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1. Introduction
The theory of stable (or α-stable) distributions has received much interest in different fields
as physics, economics, finance, and telecommunications since this class of distributions can
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account for tails thickness, peak value, and skewness. The empirical density function of many
real life data sets found in aforementioned fields has heavy tails so that normal models are
clearly inappropriate. For comprehensive accounts of applications of stable distributions, we
refer the readers to [13], [19], [20], [26], [28], and [31]. There are several parameterizations
for characteristic function of a stable random variable. In the following, Definition 1.1 gives
the S1 parameterization which is more popular.

Definition 1.1. The characteristic function of a stable random variable, say X, has the form

φX(t) = E exp(itX) =

{
exp

{
− |σt|α [1− iβ sgn(t) tan

(
πα
2

)
] + iµt

}
, α ̸= 1,

exp
{
− |σt| [1 + iβ sgn(t) 2π log |t|] + iµt

}
, α = 1,

(1.1)

where sgn(.) is the well-known sign function.

A stable distribution is described by four parameters: index of stability α ∈ (0, 2] (also
called tail parameter), skewness parameter β ∈ [−1, 1], scale parameter σ ∈ IR+, and
location parameter µ ∈ IR. We write S(α, β, σ, µ) to denote a stable distribution in this
parameterization. If β = 0, it would be the class of symmetric α-stable (SαS) distributions.
We assume throughout that β = 0, in which case φX(t) = exp {− |σt|α}.

In the following, we mention three well-known methods for estimating parameters of
this family. The maximum likelihood (ML) estimation for stable distributions approximated
theoretically by [9] and evaluated numerically by [21]. Although such approaches lead to
some efficient estimates, both involve numerical complexities. The software proposed by [21]
called STABLE uses a spline interpolation of stable densities for his numerical method.
This package estimates all four parameters of a stable distribution efficiently when α ≥
0.4. The empirical characteristic function (CF) method is suggested in [12]. As another
approach, sample quantile (SQ) technique proposed in [15] presents consistent estimators
for all parameters based on five specific sample quantiles.

Definition 1.2. Let Y be a d-dimensional sub-Gaussian α-stable (sub-Gaussian SαS) ran-
dom vector. Then, the characteristic function of Y can be written as

φY (t) = E exp(itTY ) = exp
{
−
(
tTΣt

)α/2
+ itTµ

}
, (1.2)

where Σ is a d× d positive definite matrix and µ ∈ IRd is the location parameter.

Computing the maximum likelihood (ML) estimation of a sub-Gaussian SαS distribution
directly by maximizing the log-likelihood of sub-Gaussian SαS density, known as full MLE
in the literature, has been performed in [24]. Finding the full MLEs is computationally
expensive. So, a projecting method is suggested in which a sub-Gaussian SαS random vector
is projected into different directions. Then since each component follows a univariate SαS
distribution, parameters of each component are estimated using methods such as ML, CF,
and SQ which developed for the univariate case, [24]. The obtained estimates in such a way
are known as projected estimations and these methods are called the projected ML, CF, and
SQ, respectively. In the projection approach, the dispersion matrix of a sub-Gaussian SαS
distribution is estimated term-by-term, and so there is no guarantee that the reconstructed
matrix to be positive definite. The issue with Σ possibly not being positive definite is
addressed in [24]. Also, the projected ML approach still is applicable only for α ≥ 0.4.
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Although the proposed EM algorithm in this work is more computationally expensive
than the ML, CF, and SQ methods, the following reasons motivate us to propose it. Con-
trary to the ML approach, it works satisfactorily for all ranges of α in the univariate and
multivariate cases. Also, it gives better performance than the ML, CF, and SQ approaches
when α is near one. In the multivariate case, it estimates all entries of dispersion matrix
simultaneously so that the estimated dispersion matrix is always positive definite. The pro-
posed EM algorithm can be developed for modelling the mixture of SαS distributions. This
advantage of the proposed EM algorithm received much interest in robust mixture mod-
elling since SαS is a heavy tailed distribution. Modelling the mixture of sub-Gaussian SαS
distributions suggested in [29] using Gibbs sampling. We can develop the introduced EM
algorithm in this work for modelling the mixture of sub-Gaussian SαS distributions that is
faster than the Gibbs sampling approach.

This paper is organized as follows. Some preliminaries are given in Section 2. In Section 3,
we propose the EM algorithm for estimating the parameters of a univariate SαS distribution.
The methodology given in Section 3 is developed for the sub-Gaussian SαS distribution in
Section 4. In Section 5, some simulation studies are considered to compare the performance
of the presented EM algorithms in the univariate and multivariate cases versus the ML, CF,
and SQ approaches. Our method will be applied to some sets of real data in this section.
We conclude the paper in Section 6 with a summary of the contributions of this work.

2. Preliminaries
2.1. EM algorithm and extension
Missing or incomplete observations frequently occurs in the statistical literature. The EM
algorithm, introduced in [7], is a popular inferential tool for such a situation. The application
of the EM algorithm also includes cases with latent variables or models with random param-
eter provided that they are formulated as a missing value problem. For a brief description of
EM methodology, let x = (x1, . . . , xn) denote the complete observations follow the density
function f(x|θ). We denote x = (y, z), where z denotes missing samples and y accounts for
the available observations, [16]. The computation and maximization of

f(y|θ) =
∫
z
f((y, z)|θ)dz, (2.1)

are difficult in such a case. So, we propose to use the EM algorithm. Let Lc(θ) =

f((y, z)|θ) be the complete data likelihood function. The EM algorithm works by maxi-
mization of the conditional expectation of the complete log-likelihood function Q

(
θ|θ(t)

)
=

E
(
lc(θ;x)|y, θ(t)

)
given the available data and a current estimate θ(t) of the parameter

(here, lc(θ;x) indicates on the logarithm of Lc(θ)). Since missing values are unobservable,
we replace them by their expectation, given observed values and a current guess (or esti-
mate) for θ. Each iteration of the EM algorithm involves two steps as:

1. Expectation (E) step: Compute Q
(
θ|θ(t)

)
at t-th iteration.

2. Maximization (M) step: Maximize Q
(
θ|θ(t)

)
with respect to θ to get θ(t+1).

The E and M steps, in above, are repeated until convergence occurs. When the M step
of the EM algorithm becomes analytically intractable, we follow the idea of implying this
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step using a sequence of conditional maximization, known as the CM step. The resulting
procedure is known as the ECM algorithm, [18]. A faster extension of the EM algorithm is
the so-called ECME algorithm introduced in [14]. It should be noted that all the EM, ECM
and ECME have the same E step. The ECME algorithm works by maximizing the con-
strained Q

(
θ|θ(t)

)
via some CM steps and maximizing the constrained marginal likelihood

function, [1]. Sometimes implementation of the EM algorithm is difficult. In this situa-
tion, another extension of this algorithm, called the stochastic EM (SEM) is useful, [2], [3],
and [4]. Each SEM works by simulating missing data from conditional density f(zi|θ(t), yi);
for i = 1, . . . , n and replacing it into the complete likelihood function. Then, we apply the
EM algorithm for the pseudo-complete sample where (Z

(t)
1 , . . . , Z

(t)
n ) are simulated ones.

The updated parameter is then used to simulate from f(zi|θ(t+1), yi); for i = 1, . . . , n. This
process is repeated until convergence occurs for the distribution of the {θ(t+1)}. Under
some mild regularity conditions, {θ(t+1)} constitutes a Markov chain that converges to a
stationary distribution, [11]. The number of iterations is determined via an exploratory
data analysis approach such as a graphical display. Another example presented in [11] is to
consider a total of 300 iterations of the SEM for estimating the parameter of modulus of
rupture of 50 observations of fir woods after fitting a two-parameter Weibull model under
Type-I censored scheme (the data were censored at 1.6 which corresponds to a censoring of
rate 34%). As pointed out by the authors, the SEM is generally very robust to the starting
values. Using a burn-in of M0 iterations, the sequence {θ(t)} is expected to be close to some
stationary point. After a sufficiently large number of iterations, say M , the SEM estimation
of θ is given by

θ̂ =
1

M −M0

M∑
t=M0+1

θ(t),

where M0 is burn-in size. Summarizing the above statements, each iteration of the SEM
algorithm consists of two steps as follows.

1. Stochastic imputation (S) step: Impute the simulated missing values and constitut-
ing the pseudo-complete log-likelihood function at t-th iteration.

2. Maximization (M) step: Find a θ, say θ(t+1), which maximizes the pseudo-complete
log-likelihood function at t-th iteration.

The S and M steps, in above, are repeated until convergence occurs.

2.2. Properties of symmetric and positive stable laws
Suppose that Y1 and Y2 > 0 are independent stable random variables, Y1 ∼ S(α1, 0, σ, 0)

and Y2 ∼ S(α2, 1, (cos(πα2/2))
1/α2 , 0) for 0 < α2 < 1. Then, Y1Y 1/α1

2 ∼ S(α1α2, 0, σ, 0),
known as the product property in the literature. Based on product property, one can write

Y
d
=
√
PN1 + µ, (2.2)

where Y ∼ S(α, 0, σ, µ), P ∼ S(α/2, 1, (cos(πα/4))2/α, 0), and N1 is a zero-mean Gaussian
random variable with variance 2σ2. So,

Y |P = p ∼ N2, (2.3)
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where N2 is a Gaussian random variable with mean µ and variance 2pσ2. As the second
useful property, assume that P ∼ S(α/2, 1, (cos(πα/4))2/α, 0). Then,

E

P

d
=W (α/2), (2.4)

where E is an exponential random variable with mean one and W (ν) is a Weibull random
variable, independent of E, with density function fW (w) = νwν−1 exp{−wν}; for w > 0.
Since 0 < α/2 < 1 and β = 1, then P sometimes is called the positive stable random
variable. For a proof of (2.4), we refer readers to [17] and [30, p. 15].

3. EM Algorithm for SαS
In this section, we introduce two approaches to extend the EM algorithm for SαS distribu-
tion. Presenting the first algorithm in Subsection 3.1, we consider a computational method
for the first approach in Subsection 3.2. The second approach is presented in Subsection
3.3.

3.1. The first approach
Let y = (y1, . . . , yn) be a random sample from a SαS distribution. Refer to (2.3) and consider
p = (p1, . . . , pn) as the vector of missing observations. The complete data likelihood Lc(Θ)

is factored into the product of the marginal densities of Pi and the conditional densities of
Yi given Pi. So, the complete data log-likelihood can be written as

lc(Θ) = l1c(θ) + l2c(α),

where Θ = (θT , α)T , θ = (µ, σ)T . It follows that

l1c(θ) = C − n log σ − 1

2

n∑
i=1

(yi − µ)2

2σ2pi
,

and

l2c(α) =
n∑

i=1

log fP (pi|α),

where C is a constant independent of the parameter θ and fP (.) denotes the density function
of the positive stable random variable P . Conditional expectation of the complete data log-
likelihood Q

(
Θ|Θ(t)

)
= E

(
lc(Θ; p)|y,Θ(t)

)
is given by

Q
(
Θ|Θ(t)

)
= Q

(
θ|Θ(t)

)
+Q

(
α|Θ(t)

)
,

= C − n log σ − 1

2

n∑
i=1

(yi − µ)2e
(t,s)
i

2σ2
+

n∑
i=1

E
[
log fP (Pi|α)

∣∣∣yi,Θ(t)
]
,

where e
(t,s)
i = E

(
P−1|yi, µ(t), σ(s), α(s)

)
, Θ(t) = (θ(t)

T
, α(t))T and θ(t) = (µ(t), σ(t))T . Here,

e
(t,s)
i is the posterior mean of 1/P given yi and Θ(t); for i = 1, . . . , n. Thus, the EM algo-

rithm’s steps are
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• E step: Given current estimation of Θ, Θ(t), compute e
(t,t)
i .

• CM step: Update θ(t) as θ(t+1) by maximizing Q
(
Θ|Θ(t)

)
with respect to θ to obtain

µ(t+1) =

∑n
i=1 yie

(t,t)
i∑n

i=1 e
(t,t)
i

, (3.1)

σ(t+1) =

√∑n
i=1

(
yi − µ(t+1)

)2
e
(t+1,t)
i

2n
. (3.2)

• CML step: Update value of α(t) by maximizing the marginal log-likelihood function
as

α(t+1) = argmax
α

n∑
i=1

log fY (yi|µ(t+1), σ(t+1), α),

where fY (.) is the SαS density function. Under the methodology that we follow
here, the CML step itself contains an SEM algorithm (This is because the density
function of SαS random variable has no closed-form expression). In the following,
two steps of the SEM are described.

• The first step of CML: Let E1, E2, . . . , En be independent exponentially distributed
random variables with mean one. At (t + 1)-th iteration, assume that µ(t+1) and
σ(t+1) are known. Let Y ′

i = (Yi − µ(t+1))/σ(t+1) and Y ′′
i = Y ′

i /
√
Ei; for i = 1, . . . , n.

Then it follows, from (2.2) and (2.4), that

Y
′′
i |Wi = wi ∼ N

(
0,

2

w2
i

)
,

Wi ∼ W (α).

Considering w1, . . . , wn as missing observations, the complete data likelihood Lc(Θ)

is factored into the product of the marginal densities of Wi and the conditional
densities of Y ′′

i given Wi. So, the complete data log-likelihood can be written as

lc(α) = C + n logα+ (α− 1)
n∑

i=1

logwi −
n∑

i=1

wα
i . (3.3)

• The second step of CML: Simulate the vector w = (w1, . . . , wn) from conditional
distribution of Wi given y′′i ; for i = 1, . . . , n, and Θ(t) using the Monte Carlo method
at the m-th cycle of the S step of the SEM.

• The third step of CML: Substitute w in (3.3) and maximize it with respect to α to
find α(t+1). Then, repeat the algorithm from E step for M times to obtain Θ(t) as

Θ̂ =
1

M −M0

M∑
t=M0+1

Θ(t),

where M0 is burn-in size. Maximizing (3.3) with respect to α in each cycle is equal
to computing the ML estimation of a Weibull distribution with shape parameter α.
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3.2. Computational considerations of the first approach
In the E step of the algorithm, we need to calculate the conditional mean e

(t,t)
i and e

(t+1,t)
i

in iteration steps (3.1) and (3.2), respectively. Unfortunately, this quantity cannot be cal-
culated analytically. At (t+ 1)-th iteration of the E step, we have

e
(t,t)
i =

∫∞
0

u−3/2fP (u|α(t))√
4πσ(t) exp

{
−
(

yi−µ(t)

2
√
uσ(t)

)2}
du

∫∞
0

u−1/2fP (u|α(t))√
4πσ(t) exp

{
−
(

yi−µ(t)

2
√
uσ(t)

)2}
du

, (3.4)

and after obtaining µ(t+1) in the CM step, by replacing µ(t+1) in (3.4) we obtain e
(t+1,t)
i .

Then, we update σ(t+1) in the CM step. Direct computation of e
(t,t)
i using numerical

integration faces with problem when |yi|, for i = 1, . . . , n, is large. To avoid compu-
tational issues, we use the series representation for the density function fP (.|α(t)) of
S(α(t)/2, 1, (cos(πα(t)/4))2/α

(t)
, 0) as

fP (p|α(t)) ≃ 1

π

k∑
j=1

(−1)j−1Γ(
jα(t)

2 + 1)

Γ(j + 1)
sin

(
jπα(t)

2

)
p−

jα(t)

2
−1, (3.5)

for large k, [10] and [25]. Substituting the right-hand side of (3.5) into (3.4), after a suitable
change of variable and simplifications, we get

e
(t,t)
i ≃

∑k
j=1

(2σ(t))jα
(t)+2

|yi−µ(t)|jα(t)+2

(−1)j−1Γ
(

jα(t)

2
+1
)
Γ
(

jα(t)

2
+ 3

2

)
sin

(
jπα(t)

2

)
Γ(j+1)

∑k
j=1

(2σ(t))jα
(t)

|yi−µ(t)|jα(t)

(−1)j−1Γ
(

jα(t)

2
+1
)
Γ
(

jα(t)

2
+ 1

2

)
sin

(
jπα(t)

2

)
Γ(j+1)

, (3.6)

where Γ(.) denotes the well-known gamma function. It should be noted that series in
numerator and denominator of (3.6) converge for

∣∣yi − µ(t)
∣∣ ∈ 2σ

([
Γ(kα(t)/2 + α(t)/2 + 1

)
Γ
(
kα(t)/2 + α(t)/2 + 3/2

)
(k + 1)Γ

(
kα(t)/2 + 1

)
Γ
(
kα(t)/2 + 3/2

) ]1/α(t)

,∞

)
,

where k is sufficiently large. This makes the computations to be fast. We found that choosing
k =

[
min

(
168, 168/α(t)

)]
, where [x] denotes the integer part of x, yields an almost exact

evaluation of fP (.|α(t)) in (3.5) and so of e(t,t)i in (3.6). For those yi that series in (3.5) does
not converge, we use Monte Carlo based approximation of e(t,t)i given by

e
(t,t)
i ≃

(
N∑
j=1

P
−3/2
j√
4πσ(t)

exp

{
−

(
yi − µ(t)

2
√
Pjσ(t)

)2})
÷

(
N∑
j=1

P
−1/2
j√
4πσ(t)

exp

{
−

(
yi − µ(t)

2
√
Pjσ(t)

)2})
,

where Pj ∼ S(α(t)/2, 1, (cos(πα(t)/4))2/α
(t)
, 0); for j = 1, . . . , N , is simulated using the

method given in [5]. During our simulation, we set N = 2000.
As the CML step itself contains a SEM algorithm, simulation from conditional distri-

bution of Wi given y′′i = (yi − µ(t+1))/(σ(t+1)√ei) (ei, here, denotes an observation from
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standard exponential distribution) and α(t) can be performed using Metropolis-Hasting
algorithm. We follow our simulation based on Weibull distribution with the shape param-
eter α(t) as the candidate. The acceptance rate, Awi , becomes

Awi = min

1,
wnew
i exp

{
− (y′′i w

new
i )2

4

}
w

(t)
i exp

{
− (y′′i w

(t)
i )2

4

}
 .

The main drawback of the Metropolis-Hasting algorithm is that the new values may have
little chance for acceptance in each iteration. In our study, the acceptance rate decays when
y′′i gets large. Due to the heavy tail property of stable distribution, large values are likely
to happen. Therefore, we adopt a rejection sampling in m-th cycle of the SEM algorithm
of the CML step to generate from the posterior distribution of Wi given y′′i and α(t+1); for
i = 1, . . . , n. To describe this scheme, we note that the density function

fY ′′
i |Wi

(y′′i |wi) =
wi√
4π

exp

{
−(y′′i wi)

2

4

}
,

as a part of the conditional (posterior) density function

fWi|Y ′′
i
(wi|y′′i , α(t+1)) ∝ fY ′′

i |Wi
(y′′i |wi)fWi(wi) =

α(t+1)wα(t+1)

i√
4π

exp

{
−(y′′i wi)

2

4
− wα(t+1)

i

}
,

is bounded by some constant independent of wi. More precisely

fY ′′
i |Wi

(y′′i |wi) ≤
exp{−0.5}√

2π|y′′i |
.

Hence, a rejection sampling is employed to generate from the posterior distribution by the
following steps.

1. Simulate a sample from a Weibull distribution, say wi, with shape parameter
α(t+1)and scale unity.

2. Generate a sample from a uniform distribution U
(
0, exp{−0.5}/(

√
2π|y′′i |)

)
, say u.

3. If u < wi√
4π

exp
{
−y′′i

2w2
i

4

}
, then accept wi as a generation from fWi|Y ′′

i
(wi|y′′); oth-

erwise, go to 1.

While we expect that the rejection sampling works satisfactorily, it faces with the problem
when |y′′i | is so large. In this case that the machine sets the quantity wi√

4π
exp

{
−y′′i

2w2
i

4

}
to

zero and consequently generation from posterior density is so time consuming, we use the
mode of the posterior density as a generation from the posterior distribution. It is not hard
to check that the mode of the posterior distribution Wi|Y ′′

i = y′′i is obtained as a solution
of the equation

h(wi) = α(t) −
(
wiy

′′
i√
2

)2

− α(t)wα(t)

i = 0. (3.7)

Our studies reveal that if |y′′i | is so large that machine sets the quantity wi√
4π

exp
{
−y′′i

2w2
i

4

}
to

zero, then choosing the mode of posterior distribution described by (3.7), as an observation
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from this distribution not only improves the accuracy of the simulation, but also accelerates
the EM algorithm implementation.

3.3. The second approach
The first approach works efficiently, but it can be improved to reduce computational com-
plexity by relaxing some CM steps for computing µ(t+1) and σ(t+1). This approach signifi-
cantly reduces the processing times for implementing the EM algorithm. In the CM step of
the second approach, we only update µ while both σ and α are updated through the SEM
in the CML step. Like the previous approach, the location parameter is updated through
(3.1). Let E1, E2, . . . , En be independent exponentially distributed random variables with
mean one. At (t+1)-th iteration of the first step of the CML, assume that µ(t+1) is known.
Let Y ′

i = (Y i − µ(t+1)) and Y ′′
i = Y ′

i /
√
Ei; for i = 1, . . . , n. It follows that

Y ′′
i |Wi = wi ∼ N

(
0,

2σ2

w2
i

)
,

Wi ∼ W (α).

The complete data log-likelihood can be written as

lc(α, σ) = C − n log σ − 1

2

n∑
i=1

(y′′i wi)
2

2σ2
+ n logα+ α

n∑
i=1

logwi −
n∑

i=1

wα
i . (3.8)

By maximizing (3.8) with respect to σ and α, we find

σ(t+1) =

√∑n
i=1(y

′′
i wi)2

2n
, (3.9)

and α(t+1) is the solution of

h(wi) =
n

α
+

n∑
i=1

logwi −
n∑

i=1

wα
i logwi = 0, (3.10)

where wi is simulated from conditional distribution of Wi given y′′i and Θ(t); for i = 1, . . . , n,
using rejection sampling at the m-th cycle of the SEM step. Once σ(t) and α(t) are updated,
we implement the E step and repeat the algorithm for a number of M times and obtain Θ̂

as

Θ̂ =
1

M −M0

M∑
t=M0+1

Θ(t).

In the first approach, we need to compute e
(t,t)
i for updating µ(t) and e

(t+1,t)
i for updating

σ(t); for i = 1, . . . , n. But in the second approach, the sequence of e
(t,t)
i updates µ(t) and

σ(t) will be updated in the second step of the CML. This yields a considerable reduction in
implementing time of the EM algorithm compared with the first approach.
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4. EM Algorithm for the Multivariate case
Let Y denotes a sub-Gaussian SαS random vector as defined in (1.2). The representation

Y = µ+
√
ΛZ, (4.1)

holds when Z is a zero-mean Gaussian random vector with some d×d covariance matrix Σ, Λ
follows S(α/2, (cos(πα/4))2/α , 1, 0), µ ∈ IRd is the location parameter and 0 < α < 2. Here,
Λ and Z are statistically independent. The stochastic representation (4.1) is the multivariate
counterpart of the representation given in (2.2). Hence, methodology introduced in the
previous section can be applied to the sub-Gaussian SαS distribution. We have

Y |Λ = λ ∼ N (µ, λΣ) ,

Λ ∼ S(α/2, (cos(πα/4))2/α , 1, 0).

By the followings, we summarize the EM algorithm for a sub-Gaussian SαS distribution
based on the second approach presented in the Subsection 3.3. Let y = (y1, . . . ,yn) denote
a vector of n i.i.d. samples from a sub-Gaussian SαS distribution. The complete data log-
likelihood is

lc(Θ) = lc(α,µ,Σ) = C − n

2
log |Σ| − 1

2

n∑
i=1

(yi − µ)TΣ−1(yi − µ)

λi
+

n∑
i=1

log fΛ(λi),

where fΛ(.) denotes the density function of positive stable random variable Λ. The condi-
tional expectation of the complete data log-likelihood Q

(
Θ|Θ(t)

)
= E

(
lc(Θ;λ)|y,Θ(t)

)
is

given by

Q
(
Θ
∣∣∣Θ(t)

)
= C − n

2
log |Σ| − 1

2

n∑
i=1

(yi − µ)TΣ−1(yi − µ)e
(t,s)
i +

n∑
i=1

E
[
log fΛ(λi|α)

∣∣∣yi,Θ
(t)
]
,

where e
(t,s)
i = E

(
Λ−1|yi,µ

(t),Σ(s), α(s)
)
. So, at the (t + 1)-th iteration of the CM step we

obtain

µ(t+1) =

∑n
i=1 yie

(t,t)
i∑n

i=1 e
(t,t)
i

. (4.2)

Let E1, E2, . . . , En be independent exponentially distributed random variables with mean
one. At (t+1)-th iteration, for known µ(t+1), define Y ′

i = (Y i−µ(t+1)) and Y ′′
i = Y ′

i/
√
Ei;

for i = 1, . . . , n. We have that

Y ′′
i |Wi = wi ∼ N

(
0, w−2

i Σ
)
,

where Wis are independent and fWi(w) = αwα−1 exp{−wα}; for i = 1, . . . , n. The complete
data log-likelihood becomes

lc(α,Σ) = C − n

2
log |Σ| − 1

2

n∑
i=1

(y′′
i )

TΣ−1(y′′
i )w

2
i + n logα+ α

n∑
i=1

logwi −
n∑

i=1

wα
i , (4.3)

where y′′
i = (y′

i − µ(t+1))/Ei. By simulating w from conditional distribution of Wi given
y′′
i and α(t); for i = 1, . . . , n, at the m-th cycle of the SEM, we follow some iterated steps
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to find Σ and α in the M step of the SEM algorithm that maximize the pseudo-complete
log-likelihood function. Hence, the updated Σ becomes

Σ(t+1) =

∑n
i=1 y

′′
i (y

′′
i )

Tw2
i

n
, (4.4)

and α(t+1) is a solution of

h(α) =
n

α
+

n∑
i=1

logwi −
n∑

i=1

wα
i logwi = 0. (4.5)

Updating µ(t+1), Σ(t+1) and α(t+1) are implemented by (4.2), (4.4), and (4.5), respectively
for M times.

Corollary 4.1. The updated dispersion matrix Σ(t+1) in (4.4) is positive definite.

4.1. Computational considerations
At (t+ 1)-th iteration, updating µ(t) in (4.2) needs computing e

(t,t)
i . For this, when D

(t)
i =

(yi − µ(t))T
(
Σ(t)

)−1
(yi − µ(t)) is large, e(t,t)i is evaluated approximately as

e
(t,t)
i ≃

∑k
j=1

(−1)j

Γ(j+1)Γ
(
jα(t)+2

2

)
Γ
(
jα(t)+d+2

2

)
sin
(
jπα(t)

2

)(
D

(t)
i

)− jα(t)+d+2
2

∑k
j=1

(−1)j

Γ(j+1)Γ
(
jα(t)+2

2

)
Γ
(
jα(t)+d

2

)
sin
(
jπα(t)

2

)(
D

(t)
i

)− jα(t)+d
2

, (4.6)

where

D
(t)
i ∈


Γ
(
kα(t)+α(t)+2

2

)
Γ
(
kα(t)+α(t)+2+d

2

)
(k + 1)Γ

(
kα(t)+2

2

)
Γ
(
kα(t)+2+d

2

)


2
α

,∞

 , (4.7)

and k =
[
min

(
168, 168/α(t)

)]
in (4.6). If D(t)

i does not lie in (4.7), we use the Monte Carlo
based approximation of e(t,t)i as

e
(t,t)
i ≃

(
N∑
j=1

Λ
−d/2−1
j exp

{
−
D

(t)
i

2Λj

})
÷

(
N∑
j=1

Λ
−d/2
j exp

{
−
D

(t)
i

2Λj

})
,

where Λj ∼ S(α(t)/2, 1, (cos(πα(t)/4))2/α
(t)
, 0) for large N . As before, we set N = 2000 for

implementing the EM algorithm. To construct the pseudo-complete data, wis are generated
in (4.3) through a rejection sampling by the following steps.

1. Simulate a sample from a Weibull distribution, say wi, with shape parameter α(t+1)

and scale unity.

2. Define b =
dd/2((y′′

i )
TΣ−1y′′

i )
−d/2

exp{−d/2}
(2π)d/2|Σ|1/2 and generate samples from a uniform dis-

tribution U (0, b), say u.
3. If u <

wd
i exp{− 1

2((y
′′
i )

TΣ−1y′′
i )w2

i }
(2π)d/2|Σ|1/2 , then accept wi as a generation from f

Wi|Y
′′
i
(wi|y

′′
i );

otherwise, go to 1.

if (y′′
i )

TΣ−1y′′
i is so large, we impute wi =

√
d
(
(y′′

i )
TΣ−1y′′

i

)−1/2.
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5. Simulation study and Real Data Analysis
This section has five parts. In the first part, we analyze the performance of the proposed
EM algorithm compared with other estimators in the univariate case through a simula-
tion study. In the second part, we follow the analyses for the performance of the proposed
EM algorithm using real data. Simulation studies in the bivariate case are performed in
the third subsection. The fourth subsection is devoted to real data analysis for a bivari-
ate case. Simulation studies in three-variate and higher dimensions are given in the fifth
subsection. The set of real data used in the univariate and multivariate cases is 9 years
of daily returns of 22 major worldwide market indices, which consists of 2535 observa-
tions from 1/4/2000 to 9/22/2009. These indices are from four different areas including
America (S&P500, NASDAQ, TSX, Merval, Bovespa and IPC), Europe and Middle East
(AEX, ATX, FTSE, DAX, CAC40, SMI, MIB and TA100), and East Asia and Oceania
(HgSg, Nikkei, StrTim, SSEC, BSE, KLSE, KOSPI and AllOrd). This data set is available
at the website of Yahoo finance, [8]. For simplicity, hereafter, we call this data set WMI
(Worldwide Market Indices).

5.1. Simulation study in univariate case
We compare the performance of the ML, SQ, CF, and the EM methods for estimating the
parameters of SαS distribution through simulation. Comparisons are based on square root
of the mean-squared error (RMSE) criterion. In the simulation, the RMSE was computed for
sample sizes of n = 200, 500, and 1000. The number of replications is N = 1000. The param-
eters were selected as: µ = 0, σ = 0.5, 1, 2, and α = 0.4, 0.6, 0.8, 0.9, 1.1, 1.2, 1.4, 1.6, 1.8, 1.9.
The plots of the computed RMSE for all estimators are shown in Figures 1-3. It should be
noted that the estimation results for the evaluated ML approach (Nolan’s Method [21]) are
not reliable for α < 0.4 and so are not shown in the Figures 1-3. The smoothed version of
the actual values plotted in these figures is obtained using the lowess package (see [6]) with
the following settings: the smoothing span is considered to be 2/3, the number of iterations
is 3, and the speed of computations is determined by 0.01th of the range of the α values.

In each sub-figure of Figures 1-3, the vertical line indicates that the proposed EM algo-
rithm works better than the CF and SQ methods for those α lie in the left side of the line.
When the EM algorithm always works better, such a line is not shown. By considering the
location parameter as zero, the following results are obtained from simulation and show
how RMSE of the estimators varies in terms of σ, α and n:

1. EM-based α̂ and σ̂ have better performance than the SQ-based and CF-based α̂

and σ̂ for α < 1.1 in all cases, where shown in Figures 1 and 2, respectively.
2. EM-based µ̂ shows better performance than the SQ and CF for all α, ref. Figure 3.
3. RMSE of the EM-based α̂ and σ̂ are smaller than the SQ-based α̂ and σ̂.
4. We know that the ML method gives the efficient estimation particularly when sam-

ple size gets large. But, sometimes the EM-based α̂ and σ̂ outperform the ML
counterparts. This occurs, because STABLE gives the approximated ML estimation,
not the exact ML estimation.

5. RMSE of all estimators decreases by increasing the sample size n.
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Fig. 1. RMSE of α̂ for different values of σ = 0.5, 1, 2 and for 0.4 ≤ α ≤ 1.9. In all sub-figures x-axis is values
of α and y-axis is RMSE of α̂.

Along with the simulation, we investigate the execution time for different sample sizes
and scale parameters in the univariate case. The results are given in Table 1. For this, all
runs are performed on a machine with 3.5 GHz Core(TM) i7-2700K Intel(R) processor and
8 GB of RAM. It should be noted that implementing of the ML, CF, and SQ approaches,
with settings given in Table 1, takes less than 0.5 second.

Table 1. Average of the execution time in seconds for 50 runs of the EM algorithm when it is applied to SαS
distribution. The written program run on a 3.5 GHz Intel processor Core(TM) i7 using a 8 GB RAM. Note
that values outside (inside) of parentheses are obtained for α = 0.5 (α = 1.5). We set M = 120, M0 = 70
for implementing the EM algorithm.

Scale parameter
Sample size σ=0.5 σ=1 σ=2

500 30(62) 26(64) 22(62)
1000 70(127) 55(122) 43(124)
5000 334(627) 283(639) 223(621)
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Fig. 2. RMSE of σ̂ for different values of σ = 0.5, 1, 2 and for 0.4 ≤ α ≤ 1.9. In all sub-figures x-axis is values
of α and y-axis is RMSE of σ̂.

5.2. Real data analysis in the univariate case
For real data application, we select the Bovespa (São Paulo Stock Exchange), CAC40
(Bourse de Paris) and DAX (German Stock Index) indices from WMI data set. The empiri-
cal distributions of these three sets of data show symmetric pattern around the origin whose
tails are heavier than the normal model. We apply the ML, CF, SQ, and EM methods to
estimate the parameters of the fitted stable distributions. It should be noted that the sample
median is used as an initial value for the location parameter to implement the EM algo-
rithm. Initial values for the tail and scale parameters are obtained by applying the method of
the logarithmic moment. This approach, for a symmetric stable distribution, estimates the
parameters using the first and the second order moments of the logarithm of a zero-location
symmetric stable random variable Y , i.e. L1 = E(log |Y |) and L2 = E(log |Y |−L1)

2, respec-
tively. Assuming that data, after subtracting from the sample median, follow a zero-location
symmetric stable distribution, the parameters α and σ are estimated by equating the sam-
ple logarithmic moments to the quantities L1 and L2, [20] and [32]. Figure 4 displays cycles
of the EM algorithm for M = 120 and M0 = 70.

Estimated parameters, along with the Kolmogorov-Smirnov (K-S) and Anderson-Darling
(A-D) test statistics are given in Table 2. More analyses reveal that stable model captures
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Fig. 3. RMSE of µ̂ for different values of σ = 0.5, 1, 2 and for 0.4 ≤ α ≤ 1.9. In all sub-figures x-axis is values
of α and y-axis is RMSE of µ̂.

the general shape of the empirical histogram well and the main difference between fitnesses
occurs at the origin for the height of peaks. As it is seen, EM algorithm gives satisfactory
results.

5.3. Simulation study in bivariate case
Estimating the parameters of a sub-Gaussian SαS distribution is computationally expen-
sive, [24]. Usually, the parameters of this distribution are estimated using projection method.
Hereafter, we write ML, CF, and SQ for the projected ML, CF, and SQ methods, respec-
tively. In the following, we perform a simulation based on a sample of size n = 500 to
measure the performance of the ML, CF, EM, and SQ approaches in modelling a bivariate
sub-Gaussian SαS distribution. For this, we set α = 1.5, 1.7, 1.9, µ = (µ1, µ2)

T = (0, 0)T ,
and dispersion matrix

Σ =

(
σ11 σ12
σ21 σ22

)
= 10−6 ×

(
5.9552 4.0783

4.0783 13.9861

)
,

as used in [27]. We follow the CF, SQ, and ML approaches by applying the STABLE software
[21]. The boxplots, based on 250 runs for all methods, are depicted in Figure 6. It should
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Fig. 4. Estimated values of α, σ, and µ with M = 120 cycles each with n = 2535 samples for Bovespa,
CAC40 and DAX indices selected from WMI data set.

be noted that ML estimations are used here as starting values for EM algorithm. However,
our investigations show that the proposed EM algorithm is robust with respect to initial
values.

5.4. Real data analysis in bivariate case
Here, we apply ML, SQ, CF, and EM methods to S&P500 and IPC indices selected from
WMI data set. The empirical distribution of both S&P500 and IPC indices show a sym-
metric pattern around the origin. The scatterplot shown in Figure 5 is roughly elliptical
contoured. Furthermore, estimated tail parameters after fitting a stable distribution to
S&P500 and IPC indices through the ML approach are 1.9003 and 1.9143, respectively,
which are assumed to be equal. Thus, the assumption that X = (S&P500, IPC)T follows
a sub-Gaussian SαS distribution is acceptable, [23]. The results of estimating parameters
through ML, CF, EM, and SQ methods are shown in Table 3. The log-likelihood values
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Fig. 5. Scatterplot of the IPC index versus S&P500 index (a) shows that distribution of points on a plane is
roughly elliptical. Points in scatterplot are a number of n = 2535 daily returns from April 1, 2000 through
September 22, 2009. Marginal density plots of the S&P500 (b) and IPC (c) show that the stable distribution
(black dashed line) provides a better fit than the normal (red dotted line) distribution. Blue solid line is the
fitted empirical density.

Table 2. Estimation results for the return of Bovespa, CAC40, and DAX data through the ML, SQ, CF, and
EM approaches applied to the data.

Bovespa CAC40
Parameters ML CF EM SQ ML CF EM SQ

α 1.8616 1.8976 1.78017 1.7544 1.7074 1.7898 1.6629 1.6076
β -0.5908 -0.828 — -0.3021 0.0578 0.3089 — 0.0974
σ 0.6407 0.6431 0.6151 0.6171 0.5461 0.5561 0.5148 0.5287
µ -0.0572 -0.0541 -0.0155 -0.0805 0.0222 0.0487 0.0111 0.0193

K-S 0.0314 0.0302 0.0305 0.0388 0.0237 0.0251 0.0192 0.0191
A-D 1.7552 1.9720 2.4888 2.5601 1.2075 2.1783 1.6430 1.0461

DAX
Parameters ML CF EM SQ

α 1.8541 1.8856 1.8140 1.6642
β -0.2978 -0.508 — -0.1368
σ 0.6401 0.6378 0.6048 0.6029
µ -0.0507 -0.0550 -0.0289 -0.0493

K-S 0.0268 0.0251 0.0220 0.0171
A-D 1.9657 2.1389 2.1374 1.1655

indicate that the EM algorithm gives better performance than the CF and SQ approaches.

5.5. Analysis in higher dimensions
In this subsection, firstly we perform a simulation to compare the performance of the ML,
CF, EM, and SQ methods where a sample of size n = 1500 is generated from three-variate
sub-Gaussian SαS distribution. For this purpose, the considered settings are: α = 1.86,

455

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 439-461



α̂

1.
2

1.
4

1.
6

1.
8

2.
0

Method

alpha=1.5 alpha=1.7 alpha=1.9

ML CF EM SQ

1.
2

1.
4

1.
6

1.
8

2.
0 µ̂
1

−
0.

00
4

0.
00

0
0.

00
2

0.
00

4

Method

alpha=1.5 alpha=1.7 alpha=1.9

ML CF EM SQ−
0.

00
4

0.
00

0
0.

00
2

0.
00

4

µ̂
2

−
0.

00
3

−
0.

00
1

0.
00

1
0.

00
3

Method

alpha=1.5 alpha=1.7 alpha=1.9

ML CF EM SQ−
0.

00
3

−
0.

00
1

0.
00

1
0.

00
3

σ̂
1
1

0.
00

00
4

0.
00

00
8

0.
00

01
2

0.
00

01
6

Method

alpha=1.5 alpha=1.7 alpha=1.9

ML CF EM SQ0.
00

00
4

0.
00

00
8

0.
00

01
2

0.
00

01
6

σ̂
1
2

−
2e

−
05

2e
−

05
6e

−
05

Method

alpha=1.5 alpha=1.7 alpha=1.9

ML CF EM SQ

−
2e

−
05

2e
−

05
6e

−
05

σ̂
2
2

0.
00

00
6

0.
00

01
0

0.
00

01
4

Method

alpha=1.5 alpha=1.7 alpha=1.9

ML CF EM SQ

0.
00

00
6

0.
00

01
0

0.
00

01
4

Fig. 6. Boxplot of the ML, CF, EM, and SQ estimations for α, µ = (µ1, µ2)
T , and entries of Σ when

n = 500 vectors generated from a bivariate sub-Gaussian SαS with α = 1.5, 1.7, 1.9, µ = (µ1, µ2)
T = (0, 0)T ,

σ11 = 0.000059552, σ12 = 0.000040783, and σ22 = 0.000139861. In each sub-figure, horizontal line denotes
the real value of parameter. Each boxplot is constructed based on N = 250 runs. The used color scheme
under each method for boxplots is: blue, red, and green for α=1.5, 1.7, and 1.9, respectively.

Table 3. Estimation results for the return of (S&P500, IPC) when the ML, CF, EM, and SQ approaches are
applied to the data.

Parameters
Method α Σ µ Log-likelihood

ML 1.9073
(
0.45396 0.41991
0.41991 0.45626

) (
0.00528
0.00697

)
-4967.706

CF 1.9530
(
0.45668 0.41957
0.41957 0.46008

) (
0.02505
0.02437

)
-4978.067

EM 1.7116
(
0.37830 0.34573
0.34573 0.37589

) (
−0.02494
−0.02215

)
-4975.581

SQ 1.8179
(
0.42751 0.35074
0.35074 0.43147

) (
0.01559
0.02313

)
-5176.572

µ = (µ1, µ2, µ3)
T = (0, 0, 0)T , and

Σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 = 10−5 ×

6.293 3.289 3.643

3.289 9.133 3.921

3.643 3.921 7.871

 ,
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Fig. 7. Boxplot of the ML, CF, EM, and SQ estimations for α, µ = (µ1, µ2, µ3)
T , and entries of Σ when

n = 1500 vectors generated from a three-variate sub-Gaussian SαS with α = 1.86, µ = (µ1, µ2, µ3)
T =

(0, 0, 0)T , σ11 = 0.0006293, σ12 = 0.0003289, σ13 = 0.0003643, σ22 = 0.0009133, σ23 = 0.0003921, and
σ33 = 0.0007871. In each sub-figure, horizontal line denotes the real value of parameter. Each boxplot is
constructed based on N = 250 runs.
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Fig. 8. Estimated values for diagonal entries of dispersion matrix when the EM and ML methods are applied
to 30 indices of Dow Jones data. The signs × and + correspond to the EM and ML methods.

which were used by [24]. Secondly, we fit a thirty-dimensional sub-Gaussian SαS distribution
to the 30 indices of Dow Jones data described in [24].

For three-variate case, results of the simulation are displayed in Figure 7 where each
boxplot is based on 250 runs. If we define the length of each box as a performance criterion,
it follows that the EM algorithm works better than the SQ method in all cases. The perfor-
mance of the EM and CF approaches is almost the same except in the case of estimating α

where the EM algorithm performs much better than the CF method. In the case of case of
thirty-dimensional, implementing the EM algorithm takes 303 seconds when M = 200 and
M0 = 150. To avoid unnecessary details, we only focus on estimating the location parameter
and diagonal entries of the dispersion matrix using the EM and ML methods. The result
for estimating these parameters are given in Figures 8-9, respectively. As it is seen, the
EM algorithm gives results close to the ML approach for estimating diagonal entries of the
dispersion matrix. The results of simulation show that the computational cost increases
as dimensions increase but differences are not significant. For example, the execution time
for implementing the EM and ML methods are given in Table 4. For this, we generated
n = 1000 random vectors of a sub-Gaussian SαS distribution.

Table 4. Average of the execution time in seconds for 50 runs of the EM and ML methods where they are
applied to a d-dimensional sub-Gaussian SαS distribution. The written program run on a 3.5 GHz Intel
processor Core(TM) i7 using a 8 GB RAM. During simulation, we set M = 200, M0 = 150, and Σ is a
positive definite matrix whose eigenvalues are randomly generated from a uniform distribution on (0, 2).
The value inside of the parentheses corresponds to the ML method.

d α=1.5 α=1
5 201(1.2) 185(0.6)
10 222(3.3) 200(3.5)
20 230(7.6) 223(7.8)
50 275(42) 258(40)
100 456(193) 389(173)
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Fig. 9. Estimated  values for location parameter when the EM and ML methods are applied to 30 indices of
Dow Jones data. The signs × and + correspond to the EM and ML methods.

6. Concluding remarks
We propose an EM algorithm for estimating the parameters of SαS and sub-Gaussian SαS
distributions. For SαS case, the performance of the proposed EM algorithm is compared
with known approaches such as ML, CF, and SQ through a comprehensive simulation
study. The comparisons are based on square root of the mean-squared error (RMSE). It
follows that the proposed EM algorithm is a good competitor for the ML, CF, and SQ
methods. Furthermore, in the univariate case, its performance is proved using three sets of
real data. For the sub-Gaussian SαS case, the performance of the proposed EM algorithm
is investigated via simulation and real data modelling. To avoid unnecessary details, we
consider only two-, three-, and thirty-dimensional cases. The simulation reveals that the
proposed EM algorithm provides satisfactory performance. Particularly, in two-dimensional
case, it gives better performance than the CF and SQ methods in modelling a set of real
data. The proposed EM algorithm has some advantages over other methods studied in
this work. Among them we mention: 1- it works for all ranges of parameters. 2- In the
multivariate case, it can estimate all entries of dispersion matrix simultaneously so that the
estimated dispersion matrix is always positive definite. 3- it motivates further researches
for many other distributions where dividing by an auxiliary random variable in the CML
step, simplifies the M step of the EM algorithm. This idea can be applied for exponential
power distribution. 4- it outperforms the CF and SQ methods in estimating the location
parameter when α is near to one. 5- it can be developed for modelling the mixture of
SαS distributions. This advantage of the proposed EM is a privilege as the evaluated ML,
SQ and CF are not applicable to the mixture models. As possible future works, we are
developing the proposed EM algorithm to estimate parameters of a stable, mixture of SαS,
and mixture of sub-Gaussian SαS distributions.
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