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Abstract. In order to carry out similarity retrieval in mass information accurately and efficiently, this 
paper proposes a similarity retrieval algorithm based on multilevel fingerprint comparison matrix. For 
mass text information, firstly, using the Simhash algorithm to generate multilevel fingerprints; 
secondly, selecting the similar texts, and constructing a comparison matrix; then, the similarity 
between texts is accurately marked by using the comparison matrix; Finally, the real data of a 
company is applied to verify the accuracy and efficiency of the proposed algorithm. 
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1. Related Research 

Zhang Guangqing and his colleagues used the Simhash fingerprint method to generate binary 
fingerprints for documents, and proposed an optimization method for rapid search of massive similar 
documents with Hamming distance expression similarity [1]. Feng Gaolei and his colleagues 
proposed an algorithm that integrates the calculation of semantic similarity into the text similarity 
algorithm based on vector space model, and finally obtains the result of text similarity by semantic 
similarity and vector space model similarity [2]. Qi Feilong and his colleagues used the sentence 
center word as the benchmark to calibrate the relative position of the words and calculate the relative 
position offset of the word combination, and integrated the sentence length difference information, 
shallow hierarchical structure information and semantic information to calculate the sentence 
similarity [3].According to the requirement of Chinese text duplication checking, Lee Chan-long and 
his colleagues transformed the target text and duplicate samples into a participle matrix model by 
using the result of word segmentation, and proposed a duplicate checking algorithm [4]. Based on the 
vector space model and the matter-based knowledge representation model, Zhao Shijie and his 
colleagues proposed a similarity algorithm for the knowledge representation model of science and 
technology projects [5]. 

Through similar research on similar search algorithms, similar search can be divided into three 
steps: (1) text preprocessing; (2) feature extraction; (3) model construction and similarity 
discrimination [6]. Text preprocessing refers to the processing of text in a specified format such as 
word segmentation, clauses, and removal of stop words. Feature extraction is to extract the feature 
vector that can represent the full text from the pre-processed text, usually composed of feature words 
and weights. Common feature extraction methods include naive Bayes classifier, decision tree 
classifier and TF-IDF algorithm. Model construction establishes a model describing the content of 
the text through the feature vector. The model represents the method of discriminating the similarity. 
Usually, the TF-IDF algorithm is used to extract the feature words and weights with larger weights 
to form the space vector, and then the vector is similar by using the cosine of the angle. Degree [7]. 
Due to the lack of semantic representation in SVM, the similarity is calculated by combining keyword 
statistics and semantic network knowledge. The semantic distance is calculated by the method based 
on CNKI [8]. 

Based on many studies, this paper proposes a similar retrieval algorithm based on multilevel 
fingerprint matching matrix. The algorithm generates multilevel fingerprints by Simhash algorithm, 
then constructs the comparison matrix model by clause clauses and adds semantic relations to 
calculate the similarity. The algorithm improves the accuracy based on the traditional TF-IDF space 
vector and adds multi-stroke parallel computing to increase efficiency. 
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2. Main Ideas of the Algorithm 

This paper proposes a similarity retrieval method based on multilevel fingerprints. The method 
includes: preprocessing the text to form a unified format; encoding the unified format text using 
simhash algorithm to form 64-bit binary multilevel fingerprint eigenvalues; The Hamming distance 
between the eigenvalue of the original text and the eigenvalue of the comparison text is selected, and 
the text whose Hamming distance is less than the threshold 3 is selected for secondary calculation; 
the original text and the comparative text are segmented and the comparison matrix is constructed, 
and the calculation is performed. Text similarity and similar content and mark the output; optimize 
the text similarity and similarity content calculation method, the optimization method starts multi-
threading and uses parallel computing. The algorithm studied in this paper needs three theoretical 
foundations to better understand: (1) Simhash algorithm and Simhash query optimization; (2) The 
longest common subsequence algorithm; (3) The similarity calculation rule. 

2.1 Simhash Algorithm and Simhash Query Optimization.  

In this algorithm, Simhash is used to convert text into 64-bit multilevel fingerprints, that is, binary 
0 and 1 are used to form an n-bit signature, so that the text becomes a series of numbers. After 
comparing the Hamming distance to calculate the text similarity, the Hamming distance is obtained: 
when XOR is used, the result is 1 only when the two compared bits are different, otherwise the result 
is 0, and the two binary "exclusive OR" are obtained. The number of 1 is the size of the Hamming 
distance. For 64-bit Simhash, the Hamming distance is less than 3 to determine that the two articles 
are similar. 

The method of calculating the Hamming distance is simple, but it is unrealistic to perform XOR 
one by one when the amount of data is too large. For example, for a combination of all the three bits 
of the 64-bit Simhash value to be queried, you need to allocate 41,664 times of storage space [9]. In 
order to solve this problem, 64-bit Simhash is split and stored. This method is based on the drawer 
principle. If the Hamming distance of two Simhash values is within 3, they are divided into m (m ≤ 
64) blocks, and there must be l-3 blocks are equal. In order to improve the retrieval efficiency and 
consider the space overhead, this paper sets m=8, and divides each Simhash value into 8 blocks, such 
as the first block stores 0-7 bits, the second block stores 8-15 bits, and the third block. Blocks store 
16-23 bits and so on. When searching for other Simhash values whose Hamming distance is within 3 
according to a Simhash, the Simhash is divided into 8 blocks, each block is searched for a similar 
block at the corresponding position, and the Simhash set corresponding to the similar block is taken, 
and at least 5 blocks are selected. The Simhash values that appear in the corresponding collection, 
and then calculate the Hamming distance one by one. If Simhash is evenly distributed, this method 
reduces the number of Hamming distance calculations to the total of 0.375. 

2.2  Longest Common Subsequence Algorithm. 

The longest common subsequence can describe the "similarity" between two paragraphs of text, 
that is, their degree of similarity, which can be used to discern plagiarism. After modifying a 
paragraph of text, the longest common subsequence of the text before and after the change is 
calculated, and the part other than the subsequence is extracted. This method is often very accurate 
in judging the modified part [10]. 

The longest common subsequence (LCS) is a problem in which a sequence set (usually two 
sequences) is used to find the longest subsequence of all sequences. A sequence of numbers, if they 
are subsequences of two or more known series, and is the longest of all sequences that meet this 
condition, is called the longest common subsequence of the known sequence [11]. 

The solution of the longest common subsequence is as follows: for example, X=<x1, x2, x3,...,xm> 
and Y=<y1,y2,y3,...,yn>,the two string sums are used. The LCS solution is to record the length of the 
LCS with a two-dimensional array like c[i][j], and then the state transition equation can be obtained: 
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Finding the longest common subsequence of the two strings X and Y can be derived recursively 
in the following way, if xm=yn, finding the longest common subsequence of Xm-1 and Yn-1 and then 
adding xm to the end of it. One of the longest common subsequences of X and Y. If xm≠yn, the two 
sub-problems must be solved, namely finding one of the longest common subsequences of Xm-1 and 
Y and one of the longest common subsequences of X and Yn-1. The longer of the two common 
subsequences is one of the longest common subsequences of X and Y. 

2.3 Similarity Calculation Rules.  

The determination of the similarity calculation rule determines the accuracy of the final output 
comparison text result. This section explains the following: This article can be used to represent a 
piece of text D as follows: 

},...,3,2,1|{},...,,,{ 321 nkdddddD kn                       (2) 

Where dk is an element in text D, representing a sentence segmented according to punctuation, n 
is the number of sentences after the clause, Len(D) represents the length of the current text, and Len(dk) 
represents the sentence dk in the text. The length of D(k) represents the kth sentence. Define the set 
of clauses of D as follows: 

inIniiDddddIiD Iiiii   ,,1},...,,,{),( 21            (3) 

Where I represents the length of the clause, when there are two texts D1 and D2, and D1(i,I)D1, 
D2(i,I)D2. D1(i,I) is found from D1, and D2(i,I) is found from D2, which is a collection of similar 
sentences in the two texts. Then for the text D1, its similarity compared with the text D2 is: 
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In the formula, Len(D1(i,I)) is the sum of the words in all similar sentences of the texts D1 and D2, 
that is: 
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3. Algorithm Implementation 

3.1 Feature Extraction and Simhash Query.  

First, through the program identification, the text in Word, PDF and Html format is cleaned and 
the valuable text is extracted to form a unified format text. Then the text is generated by the Simhash 
algorithm to generate 64-bit binary eigenvalue fingerprint for quick retrieval of similar text. 

The Simhash algorithm is divided into five steps [12]: 
(1) Participle, segmentation is performed for a given sentence to obtain a feature vector, and five 

levels of weights are set for each feature vector. For example, given a sentence: the first Digital China 
Conference was held in Beijing. The word segmentation and weighting each feature vector: the first 
(4) digital China (5) conference (3) is held (1) in Beijing (4). The number in parentheses represents 
the importance of the word in this sentence, and the larger the number, the more important it is. 

(2) Hash, the hash value of each vector, and the hash value is an n-bit signature consisting of a 
binary number 01. For example, the first hash value is 100101, and the digital China hash value is 
101011. In this way, the string becomes a series of numbers. 

(3) Weighting, weighting all feature values based on the hash value, that is w=hash*weight, 
encountering 1 multiplied by a positive weight value, and encountering 0 times the negative weight 
value. For example, the weight is given to the first is w1=100101*4=4-4-4+4-4+4, the weight is given 
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to the digital China is w2=101011*5=5-5+5-5+5+5, and the other feature vector weighting methods 
are the same. 

(4) Combining, the above-mentioned feature vector weighting result becomes a sequence, for 
example, the weighted result of the first two words is 9-9+1-1+1+9. 

(5) Dimensionality reduction, if the result of the accumulation is greater than 0, it is recorded as 1. 
Else if it is less than 0, it is recorded as 0. For example, the result of the reduction is 101011. The 
hash value of this example is 6 bits. In the Simhash calculation, each feature vector is formed with a 
64-bit hash value to make the final result more accurate. 

The Simhash algorithm specifies that Hamming distance is less than or equal to 3, and is judged 
to be similar. To make the query more efficient, divide the 64-bit hash value into 8 blocks. To query 
the sql statement each time, only at least 5 parts of the same hash value need to be queried, and Select 
one of the different 1 to 3 blocks to calculate the Hamming distance. 

The similar text is found by querying the Simhash value whose Hamming distance is less than 3, 
and the comparison matrix is constructed by the original text and the similar text. 

3.2 Construction of the Comparison Matrix Model .   

The construction of the comparison matrix model is the core of the algorithm. The flow chart of 
the similarity retrieval algorithm based on the multilevel fingerprint comparison matrix is as follows: 

 

Fig.1 Flow chart of similarity retrieval method based on multilevel fingerprint 
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(1) Text granularity 
The two texts are constructed to match the matrix. The text granularity is first refined, and the text 

is refined into statement granularity by punctuation. The comparison text and the compared text be: 
},...,2,1|{},...,,,{ 3211 nkdddddD kn  and },...,2,1|{},...,,,{ 3212 mkdddddD km   

(2) Building a comparison matrix 
D1 and D2 construct the comparison matrix P as: 
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pnm calculates the similarity between the original text dn and the comparison text d'm. The formula 
is: 
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LCS (dn,d'm) is the number calculated using the longest common subsequence algorithm in dn and 

d'm. Num(dn) is the number of words in statement dn, Num(d'm) is the number of words in statement 
d'm, this number can be used to account for the ratio of the original sentence to the comparison 
statement. And taking the smaller ratio as the final result of pnm. 

(3) Setting the threshold similarWeight and constructing an adjacency matrix 
The threshold value ranges from 0 to 1, and can be adjusted manually to cope with different 

requirements of different items for accuracy. All values in the comparison matrix P are compared 
with a threshold similarWeight, and greater than the threshold is set to 1, less than the threshold. Set 
to 0 to construct an adjacency matrix Q of n rows and m columns, for example: 
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(4) Finding similarities through adjacency matrix 
Setting a threshold rightWeight, the threshold rightWeight is between 0-1 and greater than 

similarWeight. Checking the pnm value of the adjacency matrix marker. Parts that are greater than the 
threshold are directly labeled as similar. and recording the position of similar sentences in two pairs 
of texts. 

For parts smaller than the threshold rightWeight, finding the corresponding sentences through the 
position of the row and column and performing the word segmentation, the adding the thesaurus to 
perform semantic judgment. The judgment formula is as follows: 
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rightWord(dn,d'm) indicates the number of words in the same word after word segmentation. 
similarWorddn(dn,d'm) indicates the number of similar words in the sentence dn of the original text D1. 
wnm denotes the smaller proportion of similar text in the original text statement and comparing text 
statement after segmentation and adding the similar word library. When wnm is greater than or equal 
to threshold rightWeight, it is labeled as similar. Counting all the labeled similar statements when the 
computation is completed, and using formula similar(D1D2) to find out the similarity of two texts. 

(5) Efficiency optimization of comparison matrix model algorithm 
When constructing the alignment matrix, we need to calculate the similarity of all the statements 

in the articles, that is, we need to calculate n*m times, and it will increase the operation time when 
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the length of the articles increases. However, when the thread is opened too much, the thread 
scheduling time will be too long to achieve the desired effect. After a large number of text tests, text 
comparison in the total number of words in each interval, selecting the optimal number of threads in 
each interval. Because of the different number of threads, it is necessary to segment the alignment 
matrix so that the original alignment matrix can be converted into a relatively small alignment matrix 
for parallel computation. 

The conversion method is as follows: 
The algorithm achieves the effect of limiting the number of threads by limiting the number of 

single-order comparison statements. If the number of single-order comparison statements is t, the 
calculation formula for the number of open threads v is: 

)(*)(
t

m
Ceil

t

n
Ceilv                                (10) 

The Ceil function is the integral function. As long as there are decimal places, add 1. 
Comparison matrix segmentation method is: 
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In order to make full use of the space and time resources and improve the efficiency, all matrices 
in p' are added to the thread parallel computing at the same time. 

4. Experimental Results and Analysis 

Ten texts ranging from 500 words to 10,000 words were selected for the experiment. The 
experiment mainly focused on the accuracy and efficiency of the algorithm. In this paper, data 
pretreatment and feature extraction are carried out in 10 texts. Then generating 64-bit multilevel 
fingerprints. Data pre-processing results are shown in Figure 2. Generating Simhash fingerprints as 
shown in Figure 3. 

 

Fig. 2 Data pre-processing results 
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Fig. 3 64-bit Simhash multilevel fingerprints 

The Simhash values of 10 texts is put into massive data to retrieve and find out 3 texts whose 
Hamming distance is less than or equal to 3. 

4.1 Algorithm Accuracy Experiment.  

The number of comparison statements is 10. The threshold similarweight is 0.6 and the threshold 
rightWeight is 0.8. The experimental texts are compared with the real similar texts. The results are 
shown in Table 1. 

Table 1. Statistical results of similar texts 

Test text volume Experimental similar text True similar amount of text
561 78 78 
1129 112 128 
2358 175 175 
3136 286 309 
4623 271 271 
5716 241 264 
7086 407 438 
7897 329 329 
8865 498 538 
10849 594 659 

 
According to the statistical results of similar text, we can see that the experimental similar text is 

basically close to the real similar text, with the increase of similar text detection may cause errors. 
According to the actual observation, under the condition of controlling the number of comparison 
sentences and the threshold value, the deviation of text similarity detection mainly depends on the 
perfection of the synonym lexicon. The more perfect the synonyms, the smaller the error of similarity 
detection. 

4.2 Algorithm Running Efficiency Experiment.  

In this paper, by controlling the number of text words and the comparison threshold, the number 
of comparison statements t (that is, changing the number of threads) is changed to compare the 
operational efficiency horizontally; By controlling the comparison threshold and the number of 
statements t, the number of words is changed to compare the operational efficiency longitudinally. 
The comparison results are shown in the following figure: 
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Fig. 4 Similarity comparison results 

In Figure 4, abscissa denotes the number of threads opened, Left-hand label indicates the time (in 
seconds) of similarity comparison, and broken lines indicate the result of similarity comparison 
between different text quantities. From the results of similarity comparison, it can be seen that the 
time used for comparison and the number of threads opened are basically parabolic, so the best thread 
interval (that is, the shortest thread interval) for similarity comparison of current text can be 
determined according to the number of words in the text. When controlling other variables to change 
the number of words, the time of similarity comparison is proportional to the number of words in the 
text. 

5. Conclusion 

In this paper, a similarity retrieval algorithm based on multilevel fingerprint comparison matrix is 
proposed. Firstly, the text eigenvalues are extracted and the similar text is retrieved by Simhash 
algorithm. Then the comparison matrix is constructed to compare the similar texts and the final result 
is obtained. The algorithm is applied to the actual similarity detection. The accuracy and efficiency 
of similarity comparison are verified by experiments: (1) The accuracy of similarity retrieval depends 
on the determination of threshold and the perfection of similarity lexicon. (2) The efficiency of the 
algorithm is related to the number of rows and columns of the comparison matrix (i.e. the number of 
threads) and the number of words in the comparison text. When determining the range of text, the 
optimal number of threads can be derived to improve the efficiency of similarity comparison. 
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