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Abstract 

Characterizations of probability distributions play important roles in probability and 

statistics. Before a particular probability distribution model is applied to fit the real world 

data, it is essential to confirm whether the given probability distribution satisfies the 

underlying requirements by its characterization. A probability distribution can be 

characterized through various methods. In this paper, we provide the characterizations of 

Chen’s two-parameter exponential power life-testing distribution by truncated moment. 
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1. Introduction 

  As pointed out by Glänzel [8], the characterizations of probability distributions may serve 

as the basis for parameter estimations of a probability distributions. Before a particular 

probability distribution model is applied to fit the real world data, it is essential to confirm 

whether the given probability distribution satisfies the underlying requirements by its 

characterizations. Thus, characterizations of a probability distribution play important role in 

probability and statistics. A probability distribution can be characterized through various 

methods, see, for example, Ahsanullah et al. [3], and references therein. For an extensive survey 

on characterizations of univariate continuous distributions, the interested readers are referred to a 

recent monograph by Ahsanullah [2], and references therein. 

 

  In recent years, there has been a great interest in the characterizations of probability 

distributions by truncated moments. For example, the development of the general theory of the 

characterizations of probability distributions by truncated moment began with the work of 

Galambos and Kotz [7]. Further development on the characterizations of probability distributions 
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by truncated moments continued with the contributions of many authors and researchers, among 

them Kotz and Shanbahag 11], Glänzel [8], and Glänzel et al. [9], are notable. However, most of 

these characterizations are based on a simple proportionality between two different moments 

truncated from the left at the same point. In this paper, we have considered a two-parameter 

exponential power life-testing distribution introduced by Chen [5], and provided its 

characterizations by truncated moment method. For other types of exponential power life-testing 

distributions and their various properties, studied by other authors and researchers, the interested 

readers are referred to Smith and Bain [16], Leemis [13], Rajarshi and Rajarshi [15], and Chen 

[4], among others. 

 

The paper is organized as follows. In Section 2, the two-parameter exponential power life-

testing distribution introduced by Chen [5], and some of its properties are discussed. We present 

characterization results in Section 3. Finally, concluding remarks are presented in Section 4.  

2. Chen’s Two-Parameter Exponential Power Life-Testing Distribution 

As introduced by Chen [5], a positive continuous random variable X is said to have a two-

parameter exponential power distribution with scale parameter 0 and shape parameter 

0 , which we will denote later as ~X  chenexponentialpower  , , if its probability 

density function is given by 

 

   0,0,
1

1 










 



 

keexkxf
xe

xk .  (2.1) 

 

The cumulative distribution function of ~X  chenexponentialpower  ,  is given by 

 

   0,0,0,1
1

















kxexF
xe

.  (2.2) 

 

For some selected values of the parameters, the graph of probability density function (2.1) 

and the cumulative distribution function (2.2) are illustrated in Figures 2.1 and 2.2 respectively. 

From these figures it appears that the proposed distribution is right skewed. 

 

394

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 393-407



 

 

Figure 2.1. pdf, )(xf , when ~X  chenexponentialpower  , . 
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Figure 2.2. cdf, )(xF , when ~X  chenexponentialpower  , . 

 

The corresponding survival (or reliability) and the hazard (or failure rate) functions, at any 

time, 0x , are respectively given by 

 

       xexFxR  11 ,  (2.3) 

 

and 

  
 



 xk exk
xF

xf
xh 1

1

)( 


 .  (2.4) 

 

For some selected values of the parameters, the graph of hazard function (2.4) is illustrated in 

Figure 2.3 and it appears that hazard function has bathtub-shaped. 
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Figure 2.3. Hazard rate function, )(xh , when ~X  chenexponentialpower  , . 

The nth moment,  nXE , where 0n  is an integer, is given by 

 

    dxxfxXE X

nn





0

 

  dxeexkx
xe

xkn

















 


1

1

0

,  

 

which, on substituting   ue x 


 1 , and simplifying, reduces to 

 

   du
u

eXE
k

n

un






















0

1ln


.  (2.5) 
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Letting tu   in (2.5), and simplifying, we have 

 

    dt
t

eXE
k

n

tn
























0

1ln


.  (2.6) 

 

      It is obvious from (2.6) that the st1 moment,  XE , is mathematically easily tractable for 

1k . So, by taking 1,1  kn  in (2.6), using Gradshteyn and Ryzhik [10], Eq. 4.337.2, Page 

574, and simplifying, we have 

 

     0,   EieXE ,  (2.7) 

 

where  zEi , known as the exponential-integral function, and is defined as follows:  

 

       0,
!.

ln
1

 




z
kk

z
zzEi

k

k

 , 

and 

 

   0,
!.

ln
1

 




z
kk

z
zzEi

k

k

 , 

 

where   577216.01    denotes the Euler’s constant; (see, for example, Gradshteyn and 

Ryzhik [10], Eqs. 8.214.1 and 8.214.2, Page 927, Abramowitz and Stegun [1], Ch. 5, Page 228, 

and Oldham et al. [14], Ch. 37, Page 375, among others). In (2.7), taking 1 , and noting that, 

since   59635.01  Eie , known as the Gompertz constant, see, for example Finch [6] and 

Mezo [12], the st1 moment for 1k  and 1  is given by 

 

    59635.0XE . 

 

For a detailed treatment of properties of Chen’s two-parameter exponential power life-testing 

distribution, we refer the interested readers to Chen [5]. 

3. Characterization Results 

In this section, we provide our proposed characterizations of Chen’s two-parameter 

exponential power life-testing distribution, with pdf (2.1) and cdf (2.2), by truncated moment. 

For this, we will need the following assumption and lemmas. 
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Assumption and Lemmas 

Assumptions 3.1. Suppose the random variable X  is absolutely continuous with the cumulative 

distribution function )(xF  and the probability density function )(xf . We assume that 

  0|inf  xFx , and   1|sup  xFx . We also assume that )(xf  is a 

differentiable for all x , and )(XE  exists. 

 

Lemma 3.1. Under the Assumption 3.1, if      xxgxXXE | , where  
 
 xF

xf
x   and 

 xg  is a continuous differentiable function of x  with the condition that 
 

 
x

du
ug

ugu

0

/

 is 

finite for 0x , then  
 

 


x

du
ug

ugu

ecxf
0

/

, where c  is a constant determined by the condition 

1)(
0




dxxf . 

 

Proof. Suppose that      xxgxXXE  . Then, since  
 

 xF

duufu
xXXE

x


 0  and 

 
 
 xF

xf
x  , we have  

 

 xf

duufu
xg

x


 0 , that is,      xgxfduufu

x
0 .  

 

Differentiating both sides of the above equation with respect to x , we obtain 

 

          xgxfxgxfxfx //  . 

 

From the above equation, we obtain 

 

 

 
 

 
  .

//

xg

xgx

xf

xf 


  
 

On integrating the above equation with respect to x , we have 

 

  
 

 


x

du
ug

ugu

ecxf
0

/

, 

 

where c  is obtained by the condition 1)(
0




dxxf . This completes the proof of Lemma 3.1.  
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Lemma 3.2. Under the Assumption 3.1, if      xrxgxXXE
~

|  , where  
 
 xF

xf
xr




1
 and 

 xg
~

 is a continuous differentiable function of x  with the condition that 

 

 

 







x
du

ug

ugu

~

/
~

 is 

finite for 0x , then  

 

 
















x
du

ug

ugu

ecxf
0 ~

/
~

, where c  is a constant determined by the condition 

1)(
0




dxxf .  

 

Proof. Suppose that      xrxgxXXE
~

 . Then, since  
 

 xF

duufu
xXXE x






1
 and 

 
 
 xF

xf
xr




1
, we have  

 

 xf

duufu
xg x




~

, that is,      xgxfduufu
x

~




.  

 

Differentiating the above equation with respect to respect to x , we obtain 

 

 

         
/

~~
/







 xgxfxgxfxfx

. 

 

From the above equation, we obtain 

 

 

 
 

 

 
.~

/
~

/

xg

xgx

xf

xf











  

 

On integrating the above equation with respect to x , we have  

 

  

 

 
















x
du

ug

ugu

ecxf
0 ~

/
~

, 

 

where c  is obtained by the condition 1)(
0




dxxf . This completes the proof of Lemma 3.2. 
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Theorem 3.1. If the random variable X  satisfies the Assumption 3.1 with 0  and  , 

then    
 
 xF

xf
xgxXXE  , where  

 

  

























kx

k

kk

j

k

e
xk

kxjjkjj

xk

eexk

e

exk

x
xg

1
1

111
!

)1(

0

1

)(/1








,  

 

if and only if X  has the distribution with the pdf (2.1).  

 

Proof. Suppose that    
 
 xF

xf
xgxXXE  . Then, since   

 

 xF

duufu
xXXE

x


 0 , we have 

 
 

 xf

duufu
xg

x


 0 . Now, if the random variable X  satisfies the Assumption 3.1 and has the 

distribution with the pdf (2.1), then we have  

 

                           
 

  )(

))(1(

)(
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xf
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xf

duufu
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

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
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

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









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
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
















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


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where dueun unx

x

1

0
)( 

 . 
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Conversely, suppose that 

     

























kx

k

kk

j

k

e
xk

kxjjkjj

xk

eexk

e

exk

x
xg

1
1

111
!

)1(

0
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




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, 

 

where dueun unx

x

1

0
)( 

 .  

   

Then, using Lemma 3.1, differentiating  xg  with respect to x , and simplifying, we have 

  

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
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
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
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exk
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       










  kxkk exkxk

x

k
xgx 111

, 

 

from which we obtain 

 

 
 

 
kxkk exkxk

x

k

xg

xgx 11
/ 1  





. 

 

Since, by Lemma 3.1, we have 

                              
 

 
 
 xf

xf

xg

xgx //




, 

 

it follows that 

 

 
 
 

kxkk exkxk
x

k

xf

xf 11
/ 1  


  . 

 

On integrating the above expression with respect to x  and simplifying, we obtain 

 

    




 

kxk exk eexcxf 1lnln ,  

 

or, 

   
kxk exk eexcxf  1 , 
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where c  is the normalizing constant to be determined. Thus, on integrating the above equation 

with respect to x  from 0x  to x , and using the condition   1
0




dxxf , we easily obtain 

  ekc  , 

 

and, hence, we have 

 

   0,0,
1

1 










 



 

keexkxf
xe

xk , 

 

which is the required pdf (2.1). This completes the proof of Theorem 3.1.  

 

Theorem 3.2. If the random variable X  satisfies the Assumption 3.1 with 0  and 

 , then    
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where dueun un

xx

1)( 
 , if and only if X  has the distribution with the pdf (2.1).  
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duufu
xg x
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
~

. Now, if the random variable X  satisfies the Assumptions 3.1 and has the 

distribution with the pdf as given in (2.1), then we have  
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Since, by Lemma 3.2, we have 
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On integrating the above expression with respect to x  and simplifying, we obtain 
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or, 

   
kxk exk eexcxf  1 , 

 

where c  is the normalizing constant to be determined. Thus, on integrating the above equation 

with respect to x  from 0x  to x , and using the condition   1
0




dxxf , we easily obtain 
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and, hence, we have 

 

   0,0,
1

1 










 



 

keexkxf
xe

xk , 

 

which is the required pdf (2.1). This completes the proof of Theorem 3.2.  

4. Conclusion 

In this paper, we have considered the two-parameter exponential power life-testing 

distribution introduced by Chen [5], and provided its characterizations by truncated moment 

method. We hope the findings of the paper will be quite useful for the practitioners in various 

fields of sciences. 

 

 

 

405

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 393-407



ACKNOWLEDGEMENT 

 

  Authors are thankful to the referees and editor-in-chief of the journal for their valuable comments 

and suggestions, which improved the presentation of this paper greatly. The first author, M. Shakil, is 

grateful to Miami Dade College for giving him the opportunity to be of service to this institution, 

without which it would have been impossible to conduct his research. Also, this article was 

partially completed while the third author, B. M. Golam Kibria, was on sabbatical leave (Fall 2017). He is 

grateful to Florida International University for awarding him the sabbatical leave which gave him 

excellent research facilities. 
 

Declarations: We confirm that none of the authors have any competing interests in the 

manuscript. 

References 

 

[1] Abramowitz, M., and Stegun, I. A. (1970). Handbook of Mathematical Functions with 

Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington, D. 

C. 

[2] Ahsanullah, M. (2017), Characterizations of Univariate Continuous   Distributions. Atlantis 

Press, Paris, France. 

[3] Ahsanullah, M., Kibria, B. M. G., and Shakil, M. (2014). Normal and   

 Student´s t Distributions and Their Applications. Atlantis Press, Paris, France. 

[4] Chen, Z. (1999). Statistical inference about the shape parameter of the  

exponential power distribution. Statistical Papers, Vol. 40(4), 459 - 468. 

[5]  Chen, Z. (2000). A new two-parameter lifetime distribution with bathtub    

 shape or increasing failure rate function. Statistics & Probability Letters,   

 49(2), 155 - 161. 

[6] Finch, S. R. (2003). Mathematical Constants. Cambridge University Press, Cambridge, UK.  

[7] Galambos, J., and Kotz, S. (1978). Characterizations of probability distributions. A unified 

approach with an emphasis on exponential and related models, Lecture Notes in 

Mathematics, 675, Springer, Berlin. 

[8] Glänzel, W. (1987). A characterization theorem based on truncated moments and its 

application to some distribution families, Mathematical Statistics and Probability Theory 

(Bad Tatzmannsdorf, 1986), Vol. B, Reidel, Dordrecht, 75 – 84. 

[9] Glänzel, W., Telcs, A., and Schubert, A. (1984). Characterization by truncated moments and 

its application to Pearson-type distributions, Z. Wahrsch. Verw. Gebiete, 66, 173 – 183. 

[10] Gradshteyn, I. S., and Ryzhik, I. M. (1980). Table of integrals, series, and products,   

  Academic Press, Inc., San Diego, California, USA. 

[11] Kotz, S., and Shanbhag, D. N. (1980). Some new approaches to probability   

  distributions. Advances in Applied Probability, 12, 903 - 921. 

[12] Mezo, I. (2014). "Gompertz constant, Gregory coefficients and a series of the  

  logarithm function". Journal of Analysis and Number Theory, 2 (2), 33 – 36. 

406

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 393-407



[13] Leemis, L. M. (1986). Lifetime distribution identities. Reliability, IEEE Transactions on, 

35(2), 170 - 174. 

[14]  Oldham, K. B., Myland, J., and Spanier, J. (2009). An Atlas of Functions with    

   Equator, the Atlas Function Calculator. Springer, New York, USA. 

[15]  Rajarshi, S., and Rajarshi, M. B. (1988). Bathtub distributions: A review.  

  Communications in Statistics-Theory and Methods, 17(8), 2597 - 2621. 

[16] Smith, R. M., and Bain, L. J. (1975). An exponential power life-testing  

   distribution. Communications in Statistics-Theory and Methods, 4(5), 469 -  

   481. 

 

407

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 393-407


	Untitled



