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Abstract. Network resilience is an important indicator for measuring the pros and cons of fault-
tolerant strategies. For the resilience prediction of the network design stage, the traditional prediction 
methods can only be modeled and forecasted based on fault tolerance strategies based on a single 
network, and the impact of fault tolerant strategies deploying on multi-layer of network cannot be 
considered. For solving this problem, this paper proposed a network resilience prediction method 
based on network resilience theory and machine learning. First, a quantitative model of network fault 
tolerance strategy is established, and based on this model, the modeling method of the protocol 
stack is improved on the NS3 platform for simulation implement. A large number of structured data 
that can characterize network resilience are generated through simulation experiments. Then, a 
network resilience prediction model of single hidden layer feed-forward neural network (SLFN) is 
established based on the Extreme Learning Machine (ELM) theory. This model can better solve the 
overfit problem of traditional ELM. Finally, the prediction model was verified according to comparing 
with the traditional model-driven resilience prediction method. This method not only has a higher 
prediction accuracy, but also solves the problem that the traditional method cannot model the 
coupling relationship between fault-tolerant strategies, and thus cannot be based on the hybrid fault-
tolerant strategy for resilience prediction. The case verification shows that this method can effectively 
predict the network resilience considering fault-tolerant strategies. Through cross-validation, the 
accuracy rate is more than 96%, which helps to consider the development of fault-tolerant design of 
hybrid fault-tolerance strategies. 
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1. Introduction 

The network fault-tolerant strategy can make the network resist the fault through the active or 
passive fault-tolerance mechanism when it suffers from failure, and guarantee the reliability of the 
network [1], [2]. In order to ensure the best fault tolerance capability of the system, multiple fault 
tolerance mechanisms are usually deployed at different network layers according to the layered 
features of the network to form a hybrid fault tolerance strategy to improve the fault tolerance of the 
network, thereby ensuring network reliability [4]. The assessment of network fault tolerance is 
currently achieved through qualitative and quantitative assessment of network resiliency [5] - 
Network resiliency is defined as the ability of a network to recover to its normal state after an attack 
or failure. Therefore, considering the fault-tolerant strategy, assessing and predicting the resilience of 
the network is an important issue in the network design phase. 

In order to assess and predict the elasticity of the network, relevant scholars have conducted a lot 
of research. Most of the research focuses on network elasticity assessment. The research on the 
evaluation of network elasticity is mainly based on the elastic evaluation of the model. According to 
S. Hosseini and other scholars [6], the methods of network resilience assessment are classified. 

International Symposium on Communication Engineering & Computer Science (CECS 2018)

Copyright © 2018, the Authors. Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 

Advances in Computer Science Research, volume 86

193



 

According to different fault tolerance mechanisms, resilience assessment can be divided into two 
types based on structure and topology. Among them, based on the structural and topological resilience 
assessment, the scholars mainly modeled the robustness and tolerance of the network physical layer 
topology, and then analyzed the network resilience based on the model. For example, scholars such 
as A. Sydney [7] proposed a measure of the resilience of the network structure through the natural 
topology of the network topology based on complex network theory; further, MJF Alenazi et al. [8] 
proposed using the network “spectrum measure” to measure the network resilience of structure, and 
at the same time it proves that the spectral measure is superior to other connectivity parameters and 
can better represent the resilience of the network structure. The research of resilience assessment 
based on network performance is mainly based on the model of network state, such as time delay and 
packet loss rate. Researchers such as JPG Sterbenz [5] used the state-space method to model the 
network operating state and evaluated the network resilience by the level of network recovery after 
the attack. Further, D. Zhang et al. [9] considering the impact of mobility on network resilience, JP 
Rohrer et al. [10] proposed that network resilience is the result of the joint impact of physical layer 
topology fault tolerance and logical layer fault tolerance protocol. The directly prediction of network 
resilience is an emerging hot spot in the field. The main idea is still based on network operating 
parameters and design parameters, and modeling of network resilience takes these parameters and the 
level of network elasticity. Mapping relationships to predict network resiliency [11]–[15]. At present, 
there are more representative researches: J. Gao and A.-L. Barabási [13] propose a prediction method 
based on “patterns”: This method is based on complex network theory and abstracts the network 
control related structural parameters and network status. The mapping of parameters abstracts the 
multi-dimensional dynamic model of the network into a one-dimensional model to form a model 
related to elasticity, and then predicts the network resilience through the network model. 

In summary, most current network resilience prediction researches are expansion of resilience 
assessment. The methods based on these researches are used to predict network elasticity according 
to existing network structure and other design parameters. However, as a complex object, the network 
presents the characteristics of dynamic and coupling. Therefore, there is such a coupling and influence 
relationship within the hybrid fault-tolerance strategy. Existing resilience prediction methods can 
only predict a single fault-tolerant strategy. For example, in a fault-tolerant topology, network 
resilience can be predicted through structural parameters of a fault-tolerant topology, and resilience 
is based on logical layers or multi-layer hybrid fault-tolerance strategies cannot be predicted through 
the same approach. Due to the lack of quantitative analysis and modeling research of fault-tolerant 
strategies at the logical layer, traditional elasticity prediction methods cannot support the 
consideration of resilience prediction under the coupling of multiple fault-tolerance mechanisms. 

For solving the mentioned problems, this paper proposed a data-driven resilience prediction 
method based on a combination of machine learning and resilience theory. Based on the quantitative 
modeling of network fault tolerance strategies, the advantages of machine learning methods in the 
field of nonlinear system pattern recognition and linear fitting [16] are adopted, and the emerging 
high-efficiency machine learning algorithm-ELM is adopted [17] as well for predicting of network 
resilience. The proposed approach not only fully considers the influence of fault-tolerance strategies 
at different layers of the resilience of the entire network, but also can intuitively reflect the trend of 
resilience changes of networks under different fault-tolerance strategies. The theory fruit can support 
the study of the coupling of hybrid fault-tolerance strategies on system reliability.  

2. Network Resilience Modeling 

According to the definition of the network layering theory, the applications of the network and the 
functions they has are implemented based on the transmission protocols of the network physical layer 
and logical layer routing. The routing protocol as a rule that specifies the path of data transmission 
on the network directly affects the normal operation of network functions and applications. The 
routing table generated by the routing protocol is based on the underlying physical layer connectivity 
path. On the macro time scale, the physical layer of the network, and the logical layers generated by 
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logic rules such as routing protocols above the physical layer, each exhibit temporal and spatial 
dynamic characteristics over time in the structural and spatial dimensions. [14] Based on this, in order 
to describe the spatio-temporal dynamic characteristics of this kind of network feature, this paper 
proposed a space-time dynamic network model. 

2.1 Network Time-Spatial Feature 

Applications and functions are operated in the routes according to routing protocols. The spatial 
feature of routes is varying with the time process as the Fig 1. Shown: 

 

t=t0                    t=t1                 t=t2 

Fig. 1. Different Topology of Routes and Links in Different Time Profiles 

Thus we can abstract the routes according to routing protocols as a network. Here we considered 
physical connective exhibiting on physical layer, and based on physical connective, the logical 
connective exhibiting on logical layer, dynamic features can be observed in time and spatial aspects: 
due to nodes’ movement features, the physical links on physical layer and routes on logical layer are 
not fixed, meanwhile, the fault tolerance mechanism against failures is another factor which can affect 
network spatial structure. Therefore, the different routing protocols which have different rout 
discovery and maintenance mechanisms will also result in the different structure behaviors of the 
routes abstracted networks. The structure spatial dynamic process is expressing in time dimension. 

So we considered the abstracted network formed by routing protocol possessing time-spatial 
features, and proposed “Time-Spatial” network model. We will use the Time-Spatial network model 
to describe time and spatial variation which is caused by routing protocols and fault tolerance 
principle, and carry on the resilience measurement on the network model as well. 

2.2 Time-Spatial Network Model Definition 

Routes discovery and maintenance according to routing protocols depend on the connection of 
physical layer, so the upper Time-Spatial network model also takes into account the physical network 
model. Meanwhile, the connectivity of MANET physical layer depends on the distance between 
nodes and the radius of signal transmission. About this property of physical layer, there are several 
random graph models are properly to model the physical layer of MANET, such as Gilbert graphs, 
Waxman graphs and Gabriel graphs [9], etc. With the purpose of closing the real usage profile and 
comparison, in this paper, we preferred Waxman graph as the physical layer model and our proposed 
Time-Spatial network model is above the physical layer as the logical layer. 

Definition 1. Physical layer network model: The construction of physical layer network should 
yield Waxman model: 

 
 ,

,
d u v

LP u v e 


                                  (1) 

Where  , 0,1   , and L is the maximum distance between any two nodes, β denotes the density 
of links, α corresponds to a high ratio of long links to short links. 

Definition 2. Time-Spatial network model: Here we proposed the definition of Time-Spatial 
network model: MANET can be considered as a directed graph:  ,G V E  ,V is the set of the whole 
network, the number of the nodes in the set is | |V  , for u V , ,u v   denotes valid path from u 

to v, denoted by: ,e u v  ,  ,u v   express the link between u and v, denoted by:  ,e u v .  
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 = , | ,E e u v u V v V     is defined as valid edge. The number of edges or links is defined as | |E . 

Define the function W: E R  , R   is a subset of the positive real number,   ,W e u v   

express the weight of edge: ,e u v   , denoted by  ,w u v  . If  ,w u v  is  , then the link 

,e u v   is break. The partially ordered set which is formed by V :  1 2 1 1, , , , , , ,j j j nv v v v v v    , 

is denoted a path which source node is 1v , destination node is nv , and the node number of the path is 

n,  2k k n    , 1kv   is the upstream node in the path of kv .  1 1m m n     . The node 

1mv   is the downstream node in the path of node mv . For  , , ,i j i jv v v v Path v v   express the set 

of path that the source node is iv , the destination node is jv , in other words, it is the edges set of 

Time-Spatial Network. We assumed:    , ,i j i jpath v v Path v v , then define the function:

 : ,i jf Path v v   ,   ,i jf path v v  denotes the evaluation function of  ,i jpath v v .   

The purpose of the routing that source node is iv  and destination node is jv , is to find out an 

 * ,i jpath v v  which the evaluation function is optimal, satisfy the formula:  

 

         * *, , , , ,i j i j i j i jpath v v path v v f path v v f path v v               (2) 

subject to:  

       * , , , , ,i j i j i j i jpath v v Path v v path v v Path v v                 (3) 

2.3 Method of Network Fault Tolerance Modeling Based on Time-Spatial Model 

From network science perspective, the network structure or topology features can indicate certain 
of operation behaviors. Therefore, if we consider the resilience as a part of the network’s behaviors, 
the network’s structure will affect resilience features. 

Besides the metrics mentioned in section 2.2, the special metrics for evaluating the network’s 
robustness and resilience taking account to network structure metrics were also proposed, e.g. 
Spectral metrics, Nature connectivity, Algebraic connectivity[6],[13],[15] , etc. Although all of them 
are fit for measuring the network structure robustness, it cannot completely reflect the impact from 
routing mechanism to the network directly. Recent years, some scholars are start to consider the 
packet transmission impacts and proposed Flow Robustness [14] metrics to measure the physical 
layer flow robustness (phyFR) as resilience assessment of network, ref.10 compared Flow Robustness 
with other structural based metrics, and it showed higher accuracy than others: 

 

1
| | (| | 1)

| | (| | 1)

k

i ii
Component Component

phyFR
n n







                 (4) 

 
Where let  = ,G n l   be the graph representing the given network. Let  ;1iComponent i k  be 

the set of components in graph G. the complexity for calculating the resilience by using phyFR is 
hard to find the components size in network topology graph. Hence, we may count edges’ number 
instead of counting nodes number, because the number of links and edges are easy to collect during 
the simulation process that is considering routing mechanism. 

Combined the metrics we introduced, here are steps of our measuring method:  
Step 1. Based on the Time-Spatial Network Model, build a spatial profile of the network: (express 

as a matrix), and the profile can describe the connection status of the nodes in Time-Spatial Network 
at per time step: 
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 
 
 

, ,
,

0, ,

ij i j

i j

w v v E G
A i j

v v E G

  
 

                          (5) 

Step2. Analyze the flow robustness of Time-Spatial (TSFR) network model. 
 

1
| | (| | 1)

, 0 1
| | (| | 1)

k

i ii
C C

TSFR TSFR
n n




  


                       (6) 

 
Where the definitions of parameters are follow eq. (4) introduced, but the analysis object is Time-

Spatial network model. With the purpose of simplify the complexity, we can also count edges or links 
instead of counting iC . As we known, the n nodes can construct ( 1) / 2n n  edges, hence if where 

ie  is the edge number of iC , the eq. (4) can be transform to: 
 

1

k

ii
e

TSFR
E
                                 (7) 

 
Where E is the total number of possible network edges. Here we proposed a simple proof: 
 

2
2| | (| | 1) | | | |

| | | | 2 0
2 2

i i i i
i i i i

C C C C
e C C e

 
                     (8) 

Solving eq. (6): 

1 1 8
| |

2
i

i

e
C

 
                                (9) 

 

  
| | (| | 1)

=
2

n n
E

                               (10) 

 

2 1 1 8
| | | | 2 0 | |

2

E
n n E n

 
                         (11) 

Substitute eq. (9) and eq. (11) to eq. (6), we can obtain eq. (7). 
Step 3. Measuring the Resilience of Network: Refer to the resilience calculating method from 

Alenazi[10] et. al, we used Logical Fault Tolerance (LFT) to denote the network resilience: 

1

n

n i
i

STSFR TSFR


  .  

3. Network Resilience Prediction Model Based on ELM 

Based on the network fault tolerance model, this paper extracts the corresponding structured data 
from the network operating data according to the parameters defined by the proposed model, and uses 
the network resilience prediction model to predict the network resilience. Reference [13] mentioned 
that the traditional mathematical method of describing system resilience is to use a one-dimensional 
nonlinear dynamic equation to approximate the behavior of a complex system: 

 
d

( , )
x

f x
dt

                              (12) 
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In eq. (12) ),( xf   denotes the resilience of system,   denotes the captured change of 
environment. Therefore, a network which was constructed by N components, the states set of nodes 

is  1, ,
T

Nx x x  , subject to the Coupled nonlinear equation:  

 

   
1

,
N

i
i ij i j

j

dx
F x A G x x

dt 

                       (13) 

 

Nonlinear function  iF x  and  ,i jG x x  represents the dynamic rules of the control system 

components, the weight matrix ijA  reflects the relationship between components. Function  iF x  

and  ,i jG x x  can be selected to form eq. (13) for system modeling and obtain the resilience value. As 
an excellent approximation approach, machine learning would be an ideal choice for resilience 
prediction. Among them: combined with activation function and bias,  i if a bx  can be used to 

characterize the dynamic rules of the system reflected by data driven. It is Similar to  iF x  and 

 ,i jG x x  in equation (13), the trained output weight matrix 


  can be used to represent ijA . 

Therefore, regarding the network resilience prediction model, this paper uses the ELM to construct 
the network elasticity prediction model. As a machine learning method that has become popular in 
recent years, the over-limit learning machine is a feedforward, single hidden layer neural network 
model. Compared with other machine learning methods, it has the advantages of high speed and 
generalization ability [17]. Therefore, in this paper, ELM was adopted as the basis for the resilience 
prediction model. 

3.1 The Definition of Prediction Model Based on ELM 

1

d

1

2

i

i+1

L

1

m

x1
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β1
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f(aL,bL,x)

 

Fig. 2. ELM Structure 

As shown in Fig. 2, a typical ELM model, (a, b) is the input weight and bias (threshold) of the 
hidden node, and the training sample set is (x, T) (corresponding to a set of training samples. ) where: 
x represents the training sample's independent variables, that is, it can correspond to various fault-
tolerance models, various resilience-relevant parameters (phyFR, TSFR, etc.), and various network 
design or configuration parameters, such as topology, structure, mobile mode, traffic model, etc. t 
represents the dependent variable, which can correspond to the actual level of network operation, that 
is, the parameter that can represent the network operating capability corresponding to the resilience 
value, such as the success rate of packet transmission, packet loss rate, and delay. The hidden layer 
mapping function (activation function) is denoted as f(x), and in order to ensure that the activation 

function is continuously differentiable, the sigmoid function is selected:   1

1 x
f x

e


. The output 

weight is denoted as β, the number of nodes in the hidden layer is L, and Oi represents the learning 
error of the network. The neural network is expressed as a loss function: 
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   1 2
1

, , , ,
L

T

i i i i i L
i

O f a b t x x x


   x x =                        (14) 

 
Set the output matrix of the hidden layer to H , the expected output to T , then: 
 

 
   

   

1 1 1 1

1 2 1 2 1 2

1 1

, , , , , , , , , , ,                               
L L

L L L

L L L L

f ax b f a x b

a a a b b b x x x

f ax b f a x b

   
 

 
   


     


H

                       (15) 

Therefore, we can obtain: 
 O = H T                                    (16) 

 

among them:  1 2, , ,
T

L      1 2, , ,
T

Lt t tT =  

When the learning error is 0, the learning machine is considered to have the best learning ability, 
then this time: H T  , where H is the known part (input weights, offsets, training sample variables), 
T  is also for the known part (training sample dependent variable). Hence, the process of learning 
with an ELM is the process of obtaining   from H T  . However, usually, the number of hidden 
layer nodes (randomly obtained) is much smaller than the number of training samples. In this case, 

the matrix is singular and irreversible. So, the process translates to finding the least squares value 


  

of the output weights  : 

min


  H T H T                            (17) 

 
Correspondingly, the generalized inverse matrix can be used to solve the inverse matrix of the 

singular matrix. If H  is non-singular, the generalized inverse matrix is equivalent to 1H . If H  
is used to represent the generalized inverse matrix of H , then 



  is calculated as: 


H T  . If H  is 

a Moore-Penrose general inverse of H , then the obtained solution 


  value is the smallest and unique. 
In training progress, the output weight β is continuously optimized through iteration, so the 

learning process of the entire ELM network can be defined as: 
 

   
, ,

1

ˆ ˆˆ ,
L

i i i i i i
a b

i

a b min f a b t





  H T = x                    (18) 

 
It should be noted that ELM have absolute advantages in efficiency over other neural network-

based machine learning algorithms. The reasons are: According to the interpolation theorem and the 
general limit theorem [21] When Neural Network, SLFN(Single-Hidden Layer Feedforward)'s 
hidden layer mapping function satisfies infinitely differentiability, its learning ability is not related to 
the selection of parameters such as input weight and threshold (bias), and is only related to the current 
network structure. Therefore, compared to other methods, the input layer weight a and bias b of ELM 
can be randomly generated from any continuous probability distribution within any interval of the 
space under the premise that the activation function is selected as a continuously-dimensionable 
function. It only requires iterative training of the output layer weights [22]. 

3.2 The Process of Network Resilience Prediction by Using ELM 

Step1. Based on the above definition of the prediction model, the network resilience can be 
predicted by the following method: 

Generate input weights and thresholds randomly for L nodes within the weight range of input 
weights and thresholds (bias):  , , 1,2, ,i ia b i L  , At the same time, a continuously differentiable 
function is selected as an activation function. In addition to the Sigmoid function, the Radial Basis 
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Function (RBF) can be selected as the activation function so that the ELM can avoid overfitting when 
processing high-dimensional data. The hidden layer hybrid activation function that can be selected is: 

 
       , , 1i ix x x                                  (19) 

 

In eq. (15):   1

1 x
x

e
 


                        (20) 

 

   , ,
i

i

x

i ix x e 


 


                            (21) 

 
  represents the ratio of the mixture of the two activation functions,  x  is the Gaussian 

kernel function as the radial basis function, i  is the center of the kernel function, and i  is the 
width of the radial basis function. In this algorithm, in order to facilitate the implementation, the 
matrix of the hidden layer node  _ , _n hidden h features  shape is taken as the value of i . 

Step 2. Calculate the hidden layer output matrix according to the following formula: 
 

 
   

   

1 1 1 1

1 2 1 2 1 2

1 1

, , , , , , , , , , ,                               
L L

L L L

L L L L

f a x b f a x b

a a a b b b x x x

f ax b f a x b

   
 

 
   


     


H                     (22) 

 

Step 3. According to calculating 


H T   , the output weight matrix is obtained. The part that 

can be improved in this step is: the orthogonal projection method can be used to calculate the 
generalized inverse matrix H . The method uses the following matrix characteristics: If TH H  is a 

non-singular matrix, then   1T T H H H H , if THH  is a non-singular matrix, then 

  1T T  H H HH , according to the principle of ridge regression (which can be achieved by losing 

some information and reducing certain accuracy to obtain a more realistic and more reliable 

regression method for the regression coefficient) introduces a positive real number 
1


 on the 

diagonal of TH H , so 


H T   can be converted into: 

1

1

1

1

T

T T











  
 


     

 

TH H H T

H HH T
, corresponding to TH H and 

THH are non-singular matrix. Then the calculating process can be converted to a simple liner 
transformation process. 

So far, the prediction model and approach based on ELM was constructed. Essentially, the 
approach is to find 



  according to training a large number of data samples. Once the optimal value 


 was obtained, network resilience can be predicted for any input and network designing parameters 
based on the trained output weight matrix and activation function. A simple case will be used to verify 
the effectiveness of the method below. 

4. Case Study 

Here we constructed a case to verify the validity of proposed model and method and analyze 
phyFR and TSFR metrics during network resilience evaluation process. 

The case framework is based on a MANET which is applied AODV protocol. With the purpose of 
trying to closer with the real network usage profile, inspired by the simulation designing of R. Jain, 
et.al. [14], in this case, we setup the simulation as Table 1 shown:  
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Based on AODV routing algorithm, the Time-Spatial network will be generated and formed by 
valid routes and OD pair nodes as Fig.3 and Fig.4 shown: 

 

Table 1. Simulation Setup 

Attribute Value 
Map Size 120m*120m~180*180 

Node Scale 1000 
Node Communication Radius 64m 

Time Steps 200 
Movement mode Random Walk 

Node failure mode Random Failure 
Protocol AODV DSR 

             

Fig. 3. Available Node Number = 200        Fig. 4. Available Node Number = 180 

we can obtain the Time-Spatial network topology graph. From observing the generated topology 
graph at different time points, the topology is varying with time increasing, and the network structure 
metrics also changes obviously, here we express the Time-Spatial network’s structure by the metrics 
we mentioned in Section 2.1 as Fig.5 shown: 

 

Fig. 5. Clustering Coefficient and Largest Component Varying in Time Dimensions 

From the simulation result, we can obtain that liner or non-liner relationship existing between 
differeent logical fault-tolerance strategies and resilience value of whole network. So, the machine 
learning approaches can be adopted for predicting the resilience value if the fault tolerance strategies 
are known.:  

Table 2. Simulation Result 

PDR LFT phyFR Failure nodes num
0.546547 0.591592 0.783784 1 
0.55511 0.601202 0.793587 2 
0.561685 0.605817 0.807422 3 
0.558233 0.581325 0.791165 4 
0.552764 0.59598 0.78794 5 

… … … … 
0 0 0 1000 

 
After the training data is obtained from simulation, the model can be trained to obtain a good 

resilience prediction model. The accuracy of the model obtained through training can meet the 
forecast needs: the accuracy of the training set is 97.07%, and the accuracy of the test set in cross-
validation is 96.43%. Figure 6 is the contrast of predicted value (red fold line) of the entire network 
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elasticity through the logical layer fault-tolerance strategy parameters (red dots) and the physical layer 
fault-tolerance strategy parameters (blue dots), and the real  resilience value (golden triangle). From 
the results, we can see that the proposed method has high accuracy in predicting network elasticity 
through fault-tolerant strategies. 

 

Fig 6. The Result Contrast Between Prediction Value and Labeled Real Value 

Based on the prediction model, further, we can try to predict and analyze the resilience level of the 
entire network based on the single fault tolerance strategy, in order to analyze the effect of the single 
fault tolerance mechanism on the resilience of the entire network: 

 

Fig 7. Contrast of Predicting Value According to the Physical Layer Fault Tolerance Strategy 
Parameters and Real Resilience Value 

 

Fig 8. Contrast of Predicting Value According to the Logical Layer Fault Tolerance Strategy 
Parameters and Real Resilience Value 

5. Conclusion 

In this paper, combining the theory of network elasticity and extreme learning machine, the method 
of predicting the network elasticity is proposed. Experimental verification shows: 

1) A fault-tolerant strategy model based on dynamic characteristics of network space-time can 
effectively describe and quantify the fault-tolerance capabilities of fault-tolerance strategies. 

2) The proposed resilience prediction method based on machine learning can accurately predict 
network resilience by using quantify parameters of fault-tolerance strategies, and the accuracy rate 
can reach over 96%. 
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3) Through the preliminary analysis of the experimental results, it can be concluded that network 
resilience is the result of the coupling of multiple fault-tolerance strategies. The mutual influence of 
multiple fault-tolerance strategies also affects the resilience of the entire network. 
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