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1. Introduction

The origin of the term entropy goes back to the works of Clausius (1864) and Boltzmann (1872) in
thermodynamics. The idea of information-theoretic entropy was first introduced by Shannon (1948).
Park (1995), Ebrahimi et al. (2004) and Oluyede (2006) obtained various results on the information
properties of order statistics. Yari and Borzadaran (2010) calculated the Shannon entropy for Pareto-
type distributions and their order statistics. Baratpour et al. (2007) derived some results related to
the Shannon entropy and Rényi entropy for record values.
In 1976, Dzubdziela and Kopociński introduced the concept of k-records which were further studied
by Grudzieén and Szynal (1985), Raqab and Amin (1997) and called Type 2 k-records by Arnold et
al. (1998). For k = 1, the usual records are obtained.
Madadi and Tata (2011) presented results on the Shannon information contained in upper (lower)
record values and associated record times in a sequence of independent identically distributed con-
tinuous random variables. They also considered the Shannon information contained in record data
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from an inverse sampling plan. In 2014, they generalized these results to k-records. Afhami and
Madadi (2013) derived the exact analytical expressions for the Shannon entropy of generalized
order statistics from the Pareto (IV) distribution and related distributions.
In this paper, we obtain the Shannon information contained in upper (lower) k-record values and
k-record times of a random sample of size n (n≥ k) and of an inverse sampling plan for Pareto-type
distributions. The paper is organized as follows: In Section 2, we present some preliminary results.
Section 3 contains the main results of the paper. In this section, we derive the Shannon information
contained in the data consisting of all upper and lower k-record values and associated k-record times
of a random sample of size n and of an inverse sampling plan for Pareto-type distributions. We also
present some results of the differential entropy for a finite sample of fixed size and for an inverse
sampling plan. Finally, Section 4 contains a conclusion.

2. Preliminaries

In this section, we review some basic notations and definitions concerning Pareto-type distributions,
k-records and entropy which will be needed in the next section.

2.1. Pareto-type distributions

A general version of Pareto-type distributions, called the Pareto (IV) distribution, is discussed in
chapter 3 of Arnold (1983). The cumulative distribution function of this family is

FX(x) = 1−

[
1+
(

x−µ

θ

) 1
γ

]−α

, x > µ, (2.1)

where −∞ < µ < ∞, θ > 0 and γ > 0 are location, scale and inequality parameters, respectively
and α > 0 is the shape parameter which characterizes the tail of the distribution. This distribution
is denoted by Pareto (IV)(µ,θ ,γ,α), and its density function is as follows:

fX(x) =
α
( x−µ

θ

) 1
γ
−1

θγ

[
1+
( x−µ

θ

) 1
γ

]α+1 , x > µ. (2.2)

• Setting (α = 1), (γ = 1) and (γ = 1, µ = θ ) in relation (2.1) and (2.2), one at a time, leads to the
cumulative distribution and probability density functions of Pareto (III), Pareto (II) and Pareto (I)
distributions, respectively.
• The Burr (XII) distribution is a special case of the Pareto (IV ) distribution in which µ = 0, γ→ 1

γ
.

If X ∼Pareto(IV )(µ,θ ,γ,α), and Zα = 1+
( x−µ

θ

) 1
γ , then

FZα
(z) = 1− z−α , z > 1, (2.3)

and

fZα
(z) =

α

zα+1 , z > 1, (2.4)

where α > 0. We denote this distribution by Pareto (α) and note that Zα has the same distribution

as Z
1
α

1 .
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2.2. Shannon information

Consider a discrete random variable X such that P{X = xi}= pi, i = 1,2, · · · and ∑
∞
i=1 Pi = 1. Then

H(X) =−
∞

∑
i=1

pi ln pi,

is known as the “entropy” or Shannon information (SI) of the random variable X . If X is a random
variable having an absolutely continuous cumulative distribution function (cdf) F(x) and probability
density function (pdf) f (x), then SI is defined as

H(X) =−
∫ +∞

−∞

f (x) ln f (x)dx.

Suppose that Z be a random variable with cdf FZ , pdf fZ and Shannon information H(Z). The
following lemma is well-known and easy to check.

Lemma 2.1. If X = θZγ +µ , then FX(x) = FZ

(( x−µ

θ

) 1
γ

)
.

So,

H(X) = ln(θγ)+(γ−1)E(lnZ)+H(Z), ∀θ ,γ > 0,µ ∈ℜ.

The Shannon entropy of the random variable X is a mathematical measure of information which
measures the average reduction of uncertainty of X . Because of its descriptive character, analytical
expressions for univariate distributions have been obtained, among others, by Cover and Thomas
(2006).

2.3. k-record data

Let {Xn : n = 1,2, ...} be a sequence of independent and identically distributed (i.i.d) random vari-
ables with absolutely continuous cumulative distribution function F(x;θ) and probability density
function f (x;θ). We are interested in the Shannon information (SI) contained in the sequence of
k-records. A k-record is basically the k-th largest observation in a partial sample. More precisely, let
Xi:n denote the i-th order statistic from a random sample of size n. We define upper k-record times
Tn,k and upper k-record values Rn,k as follows :

(i) T1,k = k and R1,k = X1:k,

(ii) Tn,k = min{ j : j > Tn−1,k,X j > XTn−1,k−k+1:Tn−1,k} and Rn,k = XTn,k − k+1 : Tn,k , (n≥ 2).

Suppose Nn,k be the number of k-record values in X1, ...,Xn. Lower k-record values, lower k-record
times and the number of lower k-records are similarly defined (Arnold et al., 1998).
In the case of record and k-record data from a random sample of size n, Madadi and Tata (2011,
2014) obtained the SI contained in the last record (maximum), upper k-record values with associ-
ated k-record times, denoted by HU

M(n) and HU
RT (n,k), respectively. The SI for the lower records and

k-records are denoted by HL
M(n) and HL

RT (n,k), respectively.
In an inverse sampling plan (ISP), one takes observations until a fixed number m of k-records
is reached. Denote the SI contained in all upper k-record values, the last upper k-record and all
upper k-record values together with associated k-record times by hU

R (m,k), hU
M(m,k) and hU

RT (m,k),
respectively. The corresponding SI for lower k-record data are denoted by hL

R(m,k), hL
M(m,k) and
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hL
RT (m,k), respectively.

Madadi and Tata (2011) showed that the SI contained in the last upper record is

HU
M(n) =− lnn+

n−1
n
−nφ

U
f (n−1,1), (2.5)

where

φ
U
f (i,k) =

∫ +∞

−∞

(ln f (x))(1−F(x))k−1F i(x) f (x)dx. (2.6)

For lower record values, we have

HL
M(n) =− lnn+

n−1
n
−nφ

L
f (n−1,1), (2.7)

where φ L
f (i,k) is obtained from φU

f (i,k) by replacing F by 1−F .
Madadi and Tata (2014) also proved that the SI contained in the data consisting of all upper k-record
values and k-record times of a random sample of size n (n≥ k) is given by

HU
RT (n,k) = −

(
n− k+2

2

)
lnk− k

n−k

∑
i=0

(
i+ k−1

k−1

)
φ

U
f (i,k)

+ k
n−k

∑
i=1

k−1

∑
j=0

(
i+ k−1

k

)(
k−1

j

)
(−1) j

(i+ j+1)2 (2.8)

and

HU
RT (n,1) = ψ(n+1)+ γ

∗−
n

∑
i=1

1
i2
−

n−1

∑
i=0

φ
U
f (i,1), (2.9)

where γ∗ = 0.57721566 is the Euler constant and ψ is the digamma function where

ψ(x) =
1

Γ(x)

∫
∞

0
yx−1e−x(lny)dy.

The HL
RT (n,k) and HL

RT (n,1) contained in corresponding lower k-record statistics are obtained by
replacing φU

f (i,k) and φU
f (i,1) by φ L

f (i,k) and φ L
f (i,1) in (2.8) and (2.9), respectively.

They also showed that the SI contained in all of k-record values, last upper k-record and all of upper
k-record values and times of an ISP are respectively obtained as

hU
R (m,k) =

m
k
(k− m+1

2
− k lnk)−

m

∑
i=1

ψ
U
f (i,k), (2.10)

hU
M(m,k) = lnΓ(m)+

m(k−1)
k

− lnk− (m−1)ψ(m)−ψ
U
f (m,k), (2.11)

and for k > 1,

hU
RT (m,k) = −m lnk+

m(k−1)
k

+(1− γ
∗−ψ(k+1))

(
m+ k−1− km

(k−1)m−1

)
+

m−1

∑
j=2

(
(m+ k− j)k j−1− km

(k−1)m− j

)
ζ ( j,k+1)−

m

∑
i=1

ψ
U
f (i,k), (2.12)

422

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 419-438



where

ψ
U
f (i,k) = E (ln f (Ri,k)) =

ki

Γ(i)

∫ +∞

−∞

(ln f (x))(− ln(1−F(x)))i−1 (1−F(x))k−1 f (x)dx.(2.13)

Here ζ (i,k) = ∑
∞
j=k

1
ji is the incomplete Zeta function.

Note that for k = 1, i.e. for ordinary records,

hU
RT (m,1) = hU

R (m,1)+m(m−1)−
m

∑
i=2

(m− i+1)ζ (i). (2.14)

Similar formulas hold for lower k-records.

3. Shannon information in k-records for Pareto-type distributions

In this section, we compute the SI in k-records of Pareto-type distributions for a finite sample of
fixed size as well as for an inverse sampling plan.

3.1. Shannon information in a finite sample

Since the number of observations n is fixed (and the number of records is random), the last upper
record is the maximum in the sample. From (2.5) and (2.6), we have

HU
M(n,Zα) =− lnn+

n−1
n

+
α +1

α
(ψ(n+1)+ γ

∗)− lnα, (3.1)

and

HL
M(n,Zα) = − lnn+

n−1
n

+
α +1

nα
− lnα. (3.2)

Therefore the SI contained in the last record for the Pareto (IV ) are

HU
M(n,X) = HU

M(n,Zα)+ ln(θγ)− 1− γ

α
(ψ(n+1)+ γ

∗)

+ nα(1− γ)
n−1

∑
j=0

∞

∑
l=1

(
n−1

j

)
(−1) j

l(l + jα +α)
,

and

HL
M(n,X) = HL

M(n,Zα)+ ln(θγ)−n(1− γ)

[
1

n2α
−α

∞

∑
l=1

1
l(l +nα)

]
.

When α is integer,
∞

∑
l=1

1
l(l + jα +α)

=
1

jα +α
(ψ( jα +α +1)+ γ

∗) ,

and
∞

∑
l=1

1
l(l +nα)

=
1

nα
(ψ(nα +1)+ γ

∗) .

Let
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Fig. 1. (a) and (b) represent HU
M(n,Z1) and HL

M(n,Z1), respectively.

∆HU
M(n,Zα) = HU

M(n+1,Zα)−HU
M(n,Zα),

and

∆HL
M(n,Zα) = HL

M(n+1,Zα)−HL
M(n,Zα),

denote the n-th differential of the entropy, that is, the change in the entropy when a new observation
occurs. From (3.1) and (3.2), we obtain

∆HU
M(n,Zα) = ln

n
n+1

+
1
n
+

1
(n+1)α

,

and

∆HL
M(n,Zα) = ln

n
n+1

− 1
n(n+1)α

.

Fig. 1. represent behaviours of HU
M(n,Z1) and HL

M(n,Z1) with respect to n.
One can easily see that

(i) limn→∞ ∆HU
M(n,Zα) = limn→∞ ∆HL

M(n,Zα) = 0.
(ii) ∆HU

M(n,Zα) and ∆HL
M(n,Zα) are respectively always nonnegative and negative functions i.e.

HU
M(n,Zα) and HL

M(n,Zα) are increasing and decreasing functions with respect to sample
size for each α . Also, ∆HU

M(n,Zα) and ∆HL
M(n,Zα) are decreasing and increasing functions

of n for each α .
(iii) 0≤ ∆HU

M(n,Zα)<− ln2+1+ 1
2α

and − ln2− 1
2α

< ∆HL
M(n,Zα)≤ 0.

(iv) For each fixed n, ∆HU
M(n,Zα) and ∆HL

M(n,Zα) are decreasing convex and increasing con-
cave functions of α , respectively.

(v) HU
M(n,Zα) and HL

M(n,Zα) are decreasing convex functions of α for each n.

Theorem 3.1. For Pareto (1), the SI contained in all the upper and lower k-record values together
with k-record times of a random sample of size n (n≥ k) are equal to

HU
RT (n,k,Z1) =−

(
n− k+2

2

)
lnk+

2
k
+

n−k

∑
i=1

(
i+ k−1

k−1

)
(2kI(k : k+ i)+ iI(i+1 : k+ i)) , (3.3)
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and

HL
RT (n,k,Z1) =−

(
n− k+2

2

)
lnk+2kI(1 : k)+

n−k

∑
i=1

(
i+ k−1

k−1

)
(2k+ i)I(i+1 : k+ i), (3.4)

where I( j : n) = ∑
n− j
i=0

(n− j
i

) (−1)i

(i+ j)2 , 0 < j ≤ n.
Also for k = 1, we obtain

HU
RT (n,1,Z1) = (1+2γ

∗)(ψ(n+1)+ γ
∗)−

n

∑
i=1

1
i2
+2

n

∑
i=1

ψ(i+1)
i

, (3.5)

and

HL
RT (n,1,Z1) = (ψ(n+1)+ γ

∗)+
n

∑
i=1

1
i2
. (3.6)

From (2.3), (2.4) and (2.6), we get

φ
U
f (i,k,Z1) =

∫ 1

0
(2lnu)uk−1(1−u)idu = 2

i

∑
j=0

(
i
j

)
(−1) j

( j+ k)2 =−2I(k : k+ i).

Substituting this expression in (2.8), we obtain

HU
RT (n,k,Z1) = −

(
n− k+2

2

)
lnk+2k

n−k

∑
i=0

(
i+ k−1

k−1

)
I(k : k+ i)+ k

n−k

∑
i=1

(
i+ k−1

k

)
I(i+1 : k+ i) =−

(
n− k+2

2

)
lnk+2k.

1
k2 + k

n−k

∑
i=1

[
2
(

i+ k−1
k−1

)
I(k : k+ i)+

(
i+ k−1

k

)
I(i+1 : k+ i)

]
,

hence, we conclude (3.3). Similarly,

φ
L
f (i,k,Z1) =−2I(i+1 : k+ i),

therefore (3.4) is obtained. From (2.6), and recalling that − ln(1− t) = ∑
∞
q=1

tq

q , we have

φ
U
f (i,1,Z1) =−

2(ψ(i+2)+ γ∗)

i+1
,

and

φ
L
f (i,1,Z1) =−

2
(i+1)2 ,

thus (3.5) and (3.6) are achieved.
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Corollary 3.1. For Zα = Z
1
α

1 , we obtain

HU
RT (n,k,Zα) = HU

RT (n,k,Z1)− k(lnα)(ψ(n+1)−ψ(k))

+ k
(

1
α
−1
) n−k

∑
i=0

(
i+ k−1

k−1

)
I(k : k+ i),

and

HL
RT (n,k,Zα) = HL

RT (n,k,Z1)− k(lnα)(ψ(n+1)−ψ(k))

+ k
(

1
α
−1
) n−k

∑
i=0

(
i+ k−1

k−1

)
I(i+1 : k+ i).

Also,

HU
RT (n,1,Zα) = HU

RT (n,1,Z1)− (lnα)(ψ(n+1)+ γ
∗)+

(
1
α
−1
) n−1

∑
i=0

I(1 : i+1),

and

HL
RT (n,1,Zα) = HL

RT (n,1,Z1)− (lnα)(ψ(n+1)+ γ
?)+

(
1
α
−1
) n

∑
i=1

1
i2
.

Corollary 3.2. The SI contained in all k-record values and k-record times of a random sample of
size n (n≥ k) from the Pareto (IV ) distribution are

HU
RT (n,k,X) = HU

RT (n,k,Zα)+ k (ln(θγ))(ψ(n+1)−ψ(k))− k(1− γ)

α

n−k

∑
i=0

(
i+ k−1

k−1

)
I(k : i+ k)+ kα(1− γ)

n−k

∑
i=0

i

∑
j=0

∞

∑
q=1

(
i+ k−1

k−1

)(
i
j

)
(−1) j

q(q+ kα + jα)
,

and

HL
RT (n,k,X) = HL

RT (n,k,Zα)+ k (ln(θγ))(ψ(n+1)−ψ(k))+ kα(1− γ)
n−k

∑
i=0

k−1

∑
j=0

∞

∑
q=1

(
i+ k−1

k−1

)
(

k−1
j

)
(−1) j

q(q+ iα + jα +α)
− k(1− γ)

α

n−k

∑
i=0

k−1

∑
j=0

(
i+ k−1

k−1

)(
k−1

j

)
(−1) j

(i+ j+ k)2 ,

respectively.

For ordinary records, these information can be written as

HU
RT (n,1,X) = HU

RT (n,1,Zα)+

(
ln(θγ)− γ∗(1− γ)

α

)
(ψ(n+1)+ γ

?)− 1− γ

α

n

∑
i=1

ψ(i+1)
i

+α(1− γ)
n−1

∑
i=0

i

∑
j=0

∞

∑
q=1

(
i
j

)
(−1) j

q(q+ jα +α)
,

and

426

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 419-438



Fig. 2. (a) and (b) represent HU
RT (n,k,Z1) and HU

RT (n,1,Z1), respectively.

HL
RT (n,1,X) = HL

RT (n,1,Zα)+(ln(θγ))(ψ(n+1)+ γ
∗)

− 1− γ

α

n

∑
i=1

1
i2
+α(1− γ)

n−1

∑
i=0

∞

∑
q=1

1
q(q+ iα +α)

.

When α is integer, we have

∞

∑
q=1

1
q(q+ iα +α)

=
1

iα +α
(ψ(iα +α +1)+ γ

∗) .

For n = k,k+1, · · · , let

∆HU
RT (n,k) = HU

RT (n+1,k)−HU
RT (n,k),

and

∆HL
RT (n,k) = HL

RT (n+1,k)−HL
RT (n,k),

denote the n-th SI differential corresponding to entropies in equations (3.3) and (3.4), then it is easy
to see that

∆HU
RT (n,k,Z1) =−(n− k+2) lnk+

(
n

k−1

)
[2k I(k : n+1)+(n− k+1) I(n− k+2 : n+1)] ,

and

∆HL
RT (n,k,Z1) =−(n− k+2) lnk+

(
n

k−1

)
(n+ k+1)I(n− k+2 : n+1).

Fig. 2. displays HU
RT (n,k,Z1) and HU

RT (n,1,Z1) for several values of k and n. Behaviours of
HL

RT (n,k,Z1) and HL
RT (n,1,Z1) are shown in Fig. 3. Our numerical computations suggest that when
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Fig. 3. (a) and (b) represent HL
RT (n,k,Z1) and HL

RT (n,1,Z1), respectively.

k ≥ 2 is fixed, the differential entropy is negative and decreasing in n. Also, for k = 1, we have

∆HU
RT (n,1,Z1) =

n+2
(n+1)2 +

2
n+1

(ψ(n+1)+ γ
∗) ,

and

∆HL
RT (n,1,Z1) =

n+2
(n+1)2 .

The following properties are easy to check and confirm via Figs. 2. and 3.

(i) limn→∞ ∆HU
RT (n,1,Z1) = limn→∞ ∆HL

RT (n,1,Z1) = 0.
(ii) ∆HU

RT (n,1,Z1) and ∆HL
RT (n,1,Z1) are non-negative decreasing functions of n.

(iii) 0≤ ∆HL
RT (n,1,Z1)<

3
4 .

We note that ψ(n+1) = ψ(n)+ 1
n and limn→∞

ψ(n)
n = 0.

3.2. Shannon information in an inverse sampling plan

In an inverse sampling plan, we take observations until a fixed number m of k-records is reached.
Here, we compute the SI of k-records for an inverse sampling plan from Pareto-type distributions
and discuss their properties.

Theorem 3.2. The SI contained in the m-th upper and m-th lower k-record values from Z1 are given
by

hU
M(m,k,Z1) = lnΓ(m)+

m(k+1)
k

− lnk− (m−1)ψ(m), m≥ 1, (3.7)

and

hL
M(m,k,Z1) = lnΓ(m)+

m(k−1)
k

− lnk− (m−1)ψ(m)

+ 2

(
ψ(k+1)+ γ

∗−
m

∑
j=2

k j−1
ζ ( j,k+1)

)
, m≥ 2. (3.8)
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It is easy to check (3.7). Now from (2.13), replacing F by 1−F , we obtain

ψ
L
f (i,k,Z1) =−2

ki

Γ(i)

∫ 1

0
(− ln(1− y))(− lny)i−1yk−1dy.

Since − ln(1− y) = ∑
∞
l=1

yl

l , the above expression can be written as

ψ
L
f (i,k,Z1) = −2ki

∞

∑
l=k+1

1
(l− k)li =−2ki

[
1
ki

k

∑
j=1

1
j
− ζ (2,k+1)

ki−1 −·· ·− ζ (i,k+1)
k

]

= −2

[
ψ(k+1)+ γ

∗−
i

∑
j=2

k j−1
ζ ( j,k+1)

]
. (3.9)

It is clear that i = 1, leads to

ψ
L
f (1,k,Z1) =−2k

∞

∑
j=k+1

1
j( j− k)

=−2

[
∞

∑
j=1

1
j
−

∞

∑
j=k+1

1
j

]
=−2

k

∑
j=1

1
j
=−2(ψ(k+1)+ γ

∗) .

(3.10)

Substituting (3.9) and (3.10) in (2.11), the proof is complete.

Remark 3.1. For m = 1, we have

hL
M(1,k,Z1) = hL

R(1,k,Z1) = hL
RT (1,k,Z1) =

k−1
k
− lnk+2(ψ(k+1)+ γ

∗) . (3.11)

Corollary 3.3. For Zα , we obtain

hU
M(m,k,Zα) = hU

M(m,k,Z1)− lnα +

(
1
α
−1
)

m
k
,

and

hL
M(m,k,Zα) = hL

M(m,k,Z1)− lnα +

(
1
α
−1
)(

ψ(k+1)+ γ
∗−

m

∑
j=2

k j−1
ζ ( j,k+1)

)
.

Also, hL
M(1,k,Zα) = hL

M(1,k,Z1)− lnα +
( 1

α
−1
)
(ψ(k+1)+ γ∗) .

Corollary 3.4. The SI contained in the m-th upper and m-th lower k-record values from the Pareto
(IV ) are

hU
M(m,k,X) = hU

M(m,k,Zα)+ ln(θγ)+(kα)m (1− γ)
∞

∑
q=kα+1

1
(q− kα)qm − (1− γ)

m
kα

,

and

hL
M(m,k,X) = hL

M(m,k,Zα)+ ln(θγ)+
1− γ

α
(ψ(k+1)+ γ

∗)− (1− γ)

α

m

∑
j=2

k j−1
ζ ( j,k+1)+(1− γ)km

∞

∑
j=1

∞

∑
q=0

( j
α

q

)
(−1)q

j(q+ k)m ,
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respectively. When α is integer, one obtains

hU
M(m,k,X) = hU

M(m,k,Zα)+ ln(θγ)+(1− γ)(ψ(kα +1)+ γ
∗)

−(1− γ)
m

∑
j=2

(kα) j−1
ζ ( j,kα +1)− (1− γ)

m
kα

.

Let

∆hU
M(m,k) = hU

M(m+1,k)−hU
M(m,k),

and

∆hL
M(m,k) = hL

M(m+1,k)−hL
M(m,k),

denote the change in entropy in the last upper and last lower k-record values, respectively when the
new k-record is observed. Then, from (3.7) and (3.8), we obtain

∆hU
M(m,k,Z1) = lnm−ψ(m)+

1
k
,

and

∆hL
M(m,k,Z1) = lnm−ψ(m)− 1

k
−2km

ζ (m+1,k+1).

It is easy to see that

(i) ∆hU
M(m,k,Z1) is a positive function of m for each fixed k. Hence the sequence of functions

{hU
M(m,k,Z1)} is increasing with respect to m. Also, ∆hL

M(m,k,Z1) is a negative function of
m, for each fixed k. Therefore {hL

M(m,k,Z1)} is a sequence of decreasing functions of m.
(ii) for each fixed k, ∆hU

M(m,k,Z1) and ∆hL
M(m,k,Z1) are decreasing and increasing functions

of m, respectively.
(iii) limm→∞ ∆hU

M(m,k,Z1) =
1
k and limm→∞ ∆hL

M(m,k,Z1) =−1
k .

(iv) 1
2m + 1

k < ∆hU
M(m,k,Z1) <

1
m + 1

k and −1
k − 2kζ (2,k+ 1)+ γ∗ < ∆hL

M(m,k,Z1) < −1
k , for

each m≥ 2.

We notice that 1
2m < lnm−ψ(m)< 1

m , for m > 0, ψ(1) =−γ∗ and limm→∞ kmζ (m+1,k+1) = 0.
For k = 1, we obtain

∆hU
M(m,1,Z1) = lnm−ψ(m)+1,

and

∆hL
M(m,1,Z1) = lnm−ψ(m)−2ζ (m+1)+1.

It is easy to prove that

(i) limm→∞ ∆hU
M(m,1,Z1) = 1 and limm→∞ ∆hL

M(m,1,Z1) =−1.
(ii) 1

2m +1 < ∆hU
M(m,1,Z1)<

1
m +1, for each m≥ 2 and ∆hL

M(m,1,Z1)>
1

2m −
π2

3 +1.
(iii) ∆hU

M(m,1,Z1) is a positive decreasing function of m, therefore hU
M(m,1,Z1) is an increasing

function of m.

430

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 419-438



Fig. 4. (a) and (b) represent hU
M(m,k,Z1) and hL

M(m,k,Z1), respectively.

Fig. 4. displays a graphical representation of hU
M(m,k,Z1) and hL

M(m,k,Z1) when k = 1,2,3,5,10.
Let

∆
∗hU

M(m,k) = hU
M(m,k+1)−hU

M(m,k),

and

∆
∗hL

M(m,k) = hL
M(m,k+1)−hL

M(m,k),

denote the SI difference of (k + 1)-record and k-record in the m-th upper and m-th lower cases,
respectively. Then, from (3.7) and (3.8), it is easy to check

∆
∗hU

M(m,k,Z1) = ln
k

k+1
− m

k(k+1)
,

and

∆
∗hL

M(m,k,Z1) =
m+2k

k(k+1)
+ ln

k
k+1

+
2
k

m

∑
j=2

(
k

k+1

) j

+2
m

∑
j=2

(
k j−1− (k+1) j−1)

ζ ( j,k+2).

We note that ζ ( j,k+1) = 1
(k+1) j +ζ ( j,k+2). Hence

(i) ∆∗hU
M(m,k,Z1) is a negative increasing function of k, for each fixed m. Hence, hU

M(m,k,Z1)

is a monotone decreasing function of k. Similarly, ∆∗hL
M(m,k,Z1) is a positive decreasing

function of k and therefore hL
M(m,k,Z1) is a monotone increasing function of k for each m.

(ii) limk→∞ ∆∗hU
M(m,k,Z1) = limk→∞ ∆∗hL

M(m,k,Z1) = 0.
(iii) − ln2− m

2 <∆∗hU
M(m,k,Z1)< 0 and 0<∆∗hL

M(m,k,Z1)<
m
2 +2−ln2−

(1
2

)m−1
+∑

m
j=2(2−

2 j)ζ ( j,3).

Remark 3.2. For m = 1, we have

∆
∗hL

M(1,k,Z1) = ln
k

k+1
+

2k+1
k(k+1)

.

Therefore

(i) limk→∞ ∆∗hL
M(1,k,Z1) = 0 and 0 < ∆∗hL

M(1,k,Z1)<− ln2+ 3
2 .
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(ii) ∆∗hL
M(1,k,Z1) is positive monotone decreasing function of k for each m. So hL

M(1,k,Z1) is
a monotone increasing function of k.

Theorem 3.3. The SI contained in all of the first m upper and m lower k-record values of an ISP
are respectively given by

hU
R (m,k,Z1) =

m
k

(
k+

m+1
2
− k lnk

)
,

and

hL
R(m,k,Z1) =

m
k

(
k− m+1

2
− k lnk

)
+2m(ψ(k+1)+ γ

∗)−2
m

∑
j=2

(m− j+1)k j−1
ζ ( j,k+1).

Corollary 3.5. For Pareto (I) with parameter α , we have

hU
R (m,k,Zα) = hU

R (m,k,Z1)−m lnα +

(
1
α
−1
)

m(m+1)
2k

,

and

hL
R(m,k,Zα) = hL

R(m,k,Z1)−m lnα +m
(

1
α
−1
)
(ψ(k+1)+ γ

∗)

+

(
1− 1

α

) m

∑
j=2

(m− j+1)k j−1
ζ ( j,k+1).

Corollary 3.6. For the Pareto (IV ), one can obtains

hU
R (m,k,X) = hU

R (m,k,Zα)+m ln(θγ)+(1− γ)
m

∑
j=1

∞

∑
q=kα+1

(kα) j

(q− kα)q j −
m(m+1)(1− γ)

2kα
,

and

hL
R(m,k,X) = hL

R(m,k,Zα)+m ln(θγ)+
m(1− γ)

α
(ψ(k+1)+ γ

∗)− 1− γ

α

m

∑
j=2

(m− j+1)

k j−1
ζ ( j,k+1)+(1− γ)

m

∑
j=1

∞

∑
l=1

∞

∑
q=0

( l
α

q

)
(−1)q k j

l(q+ k) j .

When α is integer,

hU
R (m,k,X) = hU

R (m,k,Zα)+m ln(θγ)+m(1− γ)(ψ(kα +1)+ γ
∗)

− (1− γ)
m

∑
j=2

(m− j+1)(kα) j−1
ζ ( j,kα +1)− m(m+1)(1− γ)

2kα
.

Let

∆hU
R (m,k) = hU

R (m+1,k)−hU
R (m,k),

and

∆hL
R(m,k) = hL

R(m+1,k)−hL
R(m,k),

denotes the change in entropy in observing the k-record values from the m-th to the (m+ 1)-th
k-record values. Therefore,
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Fig. 5. (a) and (b) represent hU
R (m,k,Z1) and hL

R(m,k,Z1), respectively.

∆hU
R (m,k,Z1) =

m+1
k
− lnk+1, (3.12)

and

∆hL
R(m,k,Z1) = 2(ψ(k+1)+ γ

∗)−2
m+1

∑
j=2

k j−1
ζ ( j,k+1)+1− m+1

k
− lnk.

It can be easily shown that

(i) ∆hL
R(m,k,Z1) is a monotone decreasing in m, for each k > 1.

(ii) ∆hU
R (m,k,Z1) is a positive function for m > k lnk− k−1 and otherwise is a negative func-

tion.
(iii) ∆hL

R(m,k,Z1)< 2(ψ(k)+ γ∗− kζ (2,k+1))+1− lnk, ∀m.

(see Fig. 5. for illustration.)

Remark 3.3. Note that for k = 1, i.e. for ordinary records, it is easy to see that the differential
entropy has the following properties

(i) ∆hU
R (m,1,Z1) = m+2 and ∆hL

R(m,1,Z1) = m+2−2∑
m+1
j=2 ζ ( j).

(ii) The sequence {hU
R (m,1,Z1)} contains positive and increasing functions in m.

(iii) ∆hU
R (m,1,Z1) is a positive monotone increasing function of m.

(iv) hU
R (m,1,Z1)> 2 and ∆hU

R (m,1,Z1)> 3, for each m.
(v) ∀m≥ 7, |∆hL

R(m,1,Z1)− (−m−1)|< 0.01.

Let

∆
∗hU

R (m,k) = hU
R (m,k+1)−hU

R (m,k),

and

∆
∗hL

R(m,k) = hL
R(m,k+1)−hL

R(m,k).

It can be shown that

∆
∗hU

R (m,k,Z1) = m ln
k

k+1
− m(m+1)

2k(k+1)
,
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and

∆
∗hL

R(m,k,Z1) = m
(

m+1
2k(k+1)

+
2

k+1
+ ln

k
k+1

)
+

2
k

m

∑
j=2

(m− j+1)
(

k
k+1

) j

+ 2
m

∑
j=2

(m− j+1)
(
k j−1− (k+1) j−1)

ζ ( j,k+2).

Therefore

(i) ∆∗hU
R (m,k,Z1) is a negative increasing function of k for each m. Hence hU

R (m,k,Z1) is a
decreasing function of k for each m.

(ii) limk→∞ ∆∗hU
R (m,k,Z1) = 0 and −m

(
ln2+ m+1

4

)
< ∆∗hU

R (m,k,Z1)< 0.

Theorem 3.4. The SI contained respectively in the upper and lower k-record values and associated
k-record times for k > 1 are obtained as

hU
RT (m,k,Z1) = −m lnk+

m
k
(m+ k)+(1− γ

∗−ψ(k+1))
(

m+ k−1− km

(k−1)m−1

)
+

m−1

∑
j=2

(
(m+ k− j)k j−1− km

(k−1)m− j

)
ζ ( j,k+1), (3.13)

and

hL
RT (m,k,Z1) = −m lnk+

m(k−1)
k

+(1− γ
∗−ψ(k+1))

(
m+ k−1− km

(k−1)m−1

)
+ 2m(ψ(k+1)+ γ

∗)+
m−1

∑
j=2

(
(k+ j−m−2)k j−1− km

(k−1)m− j

)
ζ ( j,k+1)

− 2km−1
ζ (m,k+1). (3.14)

Remark 3.4. Note that for k = 1, (3.13) and (3.14) lead to

hU
RT (m,1,Z1) =

m(3m+1)
2

−
m

∑
j=2

(m− j+1)ζ ( j), (3.15)

and

hL
RT (m,1,Z1) = m2 +m−3

m

∑
j=2

(m− j+1)ζ ( j). (3.16)

Corollary 3.7. For Zα , we have

hU
RT (m,k,Zα) = hU

RT (m,k,Z1)−m lnα +

(
1
α
−1
)

m(m+1)
2k

,

and

hL
RT (m,k,Zα) = hL

RT (m,k,Z1)−m lnα +m
(

1
α
−1
)
(ψ(k+1)+ γ

∗)

+

(
1− 1

α

) m

∑
j=2

(m− j+1)k j−1
ζ ( j,k+1),
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and for k = 1,

hU
RT (m,1,Zα) = hU

RT (m,1,Z1)−m lnα +

(
1
α
−1
)

m(m−1)
2

,

and

hL
RT (m,1,Zα) = hL

RT (m,1,Z1)−m lnα +

(
1
α
−1
)

m(m−1)
2

−
(

1
α
−1
)m−1

∑
j=2

(m− j)ζ ( j).

Corollary 3.8. For the Pareto (IV ), we have

hU
RT (m,k,X) = hU

RT (m,k,Zα)+m ln(θγ)− m(m+1)(1− γ)

2kα
+(1− γ)

m

∑
j=1

∞

∑
q=kα+1

(kα) j

(q− kα)q j ,

and

hL
RT (m,k,X) = hL

RT (m,k,Zα)+m ln(θγ)+
m(1− γ)

α
(ψ(k+1)+ γ

∗)− (1− γ)

α

m

∑
j=2

(m− j+1)

k j−1
ζ ( j,k+1)+(1− γ)

m

∑
j=1

∞

∑
l=1

∞

∑
q=0

( l
α

q

)
(−1)q k j

l (q+ k) j .

When α is integer,

hU
RT (m,k,X) = hU

RT (m,k,Zα)+m ln(θγ)+m(1− γ)(ψ(kα +1)+ γ
∗)− (1− γ)

m

∑
j=2

(m− j+1)(kα) j−1
ζ ( j,kα +1)− m(m+1)(1− γ)

2kα
.

We note that for ordinary records,

hU
RT (m,1,X) = hU

RT (m,1,Zα)+m ln(θγ)+(1− γ)
m

∑
i=1

∞

∑
j=α+1

α i

( j−α) ji −
m(m+1)(1− γ)

2α
,

hL
RT (m,1,X) = hL

RT (m,1,Zα)+m ln(θγ)− m(m+1)(1− γ)

2α
+

1− γ

α

m

∑
j=2

(m− j+1)ζ ( j)

+ (1− γ)
m

∑
i=1

∞

∑
j=1

∞

∑
q=0

( j
α

q

)
(−1)q

j (q+1)i ,

and when α is integer

hU
RT (m,1,X) = hU

RT (m,1,Zα)+m ln(θγ)+m(1− γ)(ψ(α +1)+ γ
∗)− (1− γ)

m

∑
j=2

(m− j+1)α j−1
ζ ( j,k+1)− m(m+1)(1− γ)

2α
.

Let

∆hU
RT (m,k) = hU

RT (m+1,k)−hU
RT (m,k),

and
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Fig. 6. (a) and (b) represent hU
RT (m,k,Z1) and hU

RT (m,1,Z1), respectively.

∆hL
RT (m,k) = hL

RT (m+1,k)−hL
RT (m,k).

Then,

∆hU
RT (m,k,Z1) = − lnk+

2m+1
k

+1+(1− γ
∗−ψ(k+1))

(
1− km

(k−1)m

)
+

m−1

∑
j=2

(
k j−1− km

(k−1)m− j+1

)
ζ ( j,k+1)− km−1

k−1
ζ (m,k+1),

and

∆hL
RT (m,k,Z1) = − lnk+

k−1
k

+(1− γ
∗−ψ(k+1))

(
1− km

(k−1)m

)
+ 2(ψ(k+1)+ γ

∗)−2km
ζ (m+1,k+1)+

km−1−2km

k−1

ζ (m,k+1)−
m−1

∑
j=2

(
km

(k−1)m− j+1 + k j−1
)

ζ ( j,k+1).

respectively. We note that for k = 1,

∆hU
RT (m,1,Z1) = 3m+2−

m+1

∑
j=2

ζ ( j),

and

∆hL
RT (m,1,Z1) = 2m+2−3

m+1

∑
j=2

ζ ( j),m = 1,2,3, ...

The following properties are easily obtained:

(i) ∆hL
RT (m,1,Z1) is a negative function of m, therefore hL

RT (m,1,Z1) is a decreasing function
of m. Furthermore, ∆hL

RT (m,1,Z1) is an increasing function of m.
(ii) For each m ≥ 8, we have |∆hL

RT (m,1,Z1)− (−m− 1)| < 1
100 and |∆hU

RT (m,1,Z1)− (2m+

1)|< 1
100 , for each m≥ 6.

( see Figs. 6. and 7. for some more notes.)
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Fig. 7. (a) and (b) represent hL
RT (m,k,Z1) and hL

RT (m,1,Z1), respectively.

4. Conclusions
In this paper, we obtained the Shannon information in k-record in a sample of fixed size
as well as in an inverse sampling plan for Pareto-type distributions. Properties of entropies
for k-record values for Pareto-type distributions are also investigated.
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