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One of data mining schemes in statistics is clustering panel data such as longitudinal data and time series
data. Classical approaches to cluster such time dependent information do not properly count time dependencies
among objects we are interested to analyze. In the present study, we propose an approach which takes time
dependencies into our consideration by introducing appropriate weight factors with an add-on approach which
allows us to measure pairwise distances in multi-dimensional space not just in two dimension. We refer to these
approaches LTTC (Lag Target Time Series Clustering) and MFTC (Multi-Factor Time Series Clustering),
respectively. These proposed methods in the present study are applicable to any time dependent information
from various research areas, and we have applied these methods to state level brain cancer mortality rates in
the United States that illustrates the importance of subject methods.
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1. Introduction

We are living in the world with a flood of information which changes over time, and this time depen-
dent information occupies the main part of BIG DATA that is the current prime topic in data science.
There have been several statistical approaches [1] [2] [3] [9] [10] [11] [12] [13] [14] [15] [16] to
extract the significant core from time dependent information, and in the present study, we propose
new methods to obtain the important essence from the time dependent information by clustering
time dependent responses such as time series data and longitudinal data we are commonly faced
with to analyze. Figure 1, below describes time dependent information we deal with in Statistics
and we focus on time series data and a part of longitudinal data in the present study.
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Fig. 1: Summary of Time Dependent Information in Statistics.

Classical methods in clustering time dependent information were a sort of a passive approach
from a data scientist’s viewpoint, because resulting clusters followed by these methods are deter-
ministic based on the measure of dissimilarity no matter what distance measurements we applied
to the data. However, the new methods we are proposing in the present study are active processes
to deliver the core information from the massive information we are facing to be analyzed based on
our objective of the present study.

In general, we have three different clustering approaches for time dependent information as
shown in Figure 1, that is,

(D Temporal-Proximity-Based Clustering Approach.

@ Representation-Based Clustering Approach.

3 Model-Based Clustering Approach.

Our proposed methods are developed in order to accommodate and improve problems inher-
ited from imposing several assumptions in temporal-proximity-based clustering approach. In
temporal-proximity-based approach, we assume that there is plenty of information available in each
time series object, and only one stream of information is given as a function of time.

But, what if we do not have enough number of observations to use classical time series clus-
tering methods, and what if there exist several significant streams of information in each time
series object? Thus, we proceed to introduce two new clustering methods to cover these important
cases in temporal-proximity-based approach. Moreover, those classical time series clustering
methods do not count actual time dependencies among time series objects and the resulting clusters
are usually based on trends and patterns. Hence, we are not able to investigate their actual degree of
time dependencies if we use classical time series clustering methods.

2. Motivation

In what follows we discuss the new methods we propose.
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2.1. Lag Target Time Series Clustering

The first approach we propose in the current study is “Lag Target Time Series Clustering
(LTTC)”. In time series analysis, we usually consider more than 50 observations in each time series
objects (responses) as possibly enough information, but this condition is not always satisfied in the
real world problem. However, if we take cross lag distances into consideration, we can increase the
number of distance measurements considerably.
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Fig. 2: lllustration of the Importance of the Cross Lag Distance.

In Figure 2, below, X; is the baseline time series object, Y; is a vertical shifted time series object
of X;, and Z, is a preceding index of X;. Now, which information is more closely related to the
baseline time series object, X;? If we ignore lag-time-dependency between two time series objects,
we have

d(Xt,Yt) <<KL d(XIJZl) )

no matter what distance measure method we use. However, if we measure cross lag-one distance
between two time series objects, we obtain

d(thl,th) >>> d(Xt717Zt) .

Now, suppose we have two different clusters, one with ¥; and the other with Z;, then, does X; go
with the cluster with Y¥;? or Z,? We definitely need to include all three time series objects in the same
cluster and we will be able to obtain this desirable resulting cluster using our proposed method,
LTTC.
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2.2. Multi-Factor Time Series Clustering

The second method we propose in the present study is “Multi-Factor Time Series Clustering
(MFTC)”. This method (MFTC) is more meaningful as a more realistic approach to our previously
proposed method, LTTC. As we already mentioned in the introduction, one of the general assump-
tions in classical temporal-proximity-based time series clustering is that there exists only one stream
of information in each time series objects. However, usually each time series response consists of
several sub-information. For example, daily stock price consists of several sub-information such
as opening price, closing price, maximum price, and minimum price, etc. If each sub-information
shows different behavior and has a significant impact on the original information, we should take
these differences in consideration (sub-information) into our modeling. Also, in health science, sur-
vival analysis of patients is a function of time and death is caused by several factors, for example
in lung cancer, death was due to smoking, overweight, age, drinking, etc. Thus, we must take these
risk factors into consideration in modeling survival analysis. Therefore, when we measure the dis-
tance between two time series objects, we now put our ruler in the multi-dimensional space and the
degree of dimension is always “the number of factors considered in the study plus one”, because
of the time factor. If we just measure cross lag zero distance, it is very trivial as shown in Figure 3.
However, when we measure cross lag distances as shown in Figure 4, we have to consider the unit

difference between time and other factors and a weight factor which presented in the later section
replaces time unit.
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Fig. 3: Two-Factor Distance Measurement at the Cross Lag zero.
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Male

Fig. 4: Two-Factor Distance Measurement at the Cross Lag One.

3. An Application of LTTC and MFTC: Brain Cancer Mortality Rates in the United
States

In what follows we will apply our methods in some important real data.

3.1. Objective of the Study

There have been various mortality rates statistical models of brain cancer for the entire United
States, [4], [5], and [6]. However, we do not have any study done for various regional differences
of the brain cancer mortality rates in the United States. We strongly believe that there are signifi-
cant regional differences, primarily due to environmental issues such as carbon dioxide emission,
the quality of drinking water, etc. that cause death of brain cancer. Thus, our proposed method of
analytic clustering procedure based on regional brain cancer mortality rates in the United States is
very important.

3.2. Structure of the Data

The data that we are using was collected by the Surveillance, Epidemiology, and End Results
(SEER) database which is one of the biggest epidemiological databases in the U.S. and contain
U.S. state level mortality rates due to brain cancer from 1969 to 2012. Figure 5, below, shows the
structure of the data, with 9 climate regions, 51 states including D.C., and calculated mortality rates
for males and females separately. In each state, m; and f; represent the the number of deaths per
100,000 population due to brain cancer at time 7(= 1,2,...,43) for males and females, respectively.

Table 1, below, displays p-values from nonparametric Kruskal-Wallis tests for the hypothesis
that the median level of the brain cancer mortality rates of male and female are same in each state
of the United States, and calculated p-values in Table 1 suggest for us to consider MFTC method
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Fig. 5: Structure of the Data.

to achieve the objective of the study. [7] [17] [18] For example, the largest p-value we have found
in Table 1 is 0.034 for the state of North Dakota and still this p-value is reasonably small enough
to decide that the differences between male brain cancer mortality rates and female brain cancer
mortality rates are statistically significant, when we set the level of significance, «, at 0.05.

Table 1: Comparison Between Male and Female Brain Cancer Mortality Rates.

State | p-value | State | p-value | State | p-value
IL | 1.56E-14 | NH | 6.40E-06 | FL | 4.85E-14
IN | 1.30E-09 | NJ | 9.38E-14 | GA | 4.42E-13

KY | 1.83E-08 | NY | 1.73E-15 | NC | 9.19E-08
MO | 6.05E-11 | PA | 2.60E-08 | SC | 1.36E-08
OH | 645E-15| RI | 1.32E-05 | VA | 3.01E-11
TN | 7.21E-12 | VT | 2.10E-05 | AZ | 7.56E-10
WV | 1.94E-04 | AK | 6.78E-03 | CO | 5.40E-09

IA | 2.14E-07 | ID | 2.27E-05 | NM | 4.92E-08
MI | 359E-11 | OR | 7.62E-11 | UT | 3.74E-06
MN | 2.82E-13 | WA | 7.21E-14 | CA | 1.41E-15
WI | 6.79E-12 | AR | 5.21E-06 | HI | 4.48E-05
CT | 1.24E-11 | KS | 1.60E-10 | NV | 3.56E-09
DE | 792E-04 | LA | 797E-08 | MT | 3.10E-07
DC | 7.14E-03 | MS | 1.28E-04 | NE | 1.34E-07
ME | 5.58E-07 | OK | 3.70E-10 | ND | 3.40E-02
MD | 2.24E-10 | TX | 7.62E-11 | SD | 6.78E-03
MA | 6.79E-11 | AL | 2.65E-10 | WY | 7.32E-03
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4. Construction of the Dissimilarity Matrix

Statistical clustering procedures are performed based on the dissimilarity matrix, which is a set
of pairwise distances among time series responses. Based on the structure of the data as shown
by Figure 5 and using the proposed method MFTC as presented in Table 1, we define pairwise
distances as follows.

4.1. Distance at the Cross Lag Zero

First, we define pairwise distances among mortality rates in all U.S. at the cross lag zero. Let

[mi fi
mp fin
\mit fir
and

[mj1 fin
mj fi

Lmjr fir

be the brain cancer mortality rates in state i and state j, respectively, and define a difference matrix,

miy —mj1 fir = fji
mip —mjp fio—fj

mir —mjr fir — fir

dm1 dpy
dm dp2

dmr dfr

Then the distance between state i and state j at cross lag zero is given by

T
dij=Y \/DiS'D; - W, | 4.1
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where D; is 1 row of the difference matrix D, S is COV (D,,,Dy), and W, is a weight factor,
which is the ratio of the absolute value of the sample autocorrelation, and is defined as,

(M +]F))
P — ST 1 aal . N 0
Y (M| +|F])
where
t —_ —_—
M = (dm,‘L'-‘rT—l - dm)(dmr - dm)
=1
and

(dyosr——dp)(dyo—dy).

=
I
-

L
Il
—_

Equation (4.1) is basically a weighted Mahalanobis distance, and our distance measures are built
upon the Mahalanobis distance because the inverse covariance factor stabilizes the overall distance
matrix, thus, the effect of the weight factor is minimized and not over-counted, [8] [19] [20].

4.2. Distance at the Cross Lag k (k> 1)

We now define ¢ R;, the brain cancer mortality rates in state i after eliminating k rows from the front,
and R; x, the brain cancer mortality rates in state j after removing k rows from the tail.

M k41 fik+
M2 fiks2

R =
mit  fir
and
mij fia
Rj,k — . . ,
mir_1—k f[iT—1-k

mir—x  fiT—«k

where m; ;. and f;; denote the male brain cancer mortality rate at time k and the female brain
cancer mortality rate at time k for the state i, respectively, and accordingly the backward difference
and the forward difference matrices can be obtained as given below.
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M1 —Mj 1 fikr1—fin ]
M2 —Mj2 Jikr2—fi2
D=k Ri—Rjr= : :
mir—1—mjr_1—k fit—1— fir—1-k
mir —mjr_ Jir—fir—« |
_ 4.2)
km,1 kdy
Kdm,2 kdfo
k. 71—k kdf 71—k
| kdmr—k kdpr—k
and
[ mig—mjg fit = fij+1
Mmip —Mmjji2 Jiz—Jik+2
Dy =Ri;—R; = : :
mir—1—k—mjr—1 fitr—1-k — fiT-1
mr—x—mjr fir—k—fir |
N “4.3)
1 drin

A 2 drin

A je, 71—k df g 71—k

L dnkr—k  dfkr—k |

Based on equation (4.2) and (4.3), we can establish the cross lag k distance between state i and

state j as a mean of weighted backward Mahalanobis distance and weighted forward Mahalanobis
distance as given by the equation (4.4), below.

1 T—k - T—k — -
dijr = E(Z kDS~ Dy Wi+ Y \/Dii S D, Wik),
=1 =1

4.4)

where two weight factors, (W; and W, 4, are defined below for k =0,1,2,...,T -3

2(T1—k)(|M1|+|F1|)

kWr = — )
Yo (M1 +F1)

where

t
M1 =Y (kdm i1kt =k dm) (kdm,c — dm)
=1
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and
t - -
F1=Y (dyrir—i-t—xds)dyz—dy),
=1
and
2(T17_k) (IM2|+|F2)
tk = _ )
L (IM2] +|F2))
where
t —_ —_
M2 = Z (dm,k,‘r-i-T—k—t - m,k)(dm,k,‘c - dm,k)
=1
and

F2=Y (dfkrsr—k—t—dri)(drer—dri).

-

1

Q
Il

4.3. The Dissimilarity Matrix for Clustering

Using the distances we have defined above, we proceed to obtain / layers of the distance matrices as
shown in Figure 6, below. In each cross lag distance matrix in Figure 6, d;; x represents the weighted
mahalanobis distance between state i and state j at cross lag k.

state 1 state2 +++ statej '+ staten
— dlj,k — dlll,k .
—— dojk = doni :

state 1

state 2

state i

. dors d... [P Ao s
state n [ X dnz,0 e dnj0 .o

state 1 state2 +++  Sstatej **+  Staten

Fig. 6: Structure of Distance Matrices.

In order to complete our final dissimilarity matrix for the clustering procedure, we define a
weight factor for each layer, which is the ratio of the absolute value of the sample cross-correlation
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state 1 state2 '+ statej *'* Sstaten

state 1 state2 +++  statej . state n

Fig. 7: Structure of Weight Matrices.

as shown by equation (4.5), and the resulting structure of the weight matrices as displayed in Figure
7. These weight factors take the difference between genders and time dependency between two
objects into consideration at the same time properly. That is,

o7 (|M3| + |F3])

Ojjk = —7— 4.5)
Rl (IM3|+ |F3))
where
T—k
M3 = Z (mj gy — ;) (mj . —m;)
=1
and
T—k ) B
F3=Y (firsx—F)(fix = F))-
=1

In each layer in Figure 7, §;; x denotes the weight for d;;  in Figure 6, that is the weight factor
applying to the distance between state i and state j at cross lag k.

Now, we proceed to multiply the distance layers in Figure 6 with the weight layers in Figure
7, and add all the resulting layers to build our final dissimilarity matrix presented in Figure 8 to
perform the statistical clustering procedure. At this stage, our main interest lies on the selection of
the optimal level of lag distance, and our final dissimilarity matrix is very sensitive to the choice of
the optimal level of lag, k.
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Fig. 8: Final Dissimilarity Matrix.

In Figure 8, d;; is the final similarity or dissimilarity index between state i and state j. In other
words, the sum of weighted cross lag distances between state i and state j.

5. Clustering Procedure

We utilize Ward’s Clustering Method in this section to achieve our resulting clusters. Joe H. Ward,
Jr., [21] [22] [23], proposed a general agglomerative hierarchical clustering procedure which is
based on minimum variance criterion and it is also called "Ward’s Minimum Variance Method”. In
other words, our final clusters are obtained by minimizing within-cluster variance which is defined
by the squared Euclidean distances among clustering objects as shown in equation (5.1), below.

dij = d({X;},{X;}) = |X: = X;|* . (5.1)

5.1. Clusters Based on Euclidean Distance vs. Mahalanobis Distance

Before we move into our main clustering problem of the brain cancer mortality rates in the U.S.,
we want to compare the clustering results between Euclidean distance and Mahalanobis distance.
Figure 9, presents clustering maps based on Euclidean distance and Mahalanobis distance with the
same weight factors described in previous sections. We have four-cluster solution in both clustering
maps, and they are almost identical. Only two states stay in different clusters in both maps, and they
are Washington state and New Hampshire state. This implies that the covariance between males
and females are not significantly large, but this is still statistically significant because the covariance
stabilizes the pairwise distances so that we have appropriate level of the effect from using weight
factors.

5.2. Passive Deterministic Clustering vs. Active Dynamic Clustering

The map at the bottom in Figure 9 delivers the resulting clusters based on our definition of distances
from equation (4.1). States in the green cluster are mostly located in the south region of the U.S.,
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o
Weighted Mahalanobis Distance at Lag 0

Fig. 9: Euclidean Distance vs. Mahalanobis Distance.

and other colored clusters are also determined by the dissimilarity matrix with lag zero which we
obtained from the previous sections. With this approach, once we have a dissimilarity matrix where
the clustering solution is only determined by the clustering method we want to choose. We refer to
this classical approach as ‘“Passive Deterministic Clustering” in this sense.

The algorithm of LTTC is presented in Figure 10, and this procedure is an active and dynamic
way to cluster time series responses, because the final cluster solution is the end objective of the
present study. Using this method, we first choose our target cluster which consists of time series
objects that have similar characteristics, then perform a clustering procedure iteratively by including
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Select Target Cluster
T={X1,X2,...,.Xp}

Perform a Clustering Procedure.
Are All Target TS Objects in the Same Cluster?

Again, Perform a Clustering Procedure.
Are All Target TS Objects in the Same Cluster?

Choose k-1 Lag Clusters

Modify Target Cluster with p < p-1 TS Objects

Fig. 10: Lag Target Time Series Clustering Algorithm.

one more cross lag distance each time until we achieve our target cluster. When we obtain our target
cluster, we continue using this procedure again until our target cluster breaks up. If our target cluster
breaks up with a dissimilarity matrix with cross lag k distance, our solution to the subject problem
is k — 1 lag clustering solution. From this solution, we can see the maximum degree of lag time
dependency among time series objects in our target cluster, and minimum lag time dependency in
other clusters.

5.3. Applying the Proposed Method

Now, we consider that the state of Texas and Florida have similar population characteristics and cli-
mate conditions; accordingly our objective of the study is finding the degree of lag time dependency
between the two states. As shown in Figure 9, the two states are not in the same cluster when we
ignore lag dependency among all of the U.S. states. Therefore, we add lag one distance each time
before performing iterative clustering procedures, and then we obtain “Lag 3 Clusters” as our final
solution of the subject problem as shown in Figure 11. This implies that brain cancer mortality rates
between Florida and Texas have lag 3 time dependency and also we can find other states that have
the same lag time dependency with two states as shown in Figure 11.

6. Conclusion

In the present study, we propose an active and dynamic method to cluster time dependent infor-
mation. The application of MFTC and LTTC, is not confined to cluster ones the same kind of
information but also to be able to investigate time dependent relationships among the information
from various research areas.
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Fig. 11: An Example of LTTC Solution.

We illustrated the usefulness of the proposed method by clustering an open problem of brain
cancer mortality rates in USA. This information is quite important in investigating other risk factors
on a regional bases, such as environmental issues that may influence brain cancer deaths.

The proposed active and dynamic procedure is applicable to cluster many important problems in
finance, ecology, health sciences, among others. In the present study, we illustrated the effectiveness
of the proposed method (procedure) in clustering the brain cancer mortality rates in the USA. Hav-
ing this information, one can investigate what other effects such as CO; in the atmosphere, quality
of water, etc., may contribute to brain cancer mortality. This procedure can also be applied to cluster
breast cancer, lung cancer, prostate cancer, etc.

In finance, clustering the signals (price of a given stock as a function of time) for a given business
segment, such as the health industry that consists of a member of stocks is quite important for
investing effectively in the subject sector. Using the LTTC and MFTC methods can obtain very
important information to portfolio managers for strategic changes in their investment objectives.
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