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paper, we derive the Shannon information contained in upper (lower) k-record values and associated k-record
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1. Introduction

The origin of the term entropy goes back to the works of Clausius (1864) and Boltzmann (1872) in
thermodynamics. The idea of information-theoretic entropy was first introduced by Shannon (1948).
Park (1995), Ebrahimi et al. (2004) and Oluyede (2006) obtained various results on the information
properties of order statistics. Yari and Borzadaran (2010) calculated the Shannon entropy for Pareto-
type distributions and their order statistics. Baratpour et al. (2007) derived some results related to
the Shannon entropy and Rényi entropy for record values.

In 1976, Dzubdziela and Kopocinski introduced the concept of k-records which were further studied
by Grudzieén and Szynal (1985), Ragab and Amin (1997) and called Type 2 k-records by Arnold et
al. (1998). For k = 1, the usual records are obtained.

Madadi and Tata (2011) presented results on the Shannon information contained in upper (lower)
record values and associated record times in a sequence of independent identically distributed con-
tinuous random variables. They also considered the Shannon information contained in record data
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from an inverse sampling plan. In 2014, they generalized these results to k-records. Afhami and
Madadi (2013) derived the exact analytical expressions for the Shannon entropy of generalized
order statistics from the Pareto (IV) distribution and related distributions.

In this paper, we obtain the Shannon information contained in upper (lower) k-record values and
k-record times of a random sample of size n (n > k) and of an inverse sampling plan for Pareto-type
distributions. The paper is organized as follows: In Section 2, we present some preliminary results.
Section 3 contains the main results of the paper. In this section, we derive the Shannon information
contained in the data consisting of all upper and lower k-record values and associated k-record times
of a random sample of size n and of an inverse sampling plan for Pareto-type distributions. We also
present some results of the differential entropy for a finite sample of fixed size and for an inverse
sampling plan. Finally, Section 4 contains a conclusion.

2. Preliminaries

In this section, we review some basic notations and definitions concerning Pareto-type distributions,
k-records and entropy which will be needed in the next section.

2.1. Pareto-type distributions

A general version of Pareto-type distributions, called the Pareto (IV) distribution, is discussed in
chapter 3 of Arnold (1983). The cumulative distribution function of this family is

-

Fy(x)=1- 1+<x_“>y] x>, 2.1)

0

where —oo < 1 < o0, 8 > 0 and y > 0 are location, scale and inequality parameters, respectively
and o > 0 is the shape parameter which characterizes the tail of the distribution. This distribution
is denoted by Pareto (IV)(u, 0,7, &), and its density function is as follows:

—u 51
a ()’
PENE
o1+ (5)7]
e Setting (¢ = 1), (y=1) and (y =1, u = 0) in relation (2.1) and (2.2), one at a time, leads to the
cumulative distribution and probability density functions of Pareto (III), Pareto (/1) and Pareto ()

distributions, respectively.
o The Burr (XI) distribution is a special case of the Pareto (/V) distribution in which u =0, y — 71,

fx(x) = x> . (2.2)

<=

1
If X ~Pareto(IV)(u,0,7,a), and Zg = 1 + (*5#)7, then

Fr,(2)=1-2"% z>1, (2.3)
and

o
f2.(2) = T 2> L (2.4)

where o0 > 0. We denote this distribution by Pareto (o) and note that Z, has the same distribution

1
as Z{.
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2.2. Shannon information

Consider a discrete random variable X such that P{X = x;} = p;,i=1,2,--- and Y52 | P, = 1. Then
H(X) ==Y piinp;,
i=1

is known as the “entropy” or Shannon information (SI) of the random variable X. If X is a random
variable having an absolutely continuous cumulative distribution function (cdf) F (x) and probability
density function (pdf) f(x), then SI is defined as

~+o0
H(X)=— f(x)In f(x)dx.
Suppose that Z be a random variable with cdf Fz, pdf f; and Shannon information H(Z). The
following lemma is well-known and easy to check.

1
Lemma 2.1. [fX = 0Z" + , then Fx(x) = F; <(x9u) y)-
So,

H(X)=1In(0y)+(y—1)E(InZ)+H(Z), V0,y>0,u € K.

The Shannon entropy of the random variable X is a mathematical measure of information which
measures the average reduction of uncertainty of X. Because of its descriptive character, analytical
expressions for univariate distributions have been obtained, among others, by Cover and Thomas
(2006).

2.3. k-record data

Let {X, :n=1,2,...} be a sequence of independent and identically distributed (i.i.d) random vari-
ables with absolutely continuous cumulative distribution function F(x; 6) and probability density
function f(x;0). We are interested in the Shannon information (SI) contained in the sequence of
k-records. A k-record is basically the k-th largest observation in a partial sample. More precisely, let
Xi.n denote the i-th order statistic from a random sample of size n. We define upper k-record times
T, x and upper k-record values R,  as follows :

(i) T1x =k and Ry, = X,
(i) Ty =min{j:j> T_14,X; > XTn—I,kfk“’IZTn—]‘k} and R,y = Xr,, —k+1:Ti, (n> 2).

Suppose N, x be the number of k-record values in Xi, ..., X,,. Lower k-record values, lower k-record
times and the number of lower k-records are similarly defined (Arnold et al., 1998).

In the case of record and k-record data from a random sample of size n, Madadi and Tata (2011,
2014) obtained the SI contained in the last record (maximum), upper k-record values with associ-
ated k-record times, denoted by H{(n) and HY; (n, k), respectively. The SI for the lower records and
k-records are denoted by HL(n) and Hk; (n, k), respectively.

In an inverse sampling plan (ISP), one takes observations until a fixed number m of k-records
is reached. Denote the SI contained in all upper k-record values, the last upper k-record and all
upper k-record values together with associated k-record times by h% (m, k), h%,(m, k) and h%, (m,k),
respectively. The corresponding SI for lower k-record data are denoted by hk(m, k), hk,(m,k) and
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hkr(m, k), respectively.
Madadi and Tata (2011) showed that the SI contained in the last upper record is

H}é(n):—lnn—&-n%l—n(p}](n—l,l), (2.5)
where
U e k1 pi
0 (i) = [ (nf()(1= F@)* ' F (0 () 2.6)
For lower record values, we have
H,@(n):—lnnJrE—n(p;(n—l,l), @.7)

where (})L (i,k) is obtained from ¢U (i,k) by replacing F by 1 —
Madadi and Tata (2014) also proved that the SI contained in the data consisting of all upper k-record
values and k-record times of a random sample of size n (n > k) is given by

() == ("7 e kz(’“‘ Hern

AR e e

i=1j=0

and
U noq n—1 U
Hr(n,1) = y(n+1)+7 =Y =) 07 (is1), 2.9)
i=1 i=0
where y* = 0.57721566 is the Euler constant and v is the digamma function where
1 ® 1 _
V(x) = =—~ /0 Y e ¥ (Iny)dy.

The Hkr(n,k) and Hs,(n,1) contained in corresponding lower k-record statistics are obtained by
replacing ¢7 (i,k) and ¢f (i, 1) by ¢f(i,k) and ¢ (i, 1) in (2.8) and (2.9), respectively.

They also showed that the SI contained in all of k-record values, last upper k-record and all of upper
k-record values and times of an ISP are respectively obtained as

m-1 i )
hE (m, k) = k(k—T—klnk i;y/}f(z,k), (2.10)
RY (m,k) = InT(m) + mk—1) —Ink— (m—1)y(m)— y/}f(m,k), (2.11)
and for k > 1,
k—1 k™
km m
j-1r_ %~ U
+ Z <m+k 7k G ]> (j,k+1) ,;Wf (2.12)
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where

) = En f(Ria)) = Fs [ () (=In(1 = F() ™" (1= P ) 13

Here (i,k) = X7 % is the incomplete Zeta function.
Note that for k = 1, i.e. for ordinary records,

By (m, 1) = h% (m, 1) +m(m —1) — Z (m—i+1)8(). (2.14)

Similar formulas hold for lower k-records.

3. Shannon information in k-records for Pareto-type distributions

In this section, we compute the SI in k-records of Pareto-type distributions for a finite sample of
fixed size as well as for an inverse sampling plan.

3.1. Shannon information in a finite sample

Since the number of observations # is fixed (and the number of records is random), the last upper
record is the maximum in the sample. From (2.5) and (2.6), we have

1 at1 .
HY(n,Zy) = —Inn+ . —l—T(l[/(n—i— )+7)—Ina, 3.1
and
Han,Zg) = —tnn+ "L 2L 40 (3.2)
n = —Inn —Inao. :
M= n no

Therefore the SI contained in the last record for the Pareto (/V) are

HY(n,X) = H(n,Zg) +1n(6 l;y(l[/(l’l-i- 1) +7v")

=
[

¢ n—1 (—1)/
+nal ")jg,_l( j )1(1+ja+a)’

and

oo

HL(n,X) = Hi;(n,Zy) +1n(8y) —n(1—7) [ Zl z+na

When « is integer,

l;llJrJochoc) jaia(w(ja+oc+1)+y*),
and
- 1 1
;m na(‘l’(”“*'l)*‘?ﬁ)
Let
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Fig. 1. (a) and (b) represent HY(n,Z;) and HE;(n,Z;), respectively.

AHy(n,Zy) = Hy(n+1,Zg) — Hyy(n, Zy),
and
AH}(n,Zq) = Hy(n+1,Zy) — Hyy(n,Zy),
denote the n-th differential of the entropy, that is, the change in the entropy when a new observation
occurs. From (3.1) and (3.2), we obtain
n 1 1

+-+

AH}(n,Zg) =1 —
w(nZa) Y1 T h (n+1)o’

and

n 1

AHy(n,Zg) =1 — :
u(n:Za) T nn+1)o

Fig. 1. represent behaviours of HY(n,Z;) and HL (n,Z;) with respect to n.
One can easily see that

(1) limy—e AHS (n,Z4) = limy e AHL (n,Z4) = 0.

(i) AHY(n,Zy) and AHL (n,Zy) are respectively always nonnegative and negative functions i.e.
H{(n,Zy) and HY(n,Zq) are increasing and decreasing functions with respect to sample
size for each a. Also, AHY (n,Zq) and AHL;(n,Zg) are decreasing and increasing functions
of n for each a.

(il) 0 <AHY(n,Zy) < —In2+1+ 5 and —In2 — 5= < AH}(n,Zy) < 0.

(iv) For each fixed n, AH{)(n,Zy) and AHL (n,Z,) are decreasing convex and increasing con-
cave functions of «, respectively.

(v) HY(n,Zy) and HL (n,Zy) are decreasing convex functions of ¢ for each n.

Theorem 3.1. For Pareto (1), the SI contained in all the upper and lower k-record values together
with k-record times of a random sample of size n (n > k) are equal to

—k+2 2 ki k-1
HgT(n,k,Zl):—<n k+ >lnk+k+z<l—£]il >(2kl(k:k+i)+i1(i+1:k+i)),(3.3)
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and

—k+2 ki k—1
H,%T(n,k,zl):_<” 2+ >1nk+2k1(1:k)+Z<H];_l )(2k+i)1(i+1:k+i), (3.4)
i=1

where I(j : n) :Z;:({ (" )((zﬂgb 0<j<n.
Also for k = 1, we obtain

HY(n,1,Z1) = (1427") (w(n+1) +7%) Z Z (i+1), (3.5)
and
H: (n,1,2)) = (w(n+1)+y)+i (3.6)

From (2.3), (2.4) and (2.6), we get

¢}](i,k,Zl):/Ol(21nu)ukl(l—u)idu:2i <l> (,_l)j = 2U(k:k+i).

Substituting this expression in (2.8), we obtain

HgT(n,k,zl)——<”_§+2>1 k+2k2 ( ik 11> (k: k+i) +kZ (’H]‘C 1)
I(i+1 :k+i):—<”_’;+2) Ink + 2k. — +kZ {2(121‘—1)
I(k: k+i)+ (”i 1>I(i+1 :k—l—i)] ,
hence, we conclude (3.3). Similarly,
OF(i.k,Z1) = =20(i+1:k+1i),
therefore (3.4) is obtained. From (2.6), and recalling that —In(1 —¢) = Zq 1= q , we have

2(y(i+2)+7)
i+1

of (i,1,21) = —

)

and

thus (3.5) and (3.6) are achieved.
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1
Corollary 3.1. For Zq = Z{*, we obtain

Hir(n.k,Za) = Higr(n.k,Z1) —k(lnat) (y(n+ 1) — y(k))

(B s

and
Hyr (nk,Zo) = Hir (n,k,Z1) —k(Ine) (w(n+1) — y(k))
+k<—1>z<l+k > (i+1:k+i).
Also,
1 n—1
HYr(n,1,Zy) = Hyp(n,1,Z)) — (Ina) (y(n+1) +7°) + <a— 1> ;)1(1 tit 1),
and

Hr (1,1, Z) = Hir (n,1,21) — (n o) (y(n+1) +7) + (—1)i12.

Corollary 3.2. The SI contained in all k-record values and k-record times of a random sample of
size n (n > k) from the Pareto (IV) distribution are

_ n—k i -
HIIQJT(”J@X):Hllq]T(n,k,Za)—l—k(ln(Oy))(1,/(”4_1)_W(k))_k(l Y) (+k 1)

o =\ k-1

n—k i o i

i+k—1 (—1)/
b rhat 0§ F () ()0
. ;)Zz)q; i) a(q+ka+ ja)

and

nkk=1 = /iy g
H,%T(n,k,X):H,%T(n,k,Za)+k(ln(6}/))(w(n—i—l)—ll/(k))-l'ka(l—7)' . Z<+k ]>

(3 amarers 55 ()0 e

respectively.

For ordinary records, these information can be written as

HIIQJT(na 1,X) = H}{T(n, 1,Zg) + (]n(ey) — Y*(;

Loy(i41) e e (i (—1)/
LB 1Y (igiara

=1 ! i=0 j=0 g=1

and
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Fig. 2. (a) and (b) represent H,l{T (n,k,Zy) and H,%’T(n, 1,Z;), respectively.

Hir(n,1,X) = Hgr(n,1,Zo) + (In(87)) (w(n+ 1) +7)

—l_yil—i—a(l y)niliil
a =i P gg+io+a)’
When « is integer, we have
[eS) 1 )
(ylia+a+1)+7).

q;q(q+ioc+a) Tiata

Forn=kk+1,---,let

AHgr (n,k) = Hip(n+1,k) — Hgr (n, k),
and

AHpr(n,k) = Higr (n+1,k) — Hg (n, k),

denote the n-th SI differential corresponding to entropies in equations (3.3) and (3.4), then it is easy
to see that

AHY (n,k,Z1) = —(n—k+2)Ink+ ( "

k—1> RkIk:n+1)+(n—k+1)I(n—k+2:n+1)],

and

n

AHEr(n,k,Zy) = —(n —k+2)Ink + (k—l

)(n—i—k—i—l)l(n—k—i—Z:n—i—l).

Fig. 2. displays HSy(n,k,Z;) and HSy(n,1,Z;) for several values of k and n. Behaviours of
Hk:(n,k,Z,) and Hky(n,1,Z;) are shown in Fig. 3. Our numerical computations suggest that when
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@ ®)

Fig. 3. (a) and (b) represent H,%T(n,kzl) and H]%T(’% 1,Z;), respectively.

k > 2 is fixed, the differential entropy is negative and decreasing in n. Also, for k = 1, we have

n+2 2
AHILQJT(”’LZI) = (n_|_1)2 +}’l+1 (l[/(n+1)+)f*),
and
n+2
AH}%T(n,l,Zl):m.

The following properties are easy to check and confirm via Figs. 2. and 3.

(i) limy—e AHY, (1,1,Z)) = lim,, e AH57(n,1,21) = 0.
(ii) AHY.(n,1,Z1) and AHky(n,1,Z;) are non-negative decreasing functions of n.
(i) 0 <AHk(n,1,Z1) < 3.

We note that y(n+1) = y(n) + 1 and lim, ., ¥ _ g,

n

3.2. Shannon information in an inverse sampling plan

In an inverse sampling plan, we take observations until a fixed number m of k-records is reached.
Here, we compute the SI of k-records for an inverse sampling plan from Pareto-type distributions
and discuss their properties.

Theorem 3.2. The SI contained in the m-th upper and m-th lower k-record values from Z, are given

by
WY (m,k,Z;) = InT'(m) + m(kljl) —Ink— (m—1)y(m), m>1, (3.7
and
hs (m,k,Zy) = InT'(m) + mk=1) g (m—1)y(m)
+2<1;/(k+1)+}/*—izkj1C(j,k+1)),m22. (3.8)
=
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It is easy to check (3.7). Now from (2.13), replacing F by 1 — F, we obtain
i

(i)

VHGAZ) = 25 [ (im0 (e

. oo ! . .
Since —In(1 —y) = Y;2, ¥, the above expression can be written as

wiik,Z)) = =2k )

> 1 A1 & L(2,k+1) Cli,k+1)
=2k | =) L LR
I=k+1 (I=k)l! [

=2 w(k+1)+y*—ikflc(j,k+1) (3.9)

It is clear that i = 1, leads to

vr(lLk Zy) = =2k ), =2 X5 L S| =2 s =2(vk+ D4y,
j=k+1 ](] ) = i j=1J
(3.10)
Substituting (3.9) and (3.10) in (2.11), the proof is complete.

Remark 3.1. For m = 1, we have
k—1
hILVI(lvkaZI) = hllé(Lkal) = hILQT(17k7zl) = T _lnk+2<W(k+ 1) +Yk) . (311)

Corollary 3.3. For Z,, we obtain
U U 1 m
hM(m,k,Za):hM(m7k,Z])—1na+ a—] ?7

and

Wy (m,k,Zy) = B (m,k,Z)) —Ino + <; - 1> (I]/(k—i— D+y — i K1k + 1)) .

j=2
Also, Wy (1,k,Zg) = hy(1,k,Z)) —Ina+ (£ — 1) (w(k+ 1)+ 7).
Corollary 3.4. The SI contained in the m-th upper and m-th lower k-record values from the Pareto

(IV) are

oo

U(m = hy(m,k,Zg) +1n "= (a—ko)a™
gk X) = Hym ko Ze) + 1007 + (0" (1 =9) B 7o

and
1
Byl ) = By .k, Za) +10(07) + - (i 1) ) — 7
o o /]
K (k4 1) + (1= p)k” (a ,
J:Zz ,:Zlng q Jq+k’"
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respectively. When Q is integer, one obtains
hiy(m,k,X) = hyy(m,k, Zo) +1n(07) + (1 = y)(w(ka + 1)+ 7*)

m . ) m
~(1=9 ) k) C(ka+1) = (1=7) .

= kot
Let
ARy (m,k) = Ry (m+1,k) — hyy(m, k),
and
Ak (m,k) = hip(m+1,k) — hiy (m, k),

denote the change in entropy in the last upper and last lower k-record values, respectively when the
new k-record is observed. Then, from (3.7) and (3.8), we obtain

My (m,,21) = Inm = y(om) + 1.

and
1
ARk (m,k,Zy) = Inm — y(m) — . —2K"E(m+1,k+1).

It is easy to see that

(i) ARY(m,k,Z,) is a positive function of m for each fixed k. Hence the sequence of functions

{nY,(m,k,Z;)} is increasing with respect to m. Also, Ahk,(m,k,Z;) is a negative function of
m, for each fixed k. Therefore {h%,(m,k,Z,)} is a sequence of decreasing functions of m.

(ii) for each fixed k, AhY,(m,k,Z;) and Ah%,(m,k,Z;) are decreasing and increasing functions
of m, respectively.

(iii) hmm% ARY(m,k,Zy) =t a

(iv) 2m + < AhU w(mk,Zy) <
eachm > 2.

+% and —1 —2k§(2 k+1 )ﬂf* < Ahky(m,k,Zy) < —1, for

i \

l
m

We notice that 5~ < Inm — y(m) < L, form >0, y(1) = —y* and lim,_, K" { (m+ 1,k +1) = 0.
For k = 1, we obtain

ARY(m,1,Z1) = Inm — y(m) + 1
and
ARk (m,1,Zy) = Inm — y(m) —2L(m+1)+1
It is easy to prove that

(i) 1immﬁw AR (m,1,71) = 1 and limy, o0 ARk (m,1,21) = —1.
(i) 5 +1 <Ay (m,1,Z)) < L 41, for each m > 2 andAhM(m,l,Zl) > 5 ———i—l
(iii) AAY,(m,1,Z;) s a positive decreasmg function of m, therefore hY; (m, l,Zl) is an increasing
function of m.
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S =
~N e T ———
-10] ~ T
-204 =~ ~ \\~
-30f o
- ~
40, -
10 20 30 40 50
m
— -k=1 —-k=2 k=3
— — k=5 —— k=10
(b)

Fig. 4. (a) and (b) represent h}[‘/,,(m, k,Zy) and hﬁ,,(ch.,Zl ), respectively.

Fig. 4. displays a graphical representation of hY,(m,k,Z;) and hk,(m,k,Z;) when k = 1,2,3,5, 10.
Let

and
A" iy (m, k) = B (m, k+ 1) = higy (m, k),

denote the SI difference of (k + 1)-record and k-record in the m-th upper and m-th lower cases,
respectively. Then, from (3.7) and (3.8), it is easy to check

k m

AR (m k. Z) =1n—— —
w(mk Zy) =In = k(k+1)’
and

AhE (mk,Z)) = m+2k %i j+2i(kf“—(k+l)j“)g('k+2)
w2 =0y © k+1 Tk “ k+1 “ ) '

We note that {(j,k+1) = -+ & (j,k+2). Hence

(k+1

(i) A*hY(m,k,Z,) is a negative increasing function of k, for each fixed m. Hence, 1%, (m,k,Z;)
is a monotone decreasing function of k. Similarly, A*h%,(m,k,Z;) is a positive decreasing
function of k and therefore /4, (m, k,Z;) is a monotone increasing function of k for each m.

(i) limg e A*AY) (m,k,Z1) = limy_ee A*h, (m,k, Z)) = 0.
(i) —In2—2 < A'hf)(m,k,Z1) <Oand 0 < A*hfy(m,k,Zy) < % +2~In2— (1)~ + X7, (2~
2)6(J,3)-

Remark 3.2. For m = 1, we have

k 2k+1

ARE(1,k,Z1) =1 .

Therefore

(i) limg e A*RE;(1,k,Z1) = 0 and 0 < A*Rl; (1,k,Z1) < —In2+ 3.
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(ii) A*h%,(1,k,Z;) is positive monotone decreasing function of k for each m. So hf,(1,k,Z;) is
a monotone increasing function of k.

Theorem 3.3. The SI contained in all of the first m upper and m lower k-record values of an ISP
are respectively given by

1
Wk, z) =2 (k+ 750 kink
* 2
and

Wk Z1) = k(k—’"jl—klnk)+2m<w<k+1>+m—2i2<m—j+1>kf-lc<j,k+1>.

Corollary 3.5. For Pareto (I) with parameter o, we have

m(m+1)

1
h%(m,k,za):h%(m,k,zl)—mlna+<a—1> T

and

hk(m,k,Zy) = hk(m,k,Z,) —mIno +m <; - 1) (w(k+1)+7)

+ <1—;> i(m—j+1)kj_1C(j,k+1).

J=2

Corollary 3.6. For the Pareto (IV), one can obtains

+1(1—7)
hg (m,k,X) = h% (m,k, Zg) +mIn(0y) + m(m ;
R ) = i @) jzlq %ﬂ q ka )¢l 2kat

and

hk(m,k,X) = hk(m,k,Zy) +mlIn(0y) + W(W(H 1) +7)— %’ i(m—ﬂ— 1)

j=2
Uik 19k
K k+1)+(1—y E;;}( ) qik)
When o is integer,
W (m,k,X) = h% (m,k, Zg) +mIn(0y) +m(1 — ) (y(ko+ 1) +7*)
e —?’)g(m—ﬁl)(ka)f1g(j,ka+1) e D=y
Let
ARG (m,k) = Y (m+ 1,k) — b (m. k),
and

Ahig(m, k) = hg(m+ 1,k) — hg(m, k),

denotes the change in entropy in observing the k-record values from the m-th to the (m+ 1)-th
k-record values. Therefore,
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k=10 — — k=5 =3 k=1 — =—k=2 k=3
— — k:2 ...... k:I "= = = k:5 — — k:]O
() (b)
Fig. 5. (a) and (b) represent h%(m,k,Zl) and hILe(m,l@Z] ), respectively.
m+1
Ahg(m,k,zl):T—lnkH, (3.12)
and
L m—+1 - m+1
Ahg(m,k,Zy) =2(w(k+1)+7) =2 Y K1 C(jk+1)+1- —— —Ink.
j=2

It can be easily shown that

(i) Ahk(m,k,Z;) is a monotone decreasing in m, for each k > 1.
(ii) Ahg (m,k,Z,) is a positive function for m > klnk — k — 1 and otherwise is a negative func-
tion.
(iii) Ahk(m,k,Z;) <2(w(k)+vy* —k{(2,k+1))+1—Ink, Vm.

(see Fig. 5. for illustration.)

Remark 3.3. Note that for k = 1, i.e. for ordinary records, it is easy to see that the differential
entropy has the following properties

(i) ARG (m,1,Z1) =m+2and Akg(m,1,Z;) = m+2—2Y"4 £(j).
(ii) The sequence {hY (m,1,Z;)} contains positive and increasing functions in m.
(i11) Ah% (m,1,Z;) is a positive monotone increasing function of m.
(iv) h¥(m,1,Z;) > 2 and ARY (m,1,Z;) > 3, for each m.
(v) Vm>17, |Ahk(m,1,Z;)—(-m—1)| < 0.01.

Let

A*hE (m, k) = hY (m,k+1) — hY (m, k),
and

A*hk(m, k) = hk(m,k-+1) — hk(m,k).

It can be shown that

k m(m+1)

AR (m.k,Z)) = ml -
R (MK, Z1) = min =g 2k(k+ 1)’
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and
m+1 2 k 2 ko’
A*hk(m,k,Z,) = ] z i
w(mk.21) m<2k(k+1)+k+l+nk+l>+kj_22(m I )<k+1>
m
+2Y (m—j+1) (K = (k+ 1)) E(j,k+2).
j=2
Therefore

(i) A*hY(m,k,Z)) is a negative increasing function of k for each m. Hence hY (m,k,Z) is a
decreasing function of k for each m.
(i) limy e A*HY (m,k,Z;) = 0 and —m (In2+ ) < A*hY (m,k,Z;) < 0.

Theorem 3.4. The SI contained respectively in the upper and lower k-record values and associated
k-record times for k > 1 are obtained as

i (m.k,22) = =ik (m K+ (1 =7 = y(k+1) (m+k_1—(k—k;n)ml>
+ Z <m+k P! (k—kr)’“) L0 k+1), (3.13)
and
Hhrlmk 20 = ik "5 1y e 1) <m+k—1—(k—klm)’”‘1>

m—1 m
+ 2m(y(k+1)+7")+ ; <(k+j—m—2)kf—‘ -~k m_j> C(j,k+1)

=1y
26" (myk+1). (3.14)

Remark 3.4. Note that for k =1, (3.13) and (3.14) lead to

m(3m+1) -

figr (m, 1,21) = == Y (m=j+1)E0), (3.15)
j=2
and
hgr(m,1,Zy) =m> +m—3Y (m—j+1){(j). (3.16)
j=2

Corollary 3.7. For Zy, we have

m(m—+1)

1
WS (m,k,Zy) :h%T(m,k,Zl)—mant—F(a—l) T

and

1
hkr(m,k,Zg) = hsy(m,k,Z)) —mIna +m ((X - l) (y(k+1)+7)

+ (1 —;> Y (m— o+ DR Gk 1),

J=2
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and fork =1,

1
hgT(mv laZ(x) — h%T(m, l,Zl) —mlna + <a — 1> m

and

m(m — ml
Hern,1.20) = g (m1,20) — e+ (1) "= (L1} S .

Corollary 3.8. For the Pareto (IV), we have

higr (m,k,X) = higr (m,k,Zg)) +mlIn(0) — mm+DA=7) | (1-7) i i

2ka j=1 g=ko+1 (qika)qj
and
L _ 4L (1—7) (1-7) ¢
hgr (m,k,X) = hgr(m,k,Zg) +mIn(0y) + (wk+1)+7") p” Y (m—j+1)
j=2

K k+1)+(1—y fi y <é> DIk
i=1i=1¢=0 \4 Hg+k)

WSy (m,k,X) = WS (m,k,Zg) +mIn(07) +m(1 — y)(w(ka+1)+ ") — (1 —

Y- m— 1) ke ko4 1) - MUY

J=2

When « is integer,

We note that for ordinary records,

Y)

hgT(m717X) = h%T(ma 1,Za) +m1n(9}/) + (1 - ’}/) Z Z

1)(1— 1l—y &
hér(m,l,X)=hfer(m,l,za>+mln<9y)—m(m+ =y, yZ(m—j+

B EE (it

and when « is integer

higr (m, 1,X) = higr(m,1,Zg.) +mIn(0y) +m(1 = y)(w(o+1)+7") = (1-7)

é(m—ﬁr Do/ ¢ k+1)— m(m+21(l(1 _?,).
Let
ARGy (m, k) = B (m+ 1,k) — gy (m, k),
and
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Fig. 6. (a) and (b) represent h%r (m,k,Z;) and h%T(m7 1,Z;), respectively.

AhILeT(”%k) = theT(m+ 1,k) — hléT(mak)-

Then,
2m+1 kM
Ah%T(m,k,Zl):—lnk—i- mk —|—1—|—(1—}fk—1//(k—|—1))<1—(k_1)m>
m—1 i K kmfl
e j 1)— 1
# 8 (V7 g ) Sk D gk,
and

Wiy ln 2 = ik S 0y i) (10 )

kmfl — kM

+2(yk+1)+7y")—2k"E(m+1,k+ 1)+ 1

m—1 m
Lk 1)~ Y ((k_ﬁm”“) k1),

j=2
respectively. We note that for k =1,

m+1

Ah%T(ma 1721) =3m+2— Z C(]),
=

and

m+1
Ahgr(m,1,Zy) =2m+2-3 Y £(j),m=1,2,3,...
j=2
The following properties are easily obtained:

(i) Ahkr(m,1,Z;) is a negative function of m, therefore hk;(m,1,Z;) is a decreasing function
of m. Furthermore, Ah,LeT (m,1,Z;) is an increasing function of m.

(ii) For each m > 8, we have |Ahk;(m,1,Z)) — (—m —1)| < 155 and |ARY,(m,1,Z;) — (2m+
1)| < 155, for each m > 6.

( see Figs. 6. and 7. for some more notes.)
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Fig. 7. (a) and (b) represent h,LQT(m,k,Zl) and hILQT(m, 1,Z;), respectively.

4. Conclusions

In this paper, we obtained the Shannon information in k-record in a sample of fixed size
as well as in an inverse sampling plan for Pareto-type distributions. Properties of entropies
for k-record values for Pareto-type distributions are also investigated.
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