

Similarity Retrieval Algorithm based on Multilevel Fingerprint
Comparison Matrix

Qiang Lv1, a, Feihu Duan1, a, Yanchao Wu2, b and Jiaxing He2, b
1CNKI, Beijing 100089, China;

2School of Science and Technology of Hebei University, Shijiazhuang 050000, China.
a595215839@qq.com, blvqiangqeen@163.com

Abstract. In order to carry out similarity retrieval in mass information accurately and efficiently, this
paper proposes a similarity retrieval algorithm based on multilevel fingerprint comparison matrix. For
mass text information, firstly, using the Simhash algorithm to generate multilevel fingerprints;
secondly, selecting the similar texts, and constructing a comparison matrix; then, the similarity
between texts is accurately marked by using the comparison matrix; Finally, the real data of a
company is applied to verify the accuracy and efficiency of the proposed algorithm.

Keywords: Simhash algorithm, multilevel fingerprint, comparison matrix.

1. Related Research

Zhang Guangqing and his colleagues used the Simhash fingerprint method to generate binary
fingerprints for documents, and proposed an optimization method for rapid search of massive similar
documents with Hamming distance expression similarity [1]. Feng Gaolei and his colleagues
proposed an algorithm that integrates the calculation of semantic similarity into the text similarity
algorithm based on vector space model, and finally obtains the result of text similarity by semantic
similarity and vector space model similarity [2]. Qi Feilong and his colleagues used the sentence
center word as the benchmark to calibrate the relative position of the words and calculate the relative
position offset of the word combination, and integrated the sentence length difference information,
shallow hierarchical structure information and semantic information to calculate the sentence
similarity [3].According to the requirement of Chinese text duplication checking, Lee Chan-long and
his colleagues transformed the target text and duplicate samples into a participle matrix model by
using the result of word segmentation, and proposed a duplicate checking algorithm [4]. Based on the
vector space model and the matter-based knowledge representation model, Zhao Shijie and his
colleagues proposed a similarity algorithm for the knowledge representation model of science and
technology projects [5].

Through similar research on similar search algorithms, similar search can be divided into three
steps: (1) text preprocessing; (2) feature extraction; (3) model construction and similarity
discrimination [6]. Text preprocessing refers to the processing of text in a specified format such as
word segmentation, clauses, and removal of stop words. Feature extraction is to extract the feature
vector that can represent the full text from the pre-processed text, usually composed of feature words
and weights. Common feature extraction methods include naive Bayes classifier, decision tree
classifier and TF-IDF algorithm. Model construction establishes a model describing the content of
the text through the feature vector. The model represents the method of discriminating the similarity.
Usually, the TF-IDF algorithm is used to extract the feature words and weights with larger weights
to form the space vector, and then the vector is similar by using the cosine of the angle. Degree [7].
Due to the lack of semantic representation in SVM, the similarity is calculated by combining keyword
statistics and semantic network knowledge. The semantic distance is calculated by the method based
on CNKI [8].

Based on many studies, this paper proposes a similar retrieval algorithm based on multilevel
fingerprint matching matrix. The algorithm generates multilevel fingerprints by Simhash algorithm,
then constructs the comparison matrix model by clause clauses and adds semantic relations to
calculate the similarity. The algorithm improves the accuracy based on the traditional TF-IDF space
vector and adds multi-stroke parallel computing to increase efficiency.

International Symposium on Communication Engineering & Computer Science (CECS 2018)

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 86

353

2. Main Ideas of the Algorithm

This paper proposes a similarity retrieval method based on multilevel fingerprints. The method
includes: preprocessing the text to form a unified format; encoding the unified format text using
simhash algorithm to form 64-bit binary multilevel fingerprint eigenvalues; The Hamming distance
between the eigenvalue of the original text and the eigenvalue of the comparison text is selected, and
the text whose Hamming distance is less than the threshold 3 is selected for secondary calculation;
the original text and the comparative text are segmented and the comparison matrix is constructed,
and the calculation is performed. Text similarity and similar content and mark the output; optimize
the text similarity and similarity content calculation method, the optimization method starts multi-
threading and uses parallel computing. The algorithm studied in this paper needs three theoretical
foundations to better understand: (1) Simhash algorithm and Simhash query optimization; (2) The
longest common subsequence algorithm; (3) The similarity calculation rule.

2.1 Simhash Algorithm and Simhash Query Optimization.

In this algorithm, Simhash is used to convert text into 64-bit multilevel fingerprints, that is, binary
0 and 1 are used to form an n-bit signature, so that the text becomes a series of numbers. After
comparing the Hamming distance to calculate the text similarity, the Hamming distance is obtained:
when XOR is used, the result is 1 only when the two compared bits are different, otherwise the result
is 0, and the two binary "exclusive OR" are obtained. The number of 1 is the size of the Hamming
distance. For 64-bit Simhash, the Hamming distance is less than 3 to determine that the two articles
are similar.

The method of calculating the Hamming distance is simple, but it is unrealistic to perform XOR
one by one when the amount of data is too large. For example, for a combination of all the three bits
of the 64-bit Simhash value to be queried, you need to allocate 41,664 times of storage space [9]. In
order to solve this problem, 64-bit Simhash is split and stored. This method is based on the drawer
principle. If the Hamming distance of two Simhash values is within 3, they are divided into m (m ≤
64) blocks, and there must be l-3 blocks are equal. In order to improve the retrieval efficiency and
consider the space overhead, this paper sets m=8, and divides each Simhash value into 8 blocks, such
as the first block stores 0-7 bits, the second block stores 8-15 bits, and the third block. Blocks store
16-23 bits and so on. When searching for other Simhash values whose Hamming distance is within 3
according to a Simhash, the Simhash is divided into 8 blocks, each block is searched for a similar
block at the corresponding position, and the Simhash set corresponding to the similar block is taken,
and at least 5 blocks are selected. The Simhash values that appear in the corresponding collection,
and then calculate the Hamming distance one by one. If Simhash is evenly distributed, this method
reduces the number of Hamming distance calculations to the total of 0.375.

2.2 Longest Common Subsequence Algorithm.

The longest common subsequence can describe the "similarity" between two paragraphs of text,
that is, their degree of similarity, which can be used to discern plagiarism. After modifying a
paragraph of text, the longest common subsequence of the text before and after the change is
calculated, and the part other than the subsequence is extracted. This method is often very accurate
in judging the modified part [10].

The longest common subsequence (LCS) is a problem in which a sequence set (usually two
sequences) is used to find the longest subsequence of all sequences. A sequence of numbers, if they
are subsequences of two or more known series, and is the longest of all sequences that meet this
condition, is called the longest common subsequence of the known sequence [11].

The solution of the longest common subsequence is as follows: for example, X=<x1, x2, x3,...,xm>
and Y=<y1,y2,y3,...,yn>,the two string sums are used. The LCS solution is to record the length of the
LCS with a two-dimensional array like c[i][j], and then the state transition equation can be obtained:

Advances in Computer Science Research, volume 86

354















i

ii

yxjijicjic

yxjiijic

ji

jic

1&0,]),1[],1,[max(

&0,1],1[

0||00

],[(1)

Finding the longest common subsequence of the two strings X and Y can be derived recursively
in the following way, if xm=yn, finding the longest common subsequence of Xm-1 and Yn-1 and then
adding xm to the end of it. One of the longest common subsequences of X and Y. If xm≠yn, the two
sub-problems must be solved, namely finding one of the longest common subsequences of Xm-1 and
Y and one of the longest common subsequences of X and Yn-1. The longer of the two common
subsequences is one of the longest common subsequences of X and Y.

2.3 Similarity Calculation Rules.

The determination of the similarity calculation rule determines the accuracy of the final output
comparison text result. This section explains the following: This article can be used to represent a
piece of text D as follows:

},...,3,2,1|{},...,,,{ 321 nkdddddD kn  (2)

Where dk is an element in text D, representing a sentence segmented according to punctuation, n
is the number of sentences after the clause, Len(D) represents the length of the current text, and Len(dk)
represents the sentence dk in the text. The length of D(k) represents the kth sentence. Define the set
of clauses of D as follows:

inIniiDddddIiD Iiiii   ,,1},...,,,{),(21 (3)

Where I represents the length of the clause, when there are two texts D1 and D2, and D1(i,I)D1,
D2(i,I)D2. D1(i,I) is found from D1, and D2(i,I) is found from D2, which is a collection of similar
sentences in the two texts. Then for the text D1, its similarity compared with the text D2 is:

)(

)),((
)(

1

1
21 DLen

IiDLen
DDSimilar  (4)

In the formula, Len(D1(i,I)) is the sum of the words in all similar sentences of the texts D1 and D2,
that is:

inIniidLenIiDLen
Iiki

k  


,,1)()),((1 (5)

3. Algorithm Implementation

3.1 Feature Extraction and Simhash Query.

First, through the program identification, the text in Word, PDF and Html format is cleaned and
the valuable text is extracted to form a unified format text. Then the text is generated by the Simhash
algorithm to generate 64-bit binary eigenvalue fingerprint for quick retrieval of similar text.

The Simhash algorithm is divided into five steps [12]:
(1) Participle, segmentation is performed for a given sentence to obtain a feature vector, and five

levels of weights are set for each feature vector. For example, given a sentence: the first Digital China
Conference was held in Beijing. The word segmentation and weighting each feature vector: the first
(4) digital China (5) conference (3) is held (1) in Beijing (4). The number in parentheses represents
the importance of the word in this sentence, and the larger the number, the more important it is.

(2) Hash, the hash value of each vector, and the hash value is an n-bit signature consisting of a
binary number 01. For example, the first hash value is 100101, and the digital China hash value is
101011. In this way, the string becomes a series of numbers.

(3) Weighting, weighting all feature values based on the hash value, that is w=hash*weight,
encountering 1 multiplied by a positive weight value, and encountering 0 times the negative weight
value. For example, the weight is given to the first is w1=100101*4=4-4-4+4-4+4, the weight is given

Advances in Computer Science Research, volume 86

355

to the digital China is w2=101011*5=5-5+5-5+5+5, and the other feature vector weighting methods
are the same.

(4) Combining, the above-mentioned feature vector weighting result becomes a sequence, for
example, the weighted result of the first two words is 9-9+1-1+1+9.

(5) Dimensionality reduction, if the result of the accumulation is greater than 0, it is recorded as 1.
Else if it is less than 0, it is recorded as 0. For example, the result of the reduction is 101011. The
hash value of this example is 6 bits. In the Simhash calculation, each feature vector is formed with a
64-bit hash value to make the final result more accurate.

The Simhash algorithm specifies that Hamming distance is less than or equal to 3, and is judged
to be similar. To make the query more efficient, divide the 64-bit hash value into 8 blocks. To query
the sql statement each time, only at least 5 parts of the same hash value need to be queried, and Select
one of the different 1 to 3 blocks to calculate the Hamming distance.

The similar text is found by querying the Simhash value whose Hamming distance is less than 3,
and the comparison matrix is constructed by the original text and the similar text.

3.2 Construction of the Comparison Matrix Model .

The construction of the comparison matrix model is the core of the algorithm. The flow chart of
the similarity retrieval algorithm based on the multilevel fingerprint comparison matrix is as follows:

Fig.1 Flow chart of similarity retrieval method based on multilevel fingerprint

Advances in Computer Science Research, volume 86

356

(1) Text granularity
The two texts are constructed to match the matrix. The text granularity is first refined, and the text

is refined into statement granularity by punctuation. The comparison text and the compared text be:
},...,2,1|{},...,,,{ 3211 nkdddddD kn  and },...,2,1|{},...,,,{ 3212 mkdddddD km 

(2) Building a comparison matrix
D1 and D2 construct the comparison matrix P as:

























nmnnn

m

m

m

pppp

pppp

pppp

pppp

P

...

...............

...

...

...

321

3333231

2232221

1131211

 (6)

pnm calculates the similarity between the original text dn and the comparison text d'm. The formula
is:

)(

),(
,

)(

),(
(min

m

mn

n

mn
nm dNum

ddLCS

dNum

ddLCS
p




 (7)

LCS (dn,d'm) is the number calculated using the longest common subsequence algorithm in dn and

d'm. Num(dn) is the number of words in statement dn, Num(d'm) is the number of words in statement
d'm, this number can be used to account for the ratio of the original sentence to the comparison
statement. And taking the smaller ratio as the final result of pnm.

(3) Setting the threshold similarWeight and constructing an adjacency matrix
The threshold value ranges from 0 to 1, and can be adjusted manually to cope with different

requirements of different items for accuracy. All values in the comparison matrix P are compared
with a threshold similarWeight, and greater than the threshold is set to 1, less than the threshold. Set
to 0 to construct an adjacency matrix Q of n rows and m columns, for example:

























1...001

...............

0...010

0...100

1...010

Q (8)

(4) Finding similarities through adjacency matrix
Setting a threshold rightWeight, the threshold rightWeight is between 0-1 and greater than

similarWeight. Checking the pnm value of the adjacency matrix marker. Parts that are greater than the
threshold are directly labeled as similar. and recording the position of similar sentences in two pairs
of texts.

For parts smaller than the threshold rightWeight, finding the corresponding sentences through the
position of the row and column and performing the word segmentation, the adding the thesaurus to
perform semantic judgment. The judgment formula is as follows:

)9()
)(

),(),(
,

)(

),(),(
min(

m

mndmn

n

mndmn
nm dNum

dddsimilarWorddrightWord

dNum

dddsimilarWorddrightWord
w mn




 

rightWord(dn,d'm) indicates the number of words in the same word after word segmentation.
similarWorddn(dn,d'm) indicates the number of similar words in the sentence dn of the original text D1.
wnm denotes the smaller proportion of similar text in the original text statement and comparing text
statement after segmentation and adding the similar word library. When wnm is greater than or equal
to threshold rightWeight, it is labeled as similar. Counting all the labeled similar statements when the
computation is completed, and using formula similar(D1D2) to find out the similarity of two texts.

(5) Efficiency optimization of comparison matrix model algorithm
When constructing the alignment matrix, we need to calculate the similarity of all the statements

in the articles, that is, we need to calculate n*m times, and it will increase the operation time when

Advances in Computer Science Research, volume 86

357

the length of the articles increases. However, when the thread is opened too much, the thread
scheduling time will be too long to achieve the desired effect. After a large number of text tests, text
comparison in the total number of words in each interval, selecting the optimal number of threads in
each interval. Because of the different number of threads, it is necessary to segment the alignment
matrix so that the original alignment matrix can be converted into a relatively small alignment matrix
for parallel computation.

The conversion method is as follows:
The algorithm achieves the effect of limiting the number of threads by limiting the number of

single-order comparison statements. If the number of single-order comparison statements is t, the
calculation formula for the number of open threads v is:

)(*)(
t

m
Ceil

t

n
Ceilv  (10)

The Ceil function is the integral function. As long as there are decimal places, add 1.
Comparison matrix segmentation method is:





































































































































nm

t

m
Ceiltn

m
t

n
Ceilt

t

m
Ceilt

t

n
Ceilt

ntn

t
t

n
Ceilt

t

n
Ceilt

tm

t

m
Ceiltt

t

m
Ceiltt

m

t

m
Ceilt

t

m
Ceilt

m

t

m
Ceilt

t

m
Ceilt

tttt

t

t

pp

pp

pp

pp

ppp

ppp

ppp

ppp

ppp

ppp

P

...

.........

...

...

...

.........

...
.........

...

............

...

...

...

...

............

...

...

)11-)(*(

)11-)(*()11-)(*)(11-)(*(

1

)11-)(*(1)11-)(*(

)21-)(*()11-)(*(

2
)21-)(*(2)11-)(*(2

1
)21-)(*(1)11-)(*(1

21

22221

11211

' (11)

In order to make full use of the space and time resources and improve the efficiency, all matrices
in p' are added to the thread parallel computing at the same time.

4. Experimental Results and Analysis

Ten texts ranging from 500 words to 10,000 words were selected for the experiment. The
experiment mainly focused on the accuracy and efficiency of the algorithm. In this paper, data
pretreatment and feature extraction are carried out in 10 texts. Then generating 64-bit multilevel
fingerprints. Data pre-processing results are shown in Figure 2. Generating Simhash fingerprints as
shown in Figure 3.

Fig. 2 Data pre-processing results

Advances in Computer Science Research, volume 86

358

Fig. 3 64-bit Simhash multilevel fingerprints

The Simhash values of 10 texts is put into massive data to retrieve and find out 3 texts whose
Hamming distance is less than or equal to 3.

4.1 Algorithm Accuracy Experiment.

The number of comparison statements is 10. The threshold similarweight is 0.6 and the threshold
rightWeight is 0.8. The experimental texts are compared with the real similar texts. The results are
shown in Table 1.

Table 1. Statistical results of similar texts

Test text volume Experimental similar text True similar amount of text
561 78 78
1129 112 128
2358 175 175
3136 286 309
4623 271 271
5716 241 264
7086 407 438
7897 329 329
8865 498 538
10849 594 659

According to the statistical results of similar text, we can see that the experimental similar text is

basically close to the real similar text, with the increase of similar text detection may cause errors.
According to the actual observation, under the condition of controlling the number of comparison
sentences and the threshold value, the deviation of text similarity detection mainly depends on the
perfection of the synonym lexicon. The more perfect the synonyms, the smaller the error of similarity
detection.

4.2 Algorithm Running Efficiency Experiment.

In this paper, by controlling the number of text words and the comparison threshold, the number
of comparison statements t (that is, changing the number of threads) is changed to compare the
operational efficiency horizontally; By controlling the comparison threshold and the number of
statements t, the number of words is changed to compare the operational efficiency longitudinally.
The comparison results are shown in the following figure:

Advances in Computer Science Research, volume 86

359

Fig. 4 Similarity comparison results

In Figure 4, abscissa denotes the number of threads opened, Left-hand label indicates the time (in
seconds) of similarity comparison, and broken lines indicate the result of similarity comparison
between different text quantities. From the results of similarity comparison, it can be seen that the
time used for comparison and the number of threads opened are basically parabolic, so the best thread
interval (that is, the shortest thread interval) for similarity comparison of current text can be
determined according to the number of words in the text. When controlling other variables to change
the number of words, the time of similarity comparison is proportional to the number of words in the
text.

5. Conclusion

In this paper, a similarity retrieval algorithm based on multilevel fingerprint comparison matrix is
proposed. Firstly, the text eigenvalues are extracted and the similar text is retrieved by Simhash
algorithm. Then the comparison matrix is constructed to compare the similar texts and the final result
is obtained. The algorithm is applied to the actual similarity detection. The accuracy and efficiency
of similarity comparison are verified by experiments: (1) The accuracy of similarity retrieval depends
on the determination of threshold and the perfection of similarity lexicon. (2) The efficiency of the
algorithm is related to the number of rows and columns of the comparison matrix (i.e. the number of
threads) and the number of words in the comparison text. When determining the range of text, the
optimal number of threads can be derived to improve the efficiency of similarity comparison.

References

[1]. Zhang Guangqing, Ge Weiyi, He Chenglong. Fast Search and Optimization Method for Massive
Similar Documents Based on Simhash[J]. Command Information System and Technology. Vol.
6(2015) No. 2, p. 61-65.

[2]. Feng Gaolei, Gao Yufeng. Text similarity algorithm based on vector space model combined with
semantics[J]. Modern Electronic Technology. Vol. 41(2011) No. 11, p. 157-161.

Advances in Computer Science Research, volume 86

360

[3]. Fei Feilong, Yan Huasong.Sentence similarity algorithm based on modified offset[J]. Computer
Engineering. Vol. 43(2017) No. 9, p. 234-239.

[4]. Li Chenglong, Yang Dongju, Han Yanbo. Research on fuzzy matching check algorithm based
on word segmentation matrix model[J]. Computer Science. Vol. 44(2017) No. 11A, p. 55-83.

[5]. Zhao Shijie, Xu Xiaoliang. Research on similarity calculation and clustering algorithm for
science and technology projects [D]. Hangzhou: Hangzhou University of Electronic Science and
Technology, 2015.

[6]. Li Shanqing, Xing Xiaozhao, Du Shengmei. Review of research on check methods of science
and technology projects[J]. Science and Technology Management Research. Vol. 6(2018) No. 2,
p. 197-201.

[7]. Fang Yanfeng. Improvement of the calculation method of TF-IDF value of characteristic words
in scientific and technological project check[J]. Information Research. Vol.1(2012) No. 1, p.1 -
3.

[8]. Liu Qun, Li Sujian. Calculation of lexical semantic similarity based on HowNet[J]. Chinese
Computational Linguistics. Vol.7(2002) No. 2, p. 59-76.

[9]. Chongshan, Shao Chunxia. Application of Simhash algorithm in checking the test questions[J].
Software Guide. Vol. 17(2018) No. 2, p. 151-157.

[10]. LIU Yu, WANG Qiandong. Judging of Non-synchronous Similar Trajectories Based on the
Longest Common Subsequence[J]. Telecommunication Technology. Vol. 57(2017) No. 10, p.
1165-1170.

[11]. ZHENG Cuiling. Analysis and Implementation of the Longest Common Subsequence
Algorithm[J]. Journal of Wuyi University. Vol. 29(2010) No. 2, p. 44-48.

[12]. Xu Jihui. Research on anti-cheat technology of massive documents based on Simhash
algorithm[J]. Computer Technology and Development. Vol. 24(2014) No. 9, p. 103-107.

Advances in Computer Science Research, volume 86

361

