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Abstract. Aiming at the problem of minimizing the maximum makespan and minimizing the delay 
time of multi-objective permutation flow shop scheduling problem (MOPFSP), a block-based artificial 
chromosome non-dominated sorting genetic algorithm II (NSGA-II) is proposed. The algorithm 
combines the stochastic mechanism and the opposition-based learning mechanism to generate the 
initial solution to balance the diversity and quality of the initial population. An elite population is 
generated through the operation of several generations of NSGA-II, and a location matrix and a 
dependency matrix are established for the elite population by using ant information density. Based 
on the two matrix mining blocks, the blocks and non-blocks are recombined to form artificial 
chromosomes.The algorithm will be tested by Reeves instance and Taillard instance, and compared 
with the results obtained by other algorithms to verify the effectiveness of the algorithm. 

Keywords: permutation flow shop scheduling problem; multi-objective optimization; NSGA-II; 
artificial chromosome. 

1. Introduction and Literature Review 

The permutation flow-shop scheduling problem (PFSP) is a combinatorial problem that has drawn 
much attention. it is of practical value to study Multi-objective Permutation Flow-shop Scheduling 
Problem (MOPFSP). Many scholars at home and abroad have studied MOPFSP. Huang Xia et al 
(2017a) proposed an improved chaos weed optimization algorithm. This algorithm uses gray entropy 
weighting relevance entropy assignment method and fast non-dominated sorting method to solve the 
MOPFSP with the goal of minimizing the maximum completion time, the total flow time and the total 
delay time. Deng et al. (2017d) proposed a competitive memetic algorithm (CMA) to solve MOPFSP. 
CMA uses two populations with different objectives, designs some operators for each object for each 
population and designs a special interaction mechanism between two populations. In addition, a 
competition mechanism is proposed to adjust adaptively the selectivity of operators, and a 
knowledge-based local search operator is developed to improve the searching ability of CMA. Rifai 
et al. (2016a) proposed a new multi-objective adaptive large-neighborhood search algorithm based 
on Pareto frontier to solve MOPFSP for minimizing the completion time, total cost and average delay. 

Chang et al. (2013b) proposed a block-based artificial chromosome genetic algorithm (p-ACGA) 
to solve the single goal of minimizing the maximum completion time in the permutation flowshop 
scheduling problem. The algorithm combines ant colony algorithm and genetic algorithm to produce 
elite population through crossover and mutation of simple genetic algorithm, and uses the pheromone 
concentration of ant colony algorithm to analyze the relationship between the workpieces. The 
statistical information is used to establish the pheromone-dependent matrix and to mine the blocks 
according to the matrix. The artificial chromosomes are formed by block and non-block 
recombination.In this paper, the algorithm is improved, and a fast non-dominated genetic algorithm 
based on block (p-ACNSGA-II) is proposed to solve the multi-objective permutation flowshop 
scheduling problem. When initializing, the random mechanism and opposition-based learning 
mechanism are combined to improve the quality of the initial solution. The NSGA-II for solving 
multi-objective problems is improved. The non-dominated solution set is constructed by fast sorting 
to improve the running speed. The distribution function is introduced into elite retention strategy to 
improve the uniformity of solution. Further considering the relationship between the workpiece and 
the position of the solution sequence, ie.,the distribution of pheromone concentration on the nodes, 
which speeds up the evolution of the algorithm. Finally, the introduction of chromosome 
recombination mechanism to improve the quality of solution. 
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2. Multi-Objective Permutation Flow Shop Scheduling Problem  

2.1 Multi-Objective Optimization Problem Description 

Taking the objective function minimization as an example, the mathematical model (adopted from 
Gao et al. 2012a) is described as following: 
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Where x is the decision vector, including n decision variables ),,,( 21 nxxx  ; y is the target vector, 

which consists of k objective functions ),,,( 21 nyyy  ; X is the decision space formed by x .Y is the 
target space formed by y . 

2.2 Permutation Flow Shop Scheduling Problem 

The PFSP production scheduling problem can be described as: n jobs are processed on m machines 
in the same order, with the same order of work on each machine. At the same time, there are some 
important conditions for this problem: 

1). the operation is independent and can start at zero time;  
2). a maximum of one job can be machined at the same time per machine;  
3). each job can be processed on only one machine at a time. 
Let ),( jiP denotes the processing time of workpiece i on machine j, ( n321  ，，，，  ) denotes the 

workpiece sequence, and ),( jC i  means the makespan. Equations are as follows: 
 

)1,()1,( 11  pC                                         (2) 

 
)1,()1,()1,( 1 iii pCC    , for ni ,,2                             (3) 

 
),()1,(),( 111 jpjCjC   , for mj ,,2                           (4) 
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The completion time of the last job in the sequence on the last machine: 
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Total flow time: 
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3. Block-Based Artificial Chromosome Rapid Non-Dominated Sorting Genetic 
Algorithm Ⅱ 

This section includes population initialization, construction of artificial chromosomes, 
chromosomal recombination and retention of dominant solutions. P-ACNSGA-II flow chart shown 
in Fig. 1. 
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Fig. 1 p-ACNSGA-II flow chart 

3.1 Population Initialization 

3.1.1 Application Improved the Opposition-Based Learning Population Initialization  

The main idea of opposition-based learning (OBL) (adopted from Lin et al. 2016b) is to consider 
its opposite sequence simultaneously to obtain the optimal solution in the current candidate solution. 
Let ),,( 21 nxxxX ， be a solution in an N-dimensional space, where Rxi  and  iii ulx , , il and iu are 

the upper and lower bounds of the search space,  ni ,,2,1  , then its oppositional solution is
 nxxxX  ,,, 21 , where iiii xulx  . OBL optimization process is as follows: 

Step 1: Generate an initial solution ),,( 21 nxxxX ， in the n-dimensional search space and its 
opposition-based solution  nxxxX  ,,, 21 . 

Step 2: Evaluate the fitness of two solutions. Find the fitness )(xf  of the initial solution and the 
fitness )(xf  of the opposition-based solution. 

Step 3: If )()( xfxf  replaces x with x ; otherwise, continue using x . 
Get better results by evaluating both solutions simultaneously. 
In this study, the opposition-based learning method is improved to reduce the loss of good solution. 

The specific process is first to generate an initial solution of N (N is a given initial population size) 
by random method and find its opposition-based solution for each initial solution; and then the two 
solutions are mixed together to form a scale of 2N Population, calculate the fitness of each solution, 
and the solution according to the size of the fitness in descending order; the last choice of the top N 
adaptive fitness evolution of the initial population. 

3.2 Improved Non-Dominance Sorting Genetic Algorithm Ⅱ 

The algorithm measures the crowding degree of individuals by calculating the crowding distance 
so that the boundary non-dominated solution can be effectively preserved. This study improves on 
the two aspects of non-dominated sorting process and elite retention strategy respectively. 

3.2.1 Elite Retention Strategy 

NSGA-II classifies the population by non-dominated sorting to form a non-dominated hierarchical 
surface },,{ 21 iFFFF  , which is ranked in ascending order to select excellent populations as 
offspring. However, the traditional NSGA-II does not limit the number of individuals in each level, 
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which will lead to the majority of non-dominated solutions in the same level, and thus far away from 
the real Pareto optimal surface. For the reason, this study will refer to the distribution function (As in 
Equation (8)) (adopted from Gao,2012a). Each layer of Pareto surface by adding the right amount of 
non-elite solution or reduce the amount of elite solution to ensure the diversity of populations. 

 

iii rFn                                         (8) 

 

Where i represents the serial number of Pareto surface; in represents the number of individuals 

selected on the Pareto surface iF , iF represents the total number of individuals on the Pareto surface

iF , ir represents a coefficient on the i th Pareto surface, and 01  ir . 
The process is as follows: 
Step 1: Combine the parent ( tP ) and the offspring ( tQ ), each having a population size of N , to form 

a population tR and its size is N2 ; 
Step 2: Non-dominated sorting of population tR to form Pareto grade surface, },,{ 21 iFFFF  ; 

Step 3: According to the Equation (8), calculating in ,adding the first in individuals in iF to 1tP .If 

ii nnN  1 , calculate the crowding distance of individuals not selected Pareto surfaces, and select 
the individuals with larger crowding distances to put in 1tP until the number of individuals in 1tP

equals N . 

3.3 A Block Mining and Artificial Chromosome Generation Approach 

3.3.1 Mining Block 

In genetic algorithms, most chromosomes of progenies that have been iterated for several 
generations carry better information, which has similarities and these similarities have certain 
reliability in large-scale populations (adopted from Chang et al. 2013c). In p-ACNSGA-II, the ACO 
pheromone concentration is used to identify better similar sequences in the chromosome and to excise 
them by means of blocks. 

(1). Establish the pheromone matrix 
In this study, we use the dependent pheromone matrix and the position-pheromone matrix to record 

the path information of ants. The pheromone matrix records the pheromone concentration at each 
node. The dependent pheromone matrix records the pheromone concentration of the path between 
two nodes . 

Step 1: Initialize the pheromone matrix: 
For each turn of the genetic algorithm, the (n-1)th generation is descended according to its fitness, 

and an optimal chromosome is selected for matrix initialization. Fig. 2 shows the initial dependent 
pheromone matrix generation process. The initial pheromone between two workpieces is expressed 
as (9).  

L

1
0  ( L represents makespan)                           (9) 
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Fig.2 Initial Dependent Pheromone Matrix 

Step 2: Update pheromone matrix: 
The first 30% of the chromosomes were selected to update the pheromone matrix in the ranked (n-

1) generation. Fig.3 shows the updating process of the dependent pheromone matrix. The updating 
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formula is as shown in Equation(10). ij represents the pheromone concentration of each pair of 

workpieces ( ji, ), )1( tij represents the updated ij ,  represents the evaporation rate of pheromone 
(adopted from Dorigo et al. 1997). 
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Similarly, the updated position pheromone matrix is shown in Fig. 4.  
 

 
Fig. 4 Updated Location Pheromone Matrix 

 
(2). Building the block 
First determine the minimum length of the block, and then randomly select the starting position, 

and then select the process for the starting position. Within the minimum block length, the process at 
the start position is selected based on the information in the position pheromone matrix. Processes at 
other locations use the combined information of the location and the dependent pheromone matrix. 
The process is screened by the roulette algorithm (RWS). The equation of position probability matrix 
is as Equation (11), the Equation of dependent probability matrix is as Equation (12) and the Equation 
of combined probability as Equation (13). In Fig.5, assuming that P'11> P'21> P'31> ...> P'i1, the 
workpiece J1 is selected to be placed in the position S1. In Fig.6, it is assumed that CP2 is the largest 
and J2 is selected as the position S2. Choosing randomly when two larger values appear. 
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i represents the part number. j represents the last part number connected to i . m represents the 

position of the gene on the artificial chromosome. n represents the length of the artificial chromosome.
N represents the population size. '

miP represents the probability of the position of the workpiece i and 

the position m in the position matrix. ijP represents the probability that the workpiece j is connected to 

the workpiece i in the dependent matrix. iCP represents the combined probability of the workpiece i . 
'W andW respectively represent the weight values of the position matrix and the dependent matrix. As 
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the evolutionary algebra increases, the weight of the dependent matrix decreases from 0.7 to 0.3, and 
the position matrix instead (adopted from Pei et al. 2017k). 
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Fig. 5 Starting Position Process Selection 
 

For the process selection of the position outside the minimum length, a minimum combined 
probability threshold [adopted from Pei et al.2017l] is set as the screening condition, as shown in 
Figure 7. When the block contains more parts, the lower the overall probability, the greater the 
probability of the combination of errors, the block threshold will ensure the quality of the block. 
Mined blocks are stored in the block database. 
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Fig.6 Block Minimum Length of other Parts of the Workpiece Selection 
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Fig.7 Block outside the Minimum Length of the Workpiece Selection 
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(3). Block competition 
Block competition (adopted from Zhang et al.2017m) is to compare the process and position of 

the blocks in the block database. If there are repeated processes between the blocks or the covered 
positions overlap, the repeated blocks are compared by the average probability.Those with a higher 
average probability are retained in the block repository, while the smaller ones are deleted.The 
average probability calculation method of the block is as shown in Equation (14). 
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i represents the block number. l represents the l th position of the block. n represents the length of 

the block. iBl represents the i th workpiece of the i th block. i
lB

CP represents the merge of the l th 
workpiece of the i th block Probability. 

3.3.2 Combination of Chromosomes 

This study uses the blocks reserved in the block database to combine the best chromosomes to 
improve the solution quality and convergence speed of the algorithm. All blocks in the block database 
are copied to a corresponding position on the blank chromosome of a certain length. The rest of the 
procedure was selected using the RWS method at the empty position in the chromosome. 

3.4 Preserving the Dominant Solution 

The (n-1)th generation i and the generated artificial chromosome Ci are put in the selection pool, 
and the excellent chromosomes are selected as the offspring to enter the next round of evolution using 
the binary competition method (adopted from Chang et al.2014a).The specific process is as follows: 
We randomly select two chromosomes from the selection pool, Compare the degree of fitness, select 
the chromosome with higher fitness to put into the chromosome library, and put the chromosome 
with less fitness into the selection pool to continue the screening. The above steps are repeated until 
the number of chromosomes in the chromosome bank satisfies the set population size. 

4. Experimental Results 

The algorithm proposed in this article is written in C++ language. The operating environment of 
the program is a computer with Intel (R) Core (TM) i5-4005U CPU @ 3.40GHz and memory of 4.0G. 
To test the performance of the p-ACNSGA-II algorithm, two series of Taillard and Reeve examples 
were chosen for testing, and the test results were compared with the well-known NSGA-II algorithm. 
In order to make the test results comparability, the two algorithms have the same parameter values in 
the same category of parameters, the population size is 100 and the execution algebra is 200. 
Experiments of Anurag et al.(2014b) showing, NSGA-II can achieve better results when the crossover 
rate is 0.70 and the mutation rate is 0.10. The same crossover rate and mutation rate are used in this 
study. 

Tab.1 shows results of p-ACNSGA-II and NSGA-II about the Reeve instances and Tab.2 shows 
results of p-ACNSGA-II and NSGA-II about the Taillard instances. n * m means that there are n jobs 
and m machines. It can be seen from tables that for both Reeve instances and Taillard instances, 
NSGA-II is superior to p-ACNSGA-II in makespan for individual instances, but for most of the two 
goals of makespan and total flow time p-ACNSGA-II has better test results than NSGA-II in both 
makespan and total flow time. It is verified that the p-ACNSGA-II algorithm performs better than the 
NSGA II algorithm. 
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Table. 1 Comparison of Reeve Instance Test Results(a) 
REC01(20*5) REC37(75*20) 

p-ACNSGA-II NSGA-II p-ACNSGA-II NSGA-II 

Makespan Total flowtime Makespan Total flowtime Makespan Total flowtime Makespan Total flowtime

1268 16871 1283 16680 5535 266753 5551 271868 
1271 16487 1292 16564 5537 266582 5558 265682 
1272 16356 1293 16282 5540 266007 5559 264709 
1273 16197 1296 16097 5545 265056 5586 264551 
1285 16142 1307 16019 5551 261239 5597 264101 
1303 15825 1317 15967 5563 260244 5605 264002 
1382 15470 1334 15826 5578 259640 5608 263909 
1401 15418 1363 15796 5581 259578 5623 262776 
1406 15413 1365 15682 5596 259263 5644 261926 
1415 15382 1377 15516 5601 259118 5646 261928 

 

Table. 2 Comparison of Taillard Instance Test Results (a) 
TA010(20*5) TA070(100*5) 

p-ACNSGA-II NSGA-II p-ACNSGA-II NSGA-II 

Makespan Total flowtime Makespan Total flowtime Makespan Total flowtime Makespan Total flowtime

1140 14185 1165 14236 5387 283970 5402 285737 
1145 14088 1169 14123 5395 283920 5403 285365 
1155 13910 1170 14071 5396 283811 5411 285094 
1158 13844 1171 13934 5399 283642 5413 284996 

1161 13488 1178 13920 5412 283422 5416 284534 

1163 13470 1180 13846 5420 283113 5437 284389 
1167 13465 1182 13840 5434 282424 5486 282812 
1190 13463 1207 13801 5442 281795 5490 282716 
1196 13453 1211 13699 5458 281564 5526 282703 

- - 1214 13570 5466 281362 5531 282564 

 
Fig.8 and Fig.9 show the Pareto optimal frontier comparison of p-ACNSGA-II and NSGA-II. It 

can be seen from the figure that p-ACNSGA-II has better convergence than NSGA-II for all Taillard 
instances and Reeve instances, indicating that p-ACNSGA-II has more search space than NSGA-II. 

   

(a)                              (b) 
Fig.8 Pareto Optimal Frontier for Reeve Series Instances 
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(a)                            (b) 
Fig. 9 Pareto Optimal Frontier for Taillard Series Instances 

 
Tab. 3 shows the average computational time for each operation in each instance of the table, and 

Fig. 10 shows the computational time line chart. As can be seen from the table and the figure, although 
both p-ACNSGA-II and NSGA-II use the same non-dominated sorting technique, p-ACNSGA-II 
took less time than NSGA-II in almost all cases, indicating the validity of the block. 

 
Table.3 Comparison of Average Calculation Time 

Instance Number jobs(n) and machines(m) (n × m) 
Average computational time (sec) 

p-ACNSGA-II NSGA-II 

Rec01 20*5 29.8 30.2 
Rec07 20*10 31.3 33.3 
Rec13 20*15 34.7 36.4 
Rec19 30*10 33.5 35.8 
Rec25 30*15 38.9 40.2 
Rec31 50*10 39.1 40.8 
Rec37 75*20 55.2 56.5 
TA010 20*5 33.3 34.7 
TA020 20*10 33.6 34.3 
TA030 20*20 34.5 35.7 
TA040 50*5 35.9 37.4 
TA050 50*10 40.8 41.9 
TA060 50*20 45.3 46.7 
TA070 100*5 49.6 52.6 

 

 
(a)                               (b) 

Fig.10 Linear Comparison of Calculation Time  

5. Conclusion 

In order to minimize the maximum makespan and total flow time of the permutation flow shop, a 
block-based artificial chromosome non-dominated sorting genetic algorithm (p-ACNSGA-Ⅱ) is 
proposed. p-ACNSGA-II combines genetic algorithm with ant colony algorithm, improving the speed 
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of evolution and reconciliation. The test results are compared with NSGA-II by testing Reeve and 
Taillard benchmark examples. From the comparison results, it can be seen that p-ACNSGA-Ⅱ has 
better solving performance and better Pareto optimal frontier, Shorter than NSGA-II. It can be seen 
that p-ACNSGA-Ⅱ  has better performance in solving multi-objective permutation flow shop 
scheduling problem. Future research can solve other multi-objective combinatorial problems such as 
traveling salesman problem and vehicle routing problem by further improving the algorithm. 
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