additional parity check equations. Therefore, more 
information of VNs can be taken into consideration to help decode. 

2. Conventional BP Algorithm 

BP algorithm is a soft-decision algorithm which takes the probability as input. Assume the signal 
transmitted on an AWGN channel with variance  and binary phase shift keying (BPSK) 
modulation, y , , … ,  is the soft-decision received vector in the output of the receiver 
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detector, z , , … ,  is the hard-decision vector and s , , … ,  is the 

syndrome. Assume H is a M N matrix and H 	is the transpose. We use  to represent the 

probability information from  to  in the l-th iteration, and   to represent the information 

from  to  in the l-th iteration. Let N j t: 0 t M 1, , 1  be a set consisting of 
CNs which are connected to , and M t j: 0 j N 1, , 1  be a set consisting of VNs 
which are connected to . The conventional BP algorithm is expressed as follows. 
 

Algorithm for Conventional BP Algorithm
Initialization. set l 1 and preset the maximum iteration number, compute the log-likelihood 

ratio (LLR) probability information for VNs, 
 

log
	

	
2 .                          (1)

 
Step 1. CNs update. Calculate the information of CNs received from VNs: 
  

2 ∏ ∈ \ .                     (2)

 
Step 2. VNs update. Calculate the information of VNs received from CNs: 
 

∏ ∈ \                           (3)
 
Step 3. Hard decision and compute the syndrome 
 

0, 0
1, 	 0,                                  (4)

 
If s z ∙ H 0, the decoding is successful, output the decoded codeword; if s z ∙ H 0, 

l l 1, return to Step 1. If l exceeds the preset maximum iteration number, the decoding fails. 

3. Our Proposed Scheme 

3.1 Information Measurement. 

In BP algorithm, we usually check whether the decoding is correct by judging whether the 
syndrome s is 0. If a CN  satisfies the parity check equation, its corresponding element  in s 
equals to zero, we believe it has a very high probability that the bits of its adjacent VNs are correct. 
Similarly, if  is not zero, there must be some wrong bits of its adjacent VNs. 

Based on s, we define the IM of VNs and IM of CNs. The steps for computing the IM is 
summarized as follows: 
 

Algorithm for Computing the Information Measurement 
Step 1. Perform the hard decision z on y.  
Step 2. Compute the syndrome for every CN.
Step 3. Compute the IM for each VN by adding up values of syndrome of adjacent CNs, 
 

IM ∑ ∈ ,                                 (5)

 
Step 4. Compute the IM for every CN by adding up IM of adjacent VNs, 
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IM ∑ IM∈ .                              (6)

 
From the definition of IM, we can easily see the higher IM  that  has, the more incorrect 

parity check equations are related to , the more likely that  is a wrong bit. Similarly, the higher 
IM  that  has, the more wrong VNs are connected to it, the higher probability that this parity 
check equation does not hold. 

3.2 Location Vectors and Matrix Transform 

Assume I is an identity matrix with size	M M, then we have	H I ∙ H. For the CNs connected 
to	 , assume  has the maximum IM and the	  has the minimum IM. We can construct a vector 

location 0,0,0,1,… ,0,1,0,0   named location vector with length		M, where both t-th and k-th 
elements in location equal to 1 while other elements are 0.  

Then, we transform the identity matrix I as follows: 
 

ITransform
I

location

I
0,0,0,1, … ,0,0,1,0,0

				↑														↑
					 ‐th							 ‐th

.                           (7) 

 
Thus, the size of matrix ITransform becomes M 1 M and we can get the matrix Hnew by 

multiplying the ITransform with H as  
 

Hnew ITransform ∙ H                                (8) 
 

If we want to construct c location vectors, we can first sort IM of CNs in descending order. Then 
we choose first c CNs (with maximum IM) and last c CNs (with minimum IM). Furthermore, the 
h-th location vector locationh

 can be constructed with the h-th maximum CN and h-th minimum 
CN. ITransform Can be represented as follows: 

 

ITransform
location

location

⋮
location

0,0,0,1, … ,0,0,1,0,0
1,0,0,0, … ,0,0,0,0,1

⋮
0,0,1,0, … ,0,1,0,0,0

.                           (9) 

 
Theorem: The process of checking whether the decoding is correct based on H is equivalent to 

checking based on Hnew.  
Proof: From (8), we have z ∙ Hnew ∙ ITransform ∙ H z ∙ H ∙ ITransform, from (9) we can 

easily see Hamming distance between any two location vectors is 4 (there are no elements 1 in the 
same position of any two location vectors), so it is easy to see that ITransform is a row full rank matrix 
(ITransform is column full rank). Therefore, checking whether the decoding is correct based on z ∙ Hnew 
is equivalent to computing z ∙ H . 

3.3 The Whole Decoding Algorithm 

The decoding scheme includes two stages. In the first stage, we adapt the conventional BP 
algorithm, if the decoding fails, we perform the MT-BP decoding scheme. The whole algorithm is as 
follows. 

The Whole Decoding Algorithm  

Stage 1. The conventional BP algorithm 
Step 1. Carry out the BP algorithm on received information y. 
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Step 2. Check whether the decoding is correct by computing the syndrome s z ∙ H . Ifs
0, output the decoded codeword; ifs 0, go to Stage 2.  

Stage 2. Carry out MT-BP scheme 
Step 1. Set	c, carry out the algorithm to compute the information measurement for check node. 
Step 2. Set	i 1.  
(1) Construct location vectors location  and perform matrix transform to get matrix Hnew.   
(2) Perform the BP algorithm based on Hnew. Check whether the decoding is correct by 

computing s z ∙ Hnew. If	s 0, output the decoded codeword; if s 0 and	i c, i i 1
and go to Step 2. (1); if s 0 and	i c, the decoding fails. 

Table 1. Information of Codes  
iC  Length Rate Construction method 
1C  (1024,512) 1/2 Mackay 1A 
2C  (1016,508) 1/2 CPM-QC-LDPC 
3C  (504,252) 1/2 CPM-QC-LDPC 
4C  (195,150) 0.77 CPM-QC-LDPC 

4. Simulation Results 

We compare the conventional BP algorithm [10] and MT-BP algorithm on random regular LDPC 
codes and algebraic QC-LDPC codes constructed based on circulant permutation matrices (CPM-
QC-LDPC) [2], the codes are shown in Table 1. Simulations are performed over the additive white 
Gaussian noise (AWGN) channel with binary phase shit keying (BPSK) modulation. The maximum 
iteration number for BP algorithm is 35.  Represents the average energy per information bit and 

 denotes the one-sided power spectral density. The simulations are shown in Fig. 1. 
 

 
Fig. 1 BER Performances of Various LDPC Codes.

 
From Fig. 1, we can see our proposed MT-BP algorithm has a better decoding performance 

compared with conventional BP algorithm. For (1024, 512) regular LDPC code, when /  
exceeds 2 dB, there is an around 0.2 dB coding gain. For (1016, 508) CPM-QC-LDPC code, when 
/  exceeds 2.2 dB, the coding gain is around 0.2 dB. For (504,252) CPM-QC-LDPC code, the 

coding gain is more than 0.2 dB when /  is more than 2.3 dB. For (195,150) CPM-QC-LDPC 
code, it is clear to see the coding gain for BER and FER is over 0.5 dB when /  is over 3.5 dB. 
Moreover, the decoding performance gets better as c increases. 
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5. Conclusion 

A two-stage iterative decoding scheme named MT-BP, which can make more use of the 
information of VNs by parity check matrix transform, is proposed in this paper. Experimental results 
illustrate that MT-BP algorithm can efficiently improve the BER performance. 
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