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Abstract 

An alternative approach of Poisson and Geometric distributions having a more general form of sampling method 

are suggested in this paper and defined them as generalized Poisson and generalized Geometric distributions 

respectively. It is evident that the traditional forms of both the distributions are the special cases of the proposed 

generalized distributions. Moreover, some distributional properties of the suggested distributions are derived here. 

The study also fixes the assumptions under which generalized Binomial distribution reduces to generalized Poisson 

distribution along with proof.  

Keywords: Generalized Poisson distribution; Generalized Geometric distribution; Sampling method; Distributional 

properties.  
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1. Introduction 

The Poisson and Geometric distributions and their applications in statistical modeling and in many other 

scientific fields are well recognized. The traditional Poisson variate corresponds to the number of occurrences 

of the rare event in a fixed interval of time or space or other intervals and assumed to lie in discrete order 

between 0 to ∞. On the other hand, the usual Geometric variate is used to present the number of failure 

preceding the first success having the same range of the values of Poisson variate. But, in real world the event 

may occur in different fashions. Consider the sampling scheme where the number of occurrences possess the 

sequence such as (i) 0,2,4, ⋯ , ∞, (ii) 2,4, ⋯ , ∞, (iii) 3,6,9, ⋯ , ∞, (iv) 1,4,7, ⋯ , ∞ and so on. For instance, 

consider the total number of births those who born as twins at a particular hospital during a specified time 

interval. Let us define the number of new births as success and thus the number of success possess values 
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0,2,4, ⋯ , ∞. The usual Poisson distribution is completely helpless to deals with this particular sequence of 

number of success along with others mentioned above. Again, consider the example of twin births in 

geometric sense. In the sampling scheme, let us define the event as success if both the twins are male and 

stopped the sampling and number of births as twins in either combination of girl and boy or both girls are 

considered as failure. With these sequences of the values of the random variable, the traditional Geometric 

distribution cannot be applied to find a certain probability of a particular event.                   

In order to deal with the problems where traditional distributions are unaided, our study have suggested 

new generalization of the traditional Poisson and Geometric distributions where the random variable for each 

distribution is expressed by an arithmetic progression 𝑎(𝑛 − 1)𝑑, where 𝑎 is a non-negative integer 

representing the minimum values of the random variable, 𝑛 is a pre-assigned non-negative integer indicating 

the number of trails and 𝑑 is also a positive integer representing the concentration of the occurrences.  

A series of studies have carried out under the heading generalization of Poisson distribution where the key 

concept our work is completely different. Consul and Jain1 first suggested generalization of Poisson 

distribution having two parameters 𝜆1 and 𝜆2 which is obtained as a limiting form of the generalized negative 

Binomial distribution. In usual Poisson distribution, the mean and variance are same, while the variance of the 

suggested generalized distribution is greater than, equal to or smaller than the mean depending on whether the 

value of the parameter 𝜆2 is positive, zero or negative. Later Consul2 studied more extensively the distribution 

to cover the diversity of the observed number of occurrences for various factors. He also mentioned that 

proving the sum of all of the probabilities to unity is very difficult. In this context, Lerner et al.3 provide a 

more direct proof using the analytic functions. Some remarks on generalized negative binomial and Poisson 

distributions were made by Nelson4. Paul5 proposed a generalized compound Poisson model for panel data 

analysis on consumer purchase. Lin6, in his study discussed about the generalized Poisson models and their 

applications in insurance and finance sector. On the basis of gamma function and digamma function a new 

two-parameter count distribution is derived by Hagmark7. He unveiled that the derived distribution can attain 

any degree of over/under dispersion or zero-inflation/deflation where the usual Poisson model has no 

dispersion flexibility.      

Several authors have worked on generalization of the Geometric distribution which are also differ from the 

concept of our current work. Mishra8 proposed generalized geometric series distribution (GGSD) and shown 

that traditional geometric and Jain and Consul’s9 generalized negative binomial distribution are the special 

cases of the proposed distribution. A generalized Geometric distribution and its properties was introduced and 

studied by Philippou et al.10 from the motivation of the work by Philippou and Muwaf11. The distribution was 

defined under the heading of Geometric distribution of order k where the distribution turned into the 

traditional form if order k = 1. Considering the length-biased version of the generalized log-series 

distributions by Kempton12 and Tripathi and Gupta13, Tripathi et al.14 derived two version of two parameter 

generalized Geometric distribution. Another generalization of the Geometric distribution having two 

parameters was obtained by Gomez-Deniz15 obtained. He showed the generalization can be obtained either by 

using Marshal and Olkin16 scheme and adding a parameter to the Geometric distribution or from generalized 

exponential distribution presented in the same paper by Marshal and Olkin. Nassar and Nada17 discovered a 

five parameter new generalization of the Pareto-geometric distribution by compounding Pareto and Geometric 

distribution and generalized it by logit of the beta random variable.       

2.1 Proposed Generalized Poisson Distribution  

In the count data model, the traditional Poisson variate representing the number of occurrences takes the value 

ranges from 0 to ∞. Consider the following sequences for the values of the Poisson variate indicating the 

number of occurrence:    

  

(i) 0,2,4, ⋯ , ∞  

(ii) 2,4, ⋯ , ∞  

(iii) 3,6,9, ⋯ , ∞  
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(iv) 1,4,7, ⋯ , ∞ 

 

and so on. 

The arithmetic progression 𝑎 + 𝑛𝑑 can be used to represent the number of occurrences where, 𝑎 is a non-

negative integer representing the minimum number of occurrence, 𝑑 is a positive integer representing the 

concentration of occurrence and 𝑛 is a non-negative integer indicating the total number of trails. To tackle 

with the situation where the number of occurrences follows an arithmetic progression, we formulate a 

probability function and defined as generalized Poisson distribution. The sequence can easily take the 

traditional sequence 0, 1,2, ⋯ , ∞ of Poisson distribution for the values 𝑎 = 0 and 𝑑 = 1 and then our 

proposed distribution turned into the usual Poisson distribution. Thus, a series of probabilistic problems can 

be solved by the proposed distribution including the problems solved by the traditional one. In this section, 

we define the proposed distribution and provide some of its important properties.         

 

Definition 2.1.1: A random variable X is said to have a Poisson distribution with parameter 𝜆, a, n and d if it 

has the following probability mass function 

 

𝑃(𝑥; 𝜆, 𝑎, 𝑛, 𝑑) =
𝜆𝑥

𝑥! ∑
𝜆𝑎+𝑛𝑑

(𝑎 + 𝑛𝑑)!
∞
𝑛=0

      ; 𝑥 = 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, ⋯ , 𝑎 + 𝑛𝑑 

 

where, 𝑎 ≥ 0 is the minimum number of occurrence, 𝑑 > 0 is the concentration of occurrence, 𝑛 is a pre-

assigned non-negative integer such that 𝑎 = 0 if 𝑛 = 0 and 𝜆 ≥ 0 is the mean number of occurrences. 

It can be clearly shown that 𝑃(𝑥; 𝜆, 𝑎, 𝑛, 𝑑) ≥ 0 and ∑ 𝑃(𝑥; 𝜆, 𝑎, 𝑛, 𝑑) = 1𝑎+𝑛𝑑
𝑥=𝑎  for different values of X in 

terms of 𝑎 ≥ 0, 𝑑 > 0 and 𝑛 > 0. Hence, the suggested function of generalized Poisson distribution is a 

probability mass function. 

 

The generalized Poisson distribution tends to the traditional Poisson distribution when minimum number 

of occurrence 𝑎 = 0 and concentration of occurrence 𝑑 = 1. Thus, we may conclude that the traditional 

Poisson distribution is a special case of the proposed generalized Poisson distribution. The advantage is to 

give the solution of finding probabilities of the count data where the values of the random variable can take 

infinite number of sequence including the traditional 0, 1, 2, ⋯ , ∞.    

 

Theorem 2.1.1: Derivation of Generalized Poisson Distribution.  

 

Proof: We proposed generalized Binomial distribution in another paper where the number of success is 

represented by an arithmetic progression. The form of the probability mass function of generalized Binomial 

variate X with parameter a, n, d, and p is  

 

𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) =
(𝑎+𝑛𝑑

𝑥 )𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥

∑ (𝑎+𝑛𝑑
𝑥 )𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥𝑎+𝑛𝑑

𝑥=𝑎

      ;  𝑥 = 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, ⋯ , 𝑎 + 𝑛𝑑                                             (2.1.1)  

 

Under the following assumptions, the generalized Poisson distribution can be derived from generalized 

Binomial distribution. 

 

i) p, the probability of success in a Bernoulli trail is very small. i.e. 𝑝 → 0. 

ii) n, the number of trails is very large. i.e. 𝑛 → ∞. 
iii) (𝑎 + 𝑛𝑑)𝑝 = 𝜆 is finite constant, that is average number of success is finite. Under this condition, we 

have 
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      (𝑎 + 𝑛𝑑)𝑝 = 𝜆   ∴ 𝑝 =
𝜆

(𝑎+𝑛𝑑)
  and 𝑞 = 1 −

𝜆

(𝑎+𝑛𝑑)
   

 

The remaining part of the derivation is presented in Appendix. 

     

Theorem 2.1.2: The moment generating function of the generalized Poisson distribution and its first four raw 

and central moments.  

 

The moment generating function of the generalized Poisson distribution is  

 

𝑀𝑋(𝑡) =
1

∑
𝜆𝑎+𝑛𝑑

(𝑎 + 𝑛𝑑)!
∞
𝑛=0

∑
(𝜆𝑒𝑡)𝑎+𝑛𝑑

(𝑎 + 𝑛𝑑)!

∞

𝑛=0

                                                                                                                (2.1.2) 

    

Differentiating it with respect to t in first to 4th order and equating 𝑡 = 0, we obtain the first four raw 

moments respectively and which are as follows:  

 

𝜇1
′ =

∑ (𝑎 + 𝑛𝑑)
𝜆𝑎+𝑛𝑑

(𝑎 + 𝑛𝑑)!
∞
𝑛=0

∑
𝜆𝑎+𝑛𝑑

(𝑎 + 𝑛𝑑)!
∞
𝑛=0

                                                                                                                                  (2.1.3) 

𝜇2
′ =

∑ {𝑎 + 𝑛𝑑}2 𝜆𝑎+𝑛𝑑

(𝑎 + 𝑛𝑑)!
∞
𝑛=0

∑
𝜆𝑎+𝑛𝑑

(𝑎 + 𝑛𝑑)!
∞
𝑛=0

                                                                                                                                (2.1.4) 

 

𝜇3
′ =

∑ (𝑎 + 𝑛𝑑)3 𝜆𝑎+𝑛𝑑

(𝑎 + 𝑛𝑑)!
∞
𝑛=0

∑
𝜆𝑎+𝑛𝑑

(𝑎 + 𝑛𝑑)!
∞
𝑛=0

                                                                                                                               (2.1.5) 

 

𝜇4
′ =

∑ (𝑎 + 𝑛𝑑)4 𝜆𝑎+𝑛𝑑

(𝑎 + 𝑛𝑑)!
∞
𝑛=0

∑
𝜆𝑎+𝑛𝑑

(𝑎 + 𝑛𝑑)!
∞
𝑛=0

                                                                                                                               (2.1.6) 

 
The corresponding central moments can be obtained by using the relationship between the raw and central 

moments. Consequently, we may find the measures of skewness and kurtosis. The form of the central 

moments and thus measures of skewness and kurtosis are seem to long and complicated equations and not in a 

concrete form, but very much simple to calculate the mentioned properties for specific values of a and d.       

All of the raw moments, central moments and measures of skewness and kurtosis derived from the 

generalized Poisson distribution tend to the form of traditional Poisson distribution when 𝑎 = 0 and 𝑑 = 1, 

which again justify that property that the usual Poisson distribution is the special case of the generalized 

Poisson distribution. 

2.2 Proposed Generalized Geometric Distribution 

In this section, we discuss about the generalized Geometric variate having relatively more general form of the 

values represented by an arithmetic progression which is mentioned above in the generalized Poisson 
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distribution case and its distribution and the properties. We have proposed the distribution for the random 

variable taking values in the form 𝑎 + 𝑛𝑑 where a is a non-negative integer representing minimum number of 

failure, d is a positive integer indicating how the failures are occur, that is concentration of occurrence of 

failure per trail and 𝑛 > 0 is an integer representing the total number of trails. Clearly, the range of the 

random variable is similar to that of usual Geometric distribution if 𝑎 = 0 and 𝑑 = 1. As we proposed 

generalization of traditional Geometric distribution, it is the necessary condition that it reduces to traditional 

distribution if the random variable posses the range 0 to ∞.  

 

Definition 2.2.1: A random variable X is said to have a generalized geometric distribution if it has the 

following probability mass function 

 

𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) = 𝑞𝑥
(1 − 𝑞𝑑)

𝑞𝑎
                ;  𝑥 = 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, ⋯ , 𝑎 + 𝑛𝑑                                                   (2.2.1)  

 

where, 𝑎 is a non-negative integer representing minimum number of failure, d is a positive integer indicating 

concentration of failure per trail and 𝑛 > 0 is an integer representing the total number of trails such that 𝑎 =
0 if 𝑛 = 0 and p is the probability of success such that 𝑝 + 𝑞 = 1 are the parameters of the distribution. The 

probability function 𝑞𝑥 (1−𝑞𝑑)

𝑞𝑎  provides the probability of getting the 𝑑 successes following maximum of 

{𝑎 + 𝑛𝑑} failures in n trials.  

The function in Equation 2.2.1 is a probability function as it satisfies the following properties of 

probability function for several values of the parameters. 

 

i) 𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) ≥ 0  

ii) ∑ 𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝)𝑎+𝑛𝑑
𝑥=𝑎 = 1  

 

The probability function reduces to 𝑝𝑞𝑥, where 𝑥 = 0, 1, 2, ⋯ , ∞ if 𝑎 = 0 and 𝑑 = 1. Thus, the name 

generalized Geometric and traditional one is considered as the special case of the suggested distribution. The 

other distributional properties are examined below: 

 

Theorem 2.2.1: Prove that the moment generating function of generalized Geometric distribution is  

𝑀𝑋(𝑡) =
(1 − 𝑞𝑑)𝑒𝑡𝑎

[1 − (𝑞𝑒𝑡)𝑑]
                                                                                                                                                 (2.2.2) 

 

The proof of the theorem is presented in the appendix.    

 

Theorem 2.2.2: The first four raw moments of the generalized Geometric distribution are respectively 

 

𝜇1
′ = 𝑎 +

𝑑𝑞𝑑

(1 − 𝑞𝑑)
                                                                                                                                                       (2.2.3) 

 

which is the mean of the distribution.  

 

𝜇2
′ = 𝑎2 +

𝑎𝑑

(1−𝑞𝑑)
   +

𝑑(𝑎+𝑑)𝑞𝑑

(1−𝑞𝑑)
+

2(𝑑𝑞𝑑)
2

(1−𝑞𝑑)
2                                                                                                                 (2.2.4)  
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𝜇3
′ = 𝑎3 +

2𝑎2𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

𝑎2𝑑

(1 − 𝑞𝑑)
+

𝑎𝑑2

(1 − 𝑞𝑑)
+

2𝑎𝑑2𝑞𝑑

(1 − 𝑞𝑑)2
+

2𝑎𝑑2𝑞𝑑

(1 − 𝑞𝑑)
+

𝑑3𝑞𝑑

(1 − 𝑞𝑑)
+

4𝑎𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

6𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2

+
6𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3
                                                                                                                                     (2.2.5) 

 

𝜇4
′ = 𝑎4 +

𝑎4𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

𝑎3𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)
+

2𝑎2𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

𝑎3𝑑

(1 − 𝑞𝑑)
+

2𝑎2𝑑2

(1 − 𝑞𝑑)
+

𝑎𝑑3

(1 − 𝑞𝑑)
+

2𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)2

+
2𝑎𝑑3𝑞𝑑

(1 − 𝑞𝑑)2
+

𝑎3𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

3𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)
+

3𝑎𝑑3𝑞𝑑

(1 − 𝑞𝑑)
+

𝑑4𝑞𝑑

(1 − 𝑞𝑑)
+

2𝑎2𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

4𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2

+
2𝑑4𝑞2𝑑

(1 − 𝑞𝑑)2
+

2𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)2
+

4𝑎𝑑3𝑞𝑑

(1 − 𝑞𝑑)2
+

6𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)3
+

4𝑎2𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

14𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2
+

12𝑑4𝑞2𝑑

(1 − 𝑞𝑑)2

+
12𝑎𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3
+

18𝑑4𝑞3𝑑

(1 − 𝑞𝑑)3
+

6𝑎𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3
+

18𝑑4𝑞3𝑑

(1 − 𝑞𝑑)3
+

24𝑑4𝑞4𝑑

(1 − 𝑞𝑑)4
                                    (2.2.6) 

 

Theorem 2.2.3: The first four central moments of the generalized Geometric distribution are respectively 

 

𝜇1 = 𝜇1
′ = 𝑎 +

𝑑𝑞𝑑

(1 − 𝑞𝑑)
                                                                                                                                             (2.2.7) 

 

𝑉(𝑋) = 𝜇2 = 𝑎𝑑 +
𝑑2𝑞𝑑

(1 − 𝑞𝑑)2
                                                                                                                                  (2.2.8) 

 

𝜇3 = −2𝑎2𝑑 +
𝑎𝑑2

(1 − 𝑞𝑑)
(1 − 2𝑞𝑑) +

𝑑3𝑞𝑑

(1 − 𝑞𝑑)3 (1 + 𝑞𝑑)                                                                               (2.2.9) 

 

𝜇4 =
𝑎4𝑑𝑞𝑑

(1 − 𝑞𝑑)
−

4𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

𝑎3𝑑

(1 − 𝑞𝑑)
(3 − 4𝑞𝑑) −

2𝑎2𝑑2

(1 − 𝑞𝑑)2 (1 − 4𝑞𝑑 + 𝑞2𝑑)

+
𝑎𝑑3

(1 − 𝑞𝑑)2 (1 + 4𝑞𝑑 − 𝑞2𝑑) +
𝑑4𝑞𝑑

(1 − 𝑞𝑑)4 (1 + 7𝑞𝑑 + 𝑞2𝑑)                                         (2.2.10) 

 

 

The major part of the proof of the Theorem 2.2.2 and Theorem 2.2.3 are given in Appendix.  

 

Theorem 2.2.4: The measures of skewness and kurtosis of generalized geometric distribution. 

 

The Karl Pearson’s measures of kurtosis can be calculated based on central moments derived in Theorem 

2.2.3.  

 

Theorem 2.2.5 Find the MLE estimator of the parameters of generalized geometric distribution. 

 

Proof: The likelihood function of generalized geometric distribution itself is a probability mass function and 

which is  

 

 𝐿 =

𝑞𝑥 (1−𝑞𝑑)

𝑞𝑎                                                                                                                                                               (2.2.11) 
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Taking logarithm in both sides of the equation, we have 

 

𝑙𝑛𝐿 = 𝑥𝑙𝑛𝑞 + 𝑙𝑛(1 − 𝑞𝑑) − 𝑎𝑙𝑛𝑞                                                                                                                          (2.2.12) 

 

Differentiating equation (2.2.12) with respect to q and equating to zero, we have 

 
𝛿

𝛿𝑞
(𝑙𝑛𝐿) =

𝛿

𝛿𝑞
[𝑥𝑙𝑛𝑞 + 𝑙𝑛(1 − 𝑞𝑑) − 𝑎𝑙𝑛𝑞] = 0 

=>
𝑥

𝑞̂
−

𝑑𝑞̂𝑑−1

(1 − 𝑞̂𝑑)
−

𝑎

𝑞̂
= 0 

=>
𝑥(1 − 𝑞̂𝑑) − 𝑑𝑞̂𝑑 − 𝑎(1 − 𝑞̂𝑑)

𝑞̂(1 − 𝑞̂𝑑)
= 0 

=> 𝑥 − 𝑥𝑞̂𝑑 − 𝑑𝑞̂𝑑 − 𝑎 + 𝑎𝑞̂𝑑 = 0 

=> 𝑞̂𝑑(𝑎 − 𝑑 − 𝑥) = 𝑎 − 𝑥 

=> 𝑞̂𝑑 =
𝑎 − 𝑥

𝑎 − 𝑑 − 𝑥
 

=> 𝑞̂ = (
𝑎 − 𝑥

𝑎 − 𝑑 − 𝑥
)

1
𝑑

                                                                                                                                              (2.2.13) 

 

Which is the MLE estimator of probability of failure before first success. 

 

Hence, the MLE estimator of probability of success after x failure will be 

 

𝑝̂ = 1 − 𝑞̂ = 1 − (
𝑎−𝑥

𝑎−𝑑−𝑥
)

1

𝑑
                                                                                                                                     (2.2.14)  

 

3. Discussion and Conclusion 

In probability theory and statistics Poisson distribution and Geometric distribution have great importance. In 

both the distribution, the value of the random variable ranges from 0 to ∞ with a constant increment of 1 for 

each trail. We proposed the generalized version of both the distribution where the number of occurrences can 

be expressed by an arithmetic progression 𝑎 + 𝑛𝑑. It is shown that the traditional forms of the distributions 

are the special case of the proposed distributions. Thus, both the generalized Poisson and generalized 

Geometric distribution can be applied in the cases where their traditional distribution is the only way. In 

parallel, the proposed distributions facilitates to solving the probability of the certain value of the random 

variable having infinitely many sequences other than traditional sequence. In this context, the scope of the 

proposed distribution is much wider than their traditional form. In addition, some of the distributional 

properties are derived and examined for both of the suggested distributions. Overall, the generalized Poisson 

and generalized Geometric distributions may play a critical and vital role in the distribution theory and thus in 

the complicated real life problems.       

Reference          

[1] P. C. Consul and G. C Jain, A Generalization of the Poisson Distribution, Technometrics. 15(4) 1973 791-799. 

[2] P. C. Consul, Generalized Poisson Distribution: Properties and Applications, (Statistics. Text Book and Monograms, New York: 

Marcel Dekker Inc. R. Loren and D. B. Benson (eds.), 1989).  

[3] B. Lerner, A. Lone, and M. Rao, On generalized Poisson distributions, Probab. Math. Statist. 17(2) 1997 377–385. 

[4] D. L. Nelson, Some Remarks on Generalizations of the Negative Binomial and Poisson Distributions, Technometrics. 17(1) 1975 

135-136. 

484

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 478-490



 

[5] A. E. Paul, A Generalized Compound Poisson Model for Consumer Purchase Panel Data Analysis, J. Amer. Statist. Assoc. 

73(364) 1978 706-713. 

[6] X. S. Lin, Generalized Poisson Models and Their Applications in Insurance and Finance, J. Amer. Statist. Assoc. 99(466) 2004 

563. 

[7] P. Hagmark, An Exceptional Generalization of the Poisson Distribution. Open J. Statist. 2 2012 313-318. 

[8] A. Mishra, A Generalization of Geometric Series Distribution, J. BiharMath. Soc. 6 1982 14-17. 

[9] G. C. Jain and P. C. Consul, A generalized negative binomial distribution, SIAM J. Appl. Math. 21(4) 1971 501-513.  

[10] A. N. Philippou, C. Georghiou and G. N. Philippou, A Generalized Geometric Distribution and some of its Properties. Statist. 

Probab. Lett. 1(4) 1983 171-175. 

[11] A. N. Philippou and A. A. Muwafi, Waiting for the kth consecutive success and the Fibonacci sequence of order k, The 

Fibonacci Quart. 20 (1) 1982 28-32. 

[12] R. A. Kempton, A generalized form of Fisher's logarithmic series, Biometrika. 62(1) 1975 28-38. 

[13] R. C. Tripathi and R. C. Gupta, A generalization of the log-series distribution, Comm. Statist. Theory Methods 14(8) 1985 1779-

1799. 

[14] R. C. Tripathi,  R. C. Gupta and T. G. White, Some Generalizations of the Geometric Distribution. Sankhya B 49(3) 1987 218-

223. 
[15] E. Gomez-Deniz, Another generalization of the geometric distribution. Test 19(2) 2010 399-415. 

[16] A. N. Marshall, and I. Olkin, A new method for adding a parameter to a family of distributions with applications to the 

exponential and Weibull families, Biometrika. 84(3) 1997 641-652. 

[17] M. Nassar and M. Nada, A new generalization of the Pareto-geometric distribution. J.  Egyptian Math. Soc. 21(2)  2013 148-155. 

Appendix 

Derivation of Generalized Poisson Distribution: Under the assumptions made above, the mass function of 

the generalized Binomial distribution can be written as 

 

𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) =
(

𝑎 + 𝑛𝑑
𝑥

) 𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥

∑ (
𝑎 + 𝑛𝑑

𝑥
) 𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥𝑎+𝑛𝑑

𝑥=𝑎

  ;  𝑥 = 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, ⋯ , 𝑎 + 𝑛𝑑   

                            =

(𝑎 + 𝑛𝑑)!
𝑥! (𝑎 + 𝑛𝑑 − 𝑥)!

{
𝜆

(𝑎 + 𝑛𝑑)
}

𝑥

{1 −
𝜆

(𝑎 + 𝑛𝑑)
}

𝑎+𝑛𝑑−𝑥

∑
(𝑎 + 𝑛𝑑)!

𝑥! (𝑎 + 𝑛𝑑 − 𝑥)!
{

𝜆
(𝑎 + 𝑛𝑑)

}
𝑥

{1 −
𝜆

(𝑎 + 𝑛𝑑)
}

𝑎+𝑛𝑑−𝑥
𝑎+𝑛𝑑
𝑥=𝑎

   

                            =

𝜆𝑥

𝑥! {1 −
𝜆

(𝑎 + 𝑛𝑑)
}

−𝑥

{1 −
𝜆

(𝑎 + 𝑛𝑑)
}

𝑎+𝑛𝑑 (𝑎 + 𝑛𝑑)!
(𝑎 + 𝑛𝑑)𝑥(𝑎 + 𝑛𝑑 − 𝑥)!

∑
𝜆𝑥

𝑥! {1 −
𝜆

(𝑎 + 𝑛𝑑)
}

−𝑥

{1 −
𝜆

(𝑎 + 𝑛𝑑)
}

𝑎+𝑛𝑑 (𝑎 + 𝑛𝑑)!
(𝑎 + 𝑛𝑑)𝑥(𝑎 + 𝑛𝑑 − 𝑥)!

𝑎+𝑛𝑑
𝑥=𝑎

   

 
Here it is noted that if  𝑛 → ∞ then definitely 𝑎 + 𝑛𝑑 → ∞.  

 

Now, for fixed x lim
𝑛→∞

{1 −
𝜆

(𝑎+𝑛𝑑)
}

−𝑥
= 1 and 

 

lim
𝑛→∞

(𝑎 + 𝑛𝑑)!

(𝑎 + 𝑛𝑑)𝑥(𝑎 + 𝑛𝑑 − 𝑥)!
 

= lim
𝑛→∞

(𝑎 + 𝑛𝑑)(𝑎 + 𝑛𝑑 − 1)(𝑎 + 𝑛𝑑 − 2) ⋯ (𝑎 + 𝑛𝑑 − (𝑥 − 1))(𝑎 + 𝑛𝑑 − 𝑥)!

(𝑎 + 𝑛𝑑)𝑥(𝑎 + 𝑛𝑑 − 𝑥)!
 

= lim
𝑛→∞

(𝑎 + 𝑛𝑑)(𝑎 + 𝑛𝑑 − 1)(𝑎 + 𝑛𝑑 − 2) ⋯ (𝑎 + 𝑛𝑑 − (𝑥 − 1))

(𝑎 + 𝑛𝑑)𝑥
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= lim
𝑛→∞

(𝑎 + 𝑛𝑑)𝑥 (1 −
1

𝑎 + 𝑛𝑑
) (1 −

2
𝑎 + 𝑛𝑑

) ⋯ (1 −
𝑥 − 1

𝑎 + 𝑛𝑑
)

(𝑎 + 𝑛𝑑)𝑥
 

= lim
𝑛→∞

(1 −
1

𝑎 + 𝑛𝑑
) (1 −

2

𝑎 + 𝑛𝑑
) ⋯ (1 −

𝑥 − 1

𝑎 + 𝑛𝑑
) 

= 1 
 

Again, lim
𝑛→∞

{1 −
𝜆

(𝑎+𝑛𝑑)
}

𝑎+𝑛𝑑
= 𝑒

−𝜆

(𝑎+𝑛𝑑)
(𝑎+𝑛𝑑)

= 𝑒−𝜆 

 

Hence, 

 

lim
𝑛→∞

𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) = 𝑃(𝑥; 𝜆, 𝑎, 𝑛, 𝑑) =

𝜆𝑥

𝑥! 𝑒−𝜆

∑
𝜆𝑥

𝑥!
𝑒−𝜆𝑎+𝑛𝑑

𝑥=𝑎

=

𝜆𝑥

𝑥!

∑
𝜆𝑥

𝑥!
𝑎+𝑛𝑑
𝑥=𝑎

=

𝜆𝑥

𝑥!

∑
𝜆𝑎+𝑛𝑑

(𝑎 + 𝑛𝑑)!
∞
𝑛=0

 

 

which is the probability mass function of Generalized Poisson distribution with parameters 𝜆 ≥ 0, 𝑎 ≥ 0, 𝑑 >
0 and 𝑛 ≥ 0.    

 

Proof of Theorem 2.2.1: According to the definition of moment generating function 

  

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) = ∑ 𝑒𝑡𝑋𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝)

𝑎+𝑛𝑑

𝑥=𝑎

 

=> 𝑀𝑋(𝑡) = ∑ 𝑒𝑡𝑋

𝑎+𝑛𝑑

𝑥=𝑎

𝑞𝑥
(1 − 𝑞𝑑)

𝑞𝑎
                 

=> 𝑀𝑋(𝑡) = ∑ (𝑞𝑒𝑡)𝑥
(1 − 𝑞𝑑)

𝑞𝑎

𝑎+𝑛𝑑

𝑥=𝑎

 

=> 𝑀𝑋(𝑡) =
(1 − 𝑞𝑑)

𝑞𝑎
∑ (𝑞𝑒𝑡)𝑥

𝑎+𝑛𝑑

𝑥=𝑎

 

=> 𝑀𝑋(𝑡) =
(1 − 𝑞𝑑)

𝑞𝑎
[(𝑞𝑒𝑡)𝑎 + (𝑞𝑒𝑡)𝑎+𝑑 + (𝑞𝑒𝑡)𝑎+2𝑑 + (𝑞𝑒𝑡)𝑎+3𝑑 + ⋯ ] 

=> 𝑀𝑋(𝑡) =
(1 − 𝑞𝑑)

𝑞𝑎
(𝑞𝑒𝑡)𝑎[1 + (𝑞𝑒𝑡)𝑑 + (𝑞𝑒𝑡)2𝑑 + (𝑞𝑒𝑡)3𝑑 + ⋯ ] 

=> 𝑀𝑋(𝑡) = (1 − 𝑞𝑑)𝑒𝑡𝑎[1 + (𝑞𝑒𝑡)𝑑 + [(𝑞𝑒𝑡)𝑑]2 + [(𝑞𝑒𝑡)𝑑]3 + ⋯ ] 

=> 𝑀𝑋(𝑡) = (1 − 𝑞𝑑)𝑒𝑡𝑎[1 − (𝑞𝑒𝑡)𝑑]−1 

∴  𝑀𝑋(𝑡) =
(1 − 𝑞𝑑)𝑒𝑡𝑎

[1 − (𝑞𝑒𝑡)𝑑]
                                                                                                                                            (2.2.2) 

 

Which is the moment generating function of generalized Geometric distribution. 

 

Proof of Theorem 2.2.2:  

 

1st raw moment:  
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The 1st raw moment or mean of the distribution can be calculated from its moment generating function (see 

Equation 2.2.2) by differentiating it with respect to t and equating 𝑡 = 0. That is    

 

𝐸(𝑋) = 𝜇1
′ =

𝑑

𝑑𝑡
[𝑀𝑋(𝑡)]|

𝑡=0
     

                     =
𝑑

𝑑𝑡
[

(1 − 𝑞𝑑)𝑒𝑡𝑎

[1 − (𝑞𝑒𝑡)𝑑]
]|

𝑡=0

 

                    = [(1 − 𝑞𝑑)
[1 − (𝑞𝑒𝑡)𝑑]𝑎𝑒𝑡𝑎 + 𝑑𝑒𝑡𝑎(𝑞𝑒𝑡)𝑑

[1 − (𝑞𝑒𝑡)𝑑]2
]|

𝑡=0

 

                    = [(1 − 𝑞𝑑) {
𝑎𝑒𝑡𝑎

[1 − (𝑞𝑒𝑡)𝑑]
+

𝑑𝑞𝑑𝑒(𝑎+𝑑)𝑡

[1 − (𝑞𝑒𝑡)𝑑]2}]|
𝑡=0

 

                    = (1 − 𝑞𝑑) {
𝑎

(1 − 𝑞𝑑)
+

𝑑𝑞𝑑

(1 − 𝑞𝑑)2} 

                    = 𝑎 +
𝑑𝑞𝑑

(1 − 𝑞𝑑)
                                                                                                                                         (2.2.3) 

 

2nd raw moment: 

 

𝜇2
′ =

𝑑2

𝑑𝑡2
[𝑀𝑋(𝑡)]|

𝑡=0

 

     = (1 − 𝑞𝑑)
𝑑

𝑑𝑡
{

𝑎𝑒𝑡𝑎

[1 − (𝑞𝑒𝑡)𝑑]
+

𝑑𝑞𝑑𝑒(𝑎+𝑑)𝑡

[1 − (𝑞𝑒𝑡)𝑑]2
}|

𝑡=0

 

      = (1 − 𝑞𝑑) {
[1 − (𝑞𝑒𝑡)𝑑]𝑎2𝑒𝑡𝑎 − 𝑎𝑒𝑡𝑎(−𝑑(𝑞𝑒𝑡)𝑑)

[1 − (𝑞𝑒𝑡)𝑑]2
   

+
[1 − (𝑞𝑒𝑡)𝑑]2𝑑𝑞𝑑(𝑎 + 𝑑)𝑒(𝑎+𝑑)𝑡 − 𝑑𝑞𝑑𝑒(𝑎+𝑑)𝑡2[1 − (𝑞𝑒𝑡)𝑑](−𝑑(𝑞𝑒𝑡)𝑑)

[1 − (𝑞𝑒𝑡)𝑑]4 }|
𝑡=0

 

     = 𝑎2 +
𝑎𝑑

(1 − 𝑞𝑑)
   +

𝑑(𝑎 + 𝑑)𝑞𝑑

(1 − 𝑞𝑑)
+

2(𝑑𝑞𝑑)
2

(1 − 𝑞𝑑)2
                                                                                              (2.2.4)  

 

3rd raw moment: 

 

𝜇3
′ =

𝑑3

𝑑𝑡3
[𝑀𝑋(𝑡)]|

𝑡=0

 

 

= (1 − 𝑞𝑑)
𝑑

𝑑𝑡
{

𝑎2𝑒𝑡𝑎

[1 − (𝑞𝑒𝑡)𝑑]
+

𝑎𝑑𝑒(𝑎+𝑑)𝑡

[1 − (𝑞𝑒𝑡)𝑑]2
   +

𝑑(𝑎 + 𝑑)𝑞𝑑𝑒
(𝑎+𝑑)𝑡

[1 − (𝑞𝑒𝑡)𝑑]2
+

2(𝑑𝑞𝑑)2𝑒
(𝑎+2𝑑)𝑡

[1 − (𝑞𝑒𝑡)𝑑]3
}|

𝑡=0

 

= (1 − 𝑞𝑑)
𝑑

𝑑𝑡
{

𝑎2𝑒𝑡𝑎

[1 − (𝑞𝑒𝑡)𝑑]
+ [𝑎𝑑 + 𝑑(𝑎 + 𝑑)𝑞𝑑]

𝑒(𝑎+𝑑)𝑡

[1 − (𝑞𝑒𝑡)𝑑]2
+

2(𝑑𝑞𝑑)2𝑒
(𝑎+2𝑑)𝑡

[1 − (𝑞𝑒𝑡)𝑑]3
}|

𝑡=0
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= (1 − 𝑞𝑑) {
[1 − (𝑞𝑒𝑡)𝑑]𝑎3𝑒𝑡𝑎 − 𝑎2𝑒𝑡𝑎(−𝑑(𝑞𝑒𝑡)𝑑)

[1 − (𝑞𝑒𝑡)𝑑]2

+ [𝑎𝑑 + 𝑑(𝑎 + 𝑑)𝑞𝑑]
[1 − (𝑞𝑒𝑡)𝑑]2(𝑎 + 𝑑)𝑒

(𝑎+𝑑)𝑡
− 𝑒(𝑎+𝑑)𝑡[2[1 − (𝑞𝑒𝑡)𝑑](−𝑑(𝑞𝑒𝑡)𝑑)]

[1 − (𝑞𝑒𝑡)𝑑]4

+
[1 − (𝑞𝑒𝑡)𝑑]32(𝑑𝑞𝑑)2(𝑎 + 2𝑑)𝑒

(𝑎+2𝑑)𝑡
− 2(𝑑𝑞𝑑)2𝑒

(𝑎+2𝑑)𝑡
[3[1 − (𝑞𝑒𝑡)𝑑]2(−𝑑(𝑞𝑒𝑡)𝑑)]

[1 − (𝑞𝑒𝑡)𝑑]6
}|

𝑡=0

 

= (1 − 𝑞𝑑) {
𝑎3

(1 − 𝑞𝑑)
+

𝑎2𝑑𝑞𝑑

(1 − 𝑞𝑑)2
+ [𝑎𝑑 + 𝑑(𝑎 + 𝑑)𝑞𝑑] [

(𝑎 + 𝑑)

(1 − 𝑞𝑑)2
+

2𝑑𝑞𝑑

(1 − 𝑞𝑑)3
] +

2(𝑑𝑞𝑑)
2

(𝑎 + 2𝑑)

(1 − 𝑞𝑑)3

+
6(𝑑𝑞𝑑)

3

(1 − 𝑞𝑑)4} 

= 𝑎3 +
𝑎2𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

𝑎𝑑(𝑎 + 𝑑)

(1 − 𝑞𝑑)
+

2𝑎𝑑2𝑞𝑑

(1 − 𝑞𝑑)2
+

𝑑(𝑎 + 𝑑)2𝑞𝑑

(1 − 𝑞𝑑)
+

2(𝑎 + 𝑑)(𝑑𝑞𝑑)
2

(1 − 𝑞𝑑)2
+

2(𝑎 + 2𝑑)(𝑑𝑞𝑑)
2

(1 − 𝑞𝑑)2

+
6(𝑑𝑞𝑑)

3

(1 − 𝑞𝑑)3
 

= 𝑎3 +
2𝑎2𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

𝑎2𝑑

(1 − 𝑞𝑑)
+

𝑎𝑑2

(1 − 𝑞𝑑)
+

2𝑎𝑑2𝑞𝑑

(1 − 𝑞𝑑)2
+

2𝑎𝑑2𝑞𝑑

(1 − 𝑞𝑑)
+

𝑑3𝑞𝑑

(1 − 𝑞𝑑)
+

4𝑎𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

6𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2

+
6𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3
                                                                                                                                                                   (2.2.5) 

 

4th raw moment:  

 

𝜇4
′ =

𝑑4

𝑑𝑡4
[𝑀𝑋(𝑡)]|

𝑡=0

 

 

= (1 − 𝑞𝑑)
𝑑

𝑑𝑡
{

𝑎3𝑒𝑡𝑎

[1 − (𝑞𝑒𝑡)𝑑]
+

𝑎2𝑑𝑞𝑑𝑒
(𝑎+𝑑)𝑡

[1 − (𝑞𝑒𝑡)𝑑]2
+ [𝑎𝑑 + 𝑑(𝑎 + 𝑑)𝑞𝑑] [

(𝑎 + 𝑑)𝑒
(𝑎+𝑑)𝑡

[1 − (𝑞𝑒𝑡)𝑑]2
+

2𝑑𝑞𝑑𝑒
(𝑎+2𝑑)𝑡

[1 − (𝑞𝑒𝑡)𝑑]3
]

+
2(𝑑𝑞𝑑)2(𝑎 + 2𝑑)𝑒

(𝑎+2𝑑)𝑡

[1 − (𝑞𝑒𝑡)𝑑]3
+

6(𝑑𝑞𝑑)3𝑒
(𝑎+3𝑑)𝑡

[1 − (𝑞𝑒𝑡)𝑑]4
}|

𝑡=0

 

= (1 − 𝑞𝑑)
𝑑

𝑑𝑡
{

𝑎3𝑒𝑡𝑎

[1 − (𝑞𝑒𝑡)𝑑]
+ [𝑎2𝑑𝑞𝑑 + 𝑎𝑑(𝑎 + 𝑑) + 𝑑(𝑎 + 𝑑)2𝑞𝑑]

𝑒(𝑎+𝑑)𝑡

[1 − (𝑞𝑒𝑡)𝑑]2

+ [2𝑎𝑑2𝑞𝑑 + 2(𝑎 + 𝑑)(𝑑𝑞𝑑)
2

+ 2(𝑑𝑞𝑑)2(𝑎 + 2𝑑)]
𝑒(𝑎+2𝑑)𝑡

[1 − (𝑞𝑒𝑡)𝑑]3

+
6(𝑑𝑞𝑑)3𝑒

(𝑎+3𝑑)𝑡

[1 − (𝑞𝑒𝑡)𝑑]4
}|

𝑡=0
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= (1 − 𝑞𝑑) {
[1 − (𝑞𝑒𝑡)𝑑]𝑎4𝑒𝑡𝑎 − 𝑎4𝑒𝑡𝑎(−𝑑(𝑞𝑒𝑡)𝑑)

[1 − (𝑞𝑒𝑡)𝑑]2

+ [𝑎2𝑑𝑞𝑑 + 𝑎𝑑(𝑎 + 𝑑) + 𝑑(𝑎 + 𝑑)2𝑞𝑑]
[1 − (𝑞𝑒𝑡)𝑑]2(𝑎 + 𝑑)𝑒(𝑎+𝑑)𝑡 − 𝑒(𝑎+𝑑)𝑡2[1 − (𝑞𝑒𝑡)𝑑](−𝑑(𝑞𝑒𝑡)𝑑)

[1 − (𝑞𝑒𝑡)𝑑]4

+ [2𝑎𝑑2𝑞𝑑 + 2(2𝑎 + 3𝑑)(𝑑𝑞𝑑)
2
]

[1 − (𝑞𝑒𝑡)𝑑]3(𝑎 + 2𝑑)𝑒(𝑎+2𝑑)𝑡 − 𝑒(𝑎+2𝑑)𝑡3[1 − (𝑞𝑒𝑡)𝑑]2(−𝑑(𝑞𝑒𝑡)𝑑)

[1 − (𝑞𝑒𝑡)𝑑]6

+
[1 − (𝑞𝑒𝑡)𝑑]46(𝑑𝑞𝑑)3(𝑎 + 3𝑑)𝑒

(𝑎+3𝑑)𝑡
− 6(𝑑𝑞𝑑)3𝑒

(𝑎+3𝑑)𝑡
4[1 − (𝑞𝑒𝑡)𝑑]3(−𝑑(𝑞𝑒𝑡)𝑑)

[1 − (𝑞𝑒𝑡)𝑑]8
}|

𝑡=0

 

= 𝑎4 +
𝑎4𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

𝑎3𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)
+

2𝑎2𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

𝑎3𝑑

(1 − 𝑞𝑑)
+

2𝑎2𝑑2

(1 − 𝑞𝑑)
+

𝑎𝑑3

(1 − 𝑞𝑑)
+

2𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)2
+

2𝑎𝑑3𝑞𝑑

(1 − 𝑞𝑑)2
+

𝑎3𝑑𝑞𝑑

(1 − 𝑞𝑑)

+
3𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)
+

3𝑎𝑑3𝑞𝑑

(1 − 𝑞𝑑)
+

𝑑4𝑞𝑑

(1 − 𝑞𝑑)
+

2𝑎2𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

4𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2
+

2𝑑4𝑞2𝑑

(1 − 𝑞𝑑)2
+

2𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)2
+

4𝑎𝑑3𝑞𝑑

(1 − 𝑞𝑑)2
+

6𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)3
+

4𝑎2𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2

+
14𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2
+

12𝑑4𝑞2𝑑

(1 − 𝑞𝑑)2
+

12𝑎𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3
+

18𝑑4𝑞3𝑑

(1 − 𝑞𝑑)3
+

6𝑎𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3
+

18𝑑4𝑞3𝑑

(1 − 𝑞𝑑)3

+
24𝑑4𝑞4𝑑

(1 − 𝑞𝑑)4
                                                                                                                                                                                                              (2.2.6) 

 

Proof of Theorem 2.2.3: 

 

The central moments can be easily derived from the relationship between the raw and central moments once 

we have raw moments. Thus, we do provide here shortly the derivation of 3rd and 4th central moments only.   

 

3rd Central Moment 

 

𝜇3 = 𝜇3
′ − 3𝜇2

′ 𝜇1
′ + 2𝜇1

′ 3
 

= 𝑎3 +
2𝑎2𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

𝑎2𝑑

(1 − 𝑞𝑑)
+

𝑎𝑑2

(1 − 𝑞𝑑)
+

2𝑎𝑑2𝑞𝑑

(1 − 𝑞𝑑)2
+

2𝑎𝑑2𝑞𝑑

(1 − 𝑞𝑑)
+

𝑑3𝑞𝑑

(1 − 𝑞𝑑)
+

4𝑎𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

6𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2
+

6𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3

− 3𝑎3 −
3𝑎2𝑑𝑞𝑑

(1 − 𝑞𝑑)
−

3𝑎2𝑑

(1 − 𝑞𝑑)
 −

3𝑎𝑑2𝑞𝑑

(1 − 𝑞𝑑)2
−

3𝑎2𝑑𝑞𝑑

(1 − 𝑞𝑑)
−

3𝑎𝑑2𝑞𝑑

(1 − 𝑞𝑑)
−

3𝑎𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
−

3𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2
 

−
6𝑎𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
−

6𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3
+ 2𝑎3 +

6𝑎2𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

6𝑎𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

2𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3
 

=
2𝑎2𝑑𝑞𝑑

(1 − 𝑞𝑑)
−

2𝑎2𝑑

(1 − 𝑞𝑑)
+

𝑎𝑑2

(1 − 𝑞𝑑)
−

𝑎𝑑2𝑞𝑑

(1 − 𝑞𝑑)2
−

𝑎𝑑2𝑞𝑑

(1 − 𝑞𝑑)
+

𝑑3𝑞𝑑

(1 − 𝑞𝑑)
+

𝑎𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

3𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2

+
2𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3
 

=
2𝑎2𝑑

(1 − 𝑞𝑑)
(𝑞𝑑 − 1) +

𝑎𝑑2

(1 − 𝑞𝑑)2
{1 − 𝑞𝑑 − 𝑞𝑑 − 𝑞𝑑(1 − 𝑞𝑑) + 𝑞2𝑑}

+
𝑑3𝑞𝑑

(1 − 𝑞𝑑)3
{(1 − 𝑞𝑑)2 + 3𝑞𝑑(1 − 𝑞𝑑) + 2𝑞2𝑑} 

= −2𝑎2𝑑 +
𝑎𝑑2

(1 − 𝑞𝑑)2
{1 − 3𝑞𝑑 + 2𝑞2𝑑} +

𝑑3𝑞𝑑

(1 − 𝑞𝑑)3
{1 − 2𝑞𝑑 + 𝑞2𝑑 + 3𝑞𝑑 − 3𝑞2𝑑 + 2𝑞2𝑑} 

= −2𝑎2𝑑 +
𝑎𝑑2

(1 − 𝑞𝑑)2
{1 − 𝑞𝑑 − 2𝑞𝑑 + 2𝑞2𝑑} +

𝑑3𝑞𝑑

(1 − 𝑞𝑑)3
{1 + 𝑞𝑑} 
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= −2𝑎2𝑑 +
𝑎𝑑2

(1 − 𝑞𝑑)2
(1 − 𝑞𝑑)(1 − 2𝑞𝑑) +

𝑑3𝑞𝑑

(1 − 𝑞𝑑)3
(1 + 𝑞𝑑) 

= −2𝑎2𝑑 +
𝑎𝑑2

(1 − 𝑞𝑑)
(1 − 2𝑞𝑑) +

𝑑3𝑞𝑑

(1 − 𝑞𝑑)3
(1 + 𝑞𝑑)                                                                                    (2.2.9) 

 

4th Central Moment 

 

𝜇4 = 𝜇4
′ − 4𝜇3

′ 𝜇1
′ + 6𝜇2

′ 𝜇1
′ 2

− 3𝜇1
′ 4

 

=> 𝜇4 = 𝑎4 +
𝑎4𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

𝑎3𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)
+

2𝑎2𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2 +
𝑎3𝑑

(1 − 𝑞𝑑)
+

2𝑎2𝑑2

(1 − 𝑞𝑑)
+

𝑎𝑑3

(1 − 𝑞𝑑)
+

2𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)2 +
2𝑎𝑑3𝑞𝑑

(1 − 𝑞𝑑)2

+
𝑎3𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

3𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)
+

3𝑎𝑑3𝑞𝑑

(1 − 𝑞𝑑)
+

𝑑4𝑞𝑑

(1 − 𝑞𝑑)
+

2𝑎2𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2 +
4𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2 +
2𝑑4𝑞2𝑑

(1 − 𝑞𝑑)2 +
2𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)2 +
4𝑎𝑑3𝑞𝑑

(1 − 𝑞𝑑)2

+
6𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)3 +
4𝑎2𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2 +
14𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2 +
12𝑑4𝑞2𝑑

(1 − 𝑞𝑑)2 +
12𝑎𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3 +
18𝑑4𝑞3𝑑

(1 − 𝑞𝑑)3 +
6𝑎𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3 +
18𝑑4𝑞3𝑑

(1 − 𝑞𝑑)3

+
24𝑑4𝑞4𝑑

(1 − 𝑞𝑑)4 − 4𝑎4 −
8𝑎3𝑑𝑞𝑑

(1 − 𝑞𝑑)
−

4𝑎3𝑑

(1 − 𝑞𝑑)
−

4𝑎2𝑑2

(1 − 𝑞𝑑)
−

8𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)2 −
8𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)
−

4𝑎𝑑3𝑞𝑑

(1 − 𝑞𝑑)
−

16𝑎2𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2

−
24𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2
−

24𝑎𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3 −
4𝑎3𝑑𝑞𝑑

(1 − 𝑞𝑑)
−

8𝑎2𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2 −
4𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)2 −
4𝑎𝑑3𝑞𝑑

(1 − 𝑞𝑑)2 −
8𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)3 −
8𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2

−
4𝑑4𝑞2𝑑

(1 − 𝑞𝑑)2
−

16𝑎𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3
−

24𝑑4𝑞3𝑑

(1 − 𝑞𝑑)3
−

24𝑑4𝑞4𝑑

(1 − 𝑞𝑑)4
+ 6𝑎4 +

6𝑎3𝑑

(1 − 𝑞𝑑)
+

6𝑎3𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

6𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)
+

12𝑎2𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2

+
12𝑎3𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

12𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)2
+

12𝑎2𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2 +
12𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2 +
24𝑎𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3 +
6𝑎2𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

6𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)3
+

6𝑎𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3

+
6𝑑4𝑞3𝑑

(1 − 𝑞𝑑)3
+

12𝑑4𝑞4𝑑

(1 − 𝑞𝑑)4
− 3𝑎4 −

12𝑎3𝑑𝑞𝑑

(1 − 𝑞𝑑)
−

18𝑎2𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
−

12𝑎𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3
−

3𝑑4𝑞4𝑑

(1 − 𝑞𝑑)4
 

=> 𝜇4 =
𝑎4𝑑𝑞𝑑

(1 − 𝑞𝑑)
−

4𝑎3𝑑𝑞𝑑

(1 − 𝑞𝑑)
+

2𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)
−

4𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

3𝑎3𝑑

(1 − 𝑞𝑑)
−

2𝑎2𝑑2

(1 − 𝑞𝑑)
+

𝑎𝑑3

(1 − 𝑞𝑑)
+

4𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)2
+

2𝑎𝑑3𝑞𝑑

(1 − 𝑞𝑑)2
−

𝑎𝑑3𝑞𝑑

(1 − 𝑞𝑑)

+
𝑑4𝑞𝑑

(1 − 𝑞𝑑)
−

2𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2
+

10𝑑4𝑞2𝑑

(1 − 𝑞𝑑)2
+

4𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)3
−

4𝑎𝑑3𝑞3𝑑

(1 − 𝑞𝑑)3
+

18𝑑4𝑞3𝑑

(1 − 𝑞𝑑)3
+

9𝑑4𝑞4𝑑

(1 − 𝑞𝑑)4
 

=> 𝜇4 =
𝑎4𝑑𝑞𝑑

(1 − 𝑞𝑑)
−

4𝑎3𝑑𝑞𝑑

(1 − 𝑞𝑑)
−

4𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

3𝑎3𝑑

(1 − 𝑞𝑑)
−

2𝑎2𝑑2

(1 − 𝑞𝑑)
(1 − 𝑞𝑑) +

𝑎𝑑3

(1 − 𝑞𝑑)
(1 − 𝑞𝑑) +

4𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)2

+
2𝑎𝑑3𝑞𝑑

(1 − 𝑞𝑑)2
(1 − 𝑞𝑑) +

4𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)3
(1 − 𝑞𝑑)

+
𝑑4𝑞𝑑

(1 − 𝑞𝑑)4
{(1 − 𝑞𝑑)3 + 10𝑞𝑑(1 − 𝑞𝑑)2 + 18𝑞2𝑑(1 − 𝑞𝑑) + 9𝑞3𝑑} 

=> 𝜇4 =
𝑎4𝑑𝑞𝑑

(1 − 𝑞𝑑)
−

4𝑎3𝑑𝑞𝑑

(1 − 𝑞𝑑)
−

4𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

3𝑎3𝑑

(1 − 𝑞𝑑)
− 2𝑎2𝑑2 + 𝑎𝑑3 +

4𝑎2𝑑2𝑞𝑑

(1 − 𝑞𝑑)2
+

2𝑎𝑑3𝑞𝑑

(1 − 𝑞𝑑)
+

4𝑎𝑑3𝑞2𝑑

(1 − 𝑞𝑑)2

+
𝑑4𝑞𝑑

(1 − 𝑞𝑑)4
(1 − 3𝑞𝑑 + 3𝑞2𝑑 − 𝑞3𝑑 + 10𝑞𝑑 − 20𝑞2𝑑 + 10𝑞3𝑑 + 18𝑞2𝑑 − 18𝑞3𝑑 + 9𝑞3𝑑) 

=> 𝜇4 =
𝑎4𝑑𝑞𝑑

(1 − 𝑞𝑑)
−

4𝑎3𝑑𝑞𝑑

(1 − 𝑞𝑑)
−

4𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2
+

3𝑎3𝑑

(1 − 𝑞𝑑)
−

2𝑎2𝑑2

(1 − 𝑞𝑑)2
(1 − 2𝑞𝑑 + 𝑞2𝑑 − 2𝑞𝑑)

+
𝑎𝑑3

(1 − 𝑞𝑑)2
(1 − 2𝑞𝑑 + 𝑞2𝑑 + 2𝑞𝑑 − 2𝑞2𝑑 + 4𝑞𝑑) +

𝑑4𝑞𝑑

(1 − 𝑞𝑑)4
(1 + 7𝑞𝑑 + 𝑞2𝑑) 

=> 𝜇4 =
𝑎4𝑑𝑞𝑑

(1 − 𝑞𝑑)
−

4𝑑2𝑞2𝑑

(1 − 𝑞𝑑)2 +
𝑎3𝑑

(1 − 𝑞𝑑)
(3 − 4𝑞𝑑) −

2𝑎2𝑑2

(1 − 𝑞𝑑)2
(1 − 4𝑞𝑑 + 𝑞2𝑑) +

𝑎𝑑3

(1 − 𝑞𝑑)2
(1 + 4𝑞𝑑 − 𝑞2𝑑)

+
𝑑4𝑞𝑑

(1 − 𝑞𝑑)4
(1 + 7𝑞𝑑 + 𝑞2𝑑)                                                                                                                                 (2.2.10) 
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