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Abstract. This paper presents a new efficient algorithm for the Josephus problem using Binary 
Count Tree. Binary count tree is a data structure ameliorated from the BST which additionally records 
the node-count of each sub tree. In this algorithm, the whole Joseph circle is put into the binary count 
tree. The target node can be quickly found by moving the pointer between the child node and the 
parent node, and then the target will be deleted and the related node-counts will be updated. Analysis 
and experiments shows that this algorithm can find out an entire Joseph sequence in time O(n*log 
n). 
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1. Introduction 

Josephus Problem is a classic mathematics and computer problem. It can be described as follows: 
there are n people consecutively numbered from 1 through n and arranged in a circle. They are forced 
to count off. And he who counts digit m off is out and the one next to him will count 1 again, next 
person counting m likewise. In this way, people in the circle become fewer and fewer and the last 
becomes the winner. There are many other versions of the story, and they will not be narrated here. 

Via the description above, two questions of different layers can be posed.  
Question 1. If the last winner is our only concern, then it can be described as: 
Given positive integers n and m, then find out the number of winner - W(n, m). 
For example, W (10, 3) = 4. 
Question 2. If each person’s position in the killing sequence is wanted, it can be described as: 
Given positive integers n and m, determine the entire sequence - List (n, m). 
For instance, List (10,3) = {3,6,9,2,7,1,8,5,10,4}. 
It can be easily found that Q2 is more complicated, for the reason that the answer of Q1 is included 

in Q2. Q1 an be determined in time O(n) using recursion and we’ve already got a mature algorithm[1], 
which will not be introduced in detail here. This paper is meant to design a more concise and efficient 
method to solve Q2 in which an improved binary tree is used and then verify it. 

2.  Binary Count Tree 

Binary Search Tree (BST for short) also named as Sorted Binary Tree, is a simple and efficient 
data structure usually used to sort and find data rapidly. Its basic features are as follows[2]: 

(1) Every node in BST has two children (called the left child and the right child) at most; 
(2) Every node value is greater than any value in its left subtree but less than the other side. 
Binary Count Tree (BCT for short) is a data structure improved from the BST, which still has 

BST’s basic features and extra records the node count of each subtree (shown as Fig.1).  
It has two more domains than the Binary tree, pointing to the pointer of parent and node number 

of its subtree separately. In C language, node structure of BCT can be defined as followed: 
typedef struct BCTree 
{ 
int data;    // data area (also key) 
Fig BCTree *L;        // left child 
Fig BCTree *R;  // right child 
Fig BCTree *P;  // parent  
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int count;   // count of sub tree 
} TNode; 

 

Fig .1The node structure of BCT 

In the above code, data denotes the data domain(also the keyword); count denotes node count of 
its subtree; L,R and P points to L-child, R-child and parent respectively. The nodes structure of a 
BCT is shown as follows: 

 

Fig. 2 The nodes structure of a BCT 

Basic operations of the BCT include generating a tree, adding elements, deleting elements, going 
forward k steps, etc. Some of the operations will be described in detail in the following parts. 

3. Algorithm Theory and Implementation 

In the simple algorithm version of determining Josephus (n, m), we usually use a circular linked 
list to represent the Josephus ring[3-4], and the time needed to find the next target element is O(m). 
If m is very close to n, then the total time will be O(n2). 

The fact that the pointer in the circular linked list can only move forward one step at a time leads 
to low efficiency. However, if each movement can span multiple nodes, then the algorithm can be 
improved by reducing the total moves, and using BCT provides the possibility. 
3.1 Create a BCT  

Original Josephus ring is made up of n elements. These elements can be used as nodes to generate 
a "binary counting tree" via binary recursion. Take the sequence[1:14] as an example, the whole 
sequence is divided into two parts by the intermediate element 7. Then we use it as the root, and make 
the two parts as the left and right subtrees(shown as fig.3). 

 

Fig. 3 The process of creating a BCT 
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Due to the binary recursion we used, the size of the left and right subtrees at each node is almost 
the same(with difference no more than 1), and the binary tree generated is nearly full. The height of 
the tree generated by n nodes is h, so we can figure out its expression: 

 
The C language code for the generation of BCT is as follows: 
TNode * CreateBCT( int low, int high, TNode * Parent) 
{  if (low <= high)    //if the sequence is not empty 
{    int mid = (low + high) / 2; 
TNode * M = (TNode *) malloc (sizeof(TNode));  M->data = mid;  M->count = high-low+1; 
M->L = CreateBCT (low, mid-1, M);  M->R = CreateBCT (mid+1, high, M); 
M->P = Parent;  return M; 
}   
return NULL;    //if the sequence is empty 
}  
In the code above, the starting and ending position of the sequence are represented by parameter 

low and high, and the parameter parent will be the parent of the intermediate elements. To generate 
the “binary counting tree”, we should allocate the node space for intermediate element M, set its data 
fields (data), and node counter (count) and parent pointers. Recursion produces the left and right 
subtrees with intermediate nodes as their parents. The parameter parent can be set to NULL when we 
first call the function, because the root of the entire tree has no parent nodes. The algorithm above 
can be completed with O(n) time. 

3.2 Take k Step Forward 

Using the BCT to Solving Josephus(n, m), the problem of counting off is converted into: how to 
quickly find the k-th node after the current node (marked as T) in the tree (where k=m- 1). 

In order to describe it conveniently, we use Step (T, k) to represent the task of ”taking k step 
forward from T”. T′ and k′ are used to represent the T after moving and the updated k respectively. 

In Step (T, k), k needs to go forward when its value is positive and go backward otherwise. When 
its value equals to 0,the task is finished. Step (T, k) will be transformed into Step(T', k') after one step, 
so it’s clear that our aim is to turn k into 0 through the moment of T. 

 

Fig. 4 The discussion of the node’s moving direction 

If k !=0,we need to move the current node and possible movement directions include: to the left 
child, to the right one or the parent. Three different cases are discussed as follows: 

Case 1: If 0< k <= Count (R), the target node must be in the left subtree: make T ′= L,k′ = k+ 
(Count ( LR)+1). 

Case 2: If 0> k >= -Count (L), the target node must be in the right subtree: make T ′= L,k′ = k+ 
(Count ( LR)+1). 

Case 3: If k > Count (R) or k<-Count (L), there are two cases to discuss: 
Case 3.1: If T has parent node P, then T'= P; If T is the left child of P, k′ = k - (Count (R) + 1); If 

T is the right child, k′ = k + (Count (L) + 1).  
Case 3.2: If T doesn’t has parent, then it is the root. Take n as the sum of nodes in the tree, we 

have: n = Count (R) + Count (L) + 1       
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If k> Count (R), then move forward a circle (n steps), and let T'= T, k' = k-n; we can proves that 
k′ = k - n> - (Count (L) + 1) >= -Count (L). We will fall in "Case 2" at the next time we search. 

If k< -Count (L), go backward a circle (n steps), so that T '= T, k' = k + n; we can proves that  k 
'= k + n < Count (R) + 1 <= Count (R). The next time we will fall in "Case 1". 

The code for implementing the task of taking k steps forward is as follows: 
TNode* Step (TNode *T, int k) 
{ if(k==0) return T; // T just is the target 
    int Rc, Lc, RLc, LRc;  GetCounts (T, &Rc, &Lc, & RLc, &LRc); 
 if( 0<k && k<=Rc)  //Turn to the right subtree (0<k<=Rc) 
 { T=T->R;   k =k -(RLc+1);  } 
 else if(-Lc<=k && k<0)  //Turn to the left subtree (-Lc<=k<0) 
 { T=T->L;   k = k + (LRc+1);  } 
 else    //Turn to the root node 
 { if(T->P != NULL) //If it has a parent  
  { if(T->P->L==T) //If it’s the left child of the parent  
   { T = T->P;   k = k - ( Rc + 1); } 
   else  //If it’s the right child of the parent  
   { T = T->P;   k = k + ( Lc + 1);} 
  } 
  else   //If it doesn’t have a parent (T is the root) 
  { if(k>0)   //If it needs to move forward 
   {  k = k - T->count;   } //Move forward a circle    
   else if(k<0)  //If it needs to go backward 
   { k = k + T->count;   }  //Go backward a circle    
  } 
 } 
 return  Step( T, k); 
} 

3.3 Delete the Target Node 

It’s necessary to delete the target node when we find it, which corresponds to the element dequeue 
in Josephus ring. As for the deletion of a given node (T), it can be divided into the following categories: 

Case 1: If T is the leaf, delete it directly. 
Case 2: If T only has one child(shown in fig.5-a), delete T and replace its previous position with 

the child of T .  
Case 3: If T has two children(shown in fig.5-b), find S, the direct of T, replace the data domain of 

T with S’s, and then delete S. It definitely apply to Case 1 and 2, due to the fact that S is the leftmost 
mode in the right subtree and has only one child at most.  

      

Fig. 5 Delete a node from the BCT 

Remaining nodes need to be updated after deletion: no matter which case it is, subtract 1 from all 
ancestors of the node which is actually deleted. The delete operation is done in the RemoveTNode() 
function and the next node is returned. The space is limited and the code is omitted. 
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4. Tests and Analysis 

Key steps have been discussed in the last section, and it will be easy for us to figure out the whole 
Josephus permutation by using them. The main algorithm code is as follows: 

int *Josephus (int n, int m) 
{  int * list = (int *) malloc (sizeof (int)*n); 
  TNode *root = CreateBCT (1, n, NULL);  
TNode *T = GetFirst (root); 
  for (int rest =n; rest>0; rest--) 
  {  int k = (m-1) % rest;   
T = Step (T, k);   //take k steps forward 
list[i] = T->data;   
T = RemoveTNode (T);   //delete the target node 
  }  
return list; 
} 
In the algorithm illustrated above, O(n) time is used to execute CreateBCT() , and GetFirst() O(log 

n) time ; a single execution of Step() and RemoveTNode() requires only the same time of O(log n); 
all in all, the time complexity of the whole algorithm is O(n log n). 

In order to verify the correctness and efficiency of the algorithm, the new algorithm presented in 
this paper is compared with a simple algorithm based on circular linked list. Test programs were 
developed in VS2010 and run on a computer with 8G RAM. Accounting the worst case, we conducted 
a time performance test on Josephus (n, n). The results show that the Josephus sequences obtained by 
the two algorithms are exactly the same; the simple algorithm shows a quadratic curve with the 
increase of problem scale , and the new one looks almost linear (shown as Fig.6-a). 

     

(a)                                       (b) 

Fig. 6 Statistics of experiment results 

For the purpose of further verifying the time complexity of it, we expand the test scale and gather 
more statistics, including the height of the binary counting tree and the average number of movements 
(shown as Fig.6-b). The following test data shows that the increase of average moves related to the 
height of tree is linear, and the height of the tree is approximately equal to log(n). Therefore, we can 
figure out that the complexity of whole algorithm is O(n log n). 

5. Summary 

All the theorems and experiments mentioned above have proven that the algorithm put forward in 
this paper for the Josephus problem,which is based on BCT, is correct. And its time complexity is 
O(n log n). In the algorithm,the “counting information” additionally recorded in the BCT is made use 
of to find target node rapidly. Therefore, the maintenance of counting information is really crucial 
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when an element is deleted. And if the equilibrium of BCT is taken into account,we can further 
enhance the efficiency of this algorithm. BCT is an improved data structure and can be used to solve 
many other algorithm problems except for the Josephus problem. 
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