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A count data that have excess number of zeros, ones, twos or threes are commonplace in experimental studies.
But these inflated frequencies at particular counts may lead to overdispersion and thus may cause difficulty
in data analysis. So to get appropriate results from them and to overcome the possible anomalies in parame-
ter estimation, we may need to consider suitable inflated distribution. Generally, Inflated Poisson or Inflated
Negative Binomial distribution are the most commonly used for modeling and analyzing such data. Geomet-
ric distribution is a special case of Negative Binomial distribution. This work deals with parameter estimation
of a Geometric distribution inflated at certain counts, which we called Generalized Inflated Geometric (GIG)
distribution. Parameter estimation is done using method of moments, empirical probability generating function
based method and maximum likelihood estimation approach. The three types of estimators are then compared
using simulation studies and finally a Swedish fertility dataset was modeled using a GIG distribution.
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1. Introduction

A random variable X that counts the number of trials to obtain the rth success in a series of indepen-
dent and identical Bernoulli trials, is said to have a Negative Binomial distribution whose probability
mass function (pmf) is given by

P(X = k) = P(k|p) =
(

k−1
r−1

)
pr(1− p)k−r (1.1)
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491

Copyright © 2018, the Authors.  Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 491-519

  Received 12 January 2017
Accepted 2 August 2017



where r = 1,2,3, . . . ; k = r,r+1, . . . and p > 0.

The above distribution is also the “Generalized Power Series distribution” as mentioned in John-
son et al. (2005) [9]. Some writers, for instance Patil et al. (1984) [12], called this the “Pólya-
Eggenberger distribution”, as it arises as a limiting form of Eggenberger and Pólya’s (1923) [5] urn
model distribution. A special case of Negative Binomial Distribution is the Geometric distribution
which can be defined in two different ways

Firstly, the probability distribution for a Geometric random variable X (where X being the num-
ber of independent and identical trials to get the first success) is given by

P(X = k|p) =

{
p(1− p)k−1 if k = 1,2, . . .

0 otherwise.
(1.2)

However, instead of counting the number of trials, if the random variable X counts the number
of failures before the first success, then it will result in the second type of Geometric distribution
which again is a special case of Negative Binomial distribution when r = 1 (first success) and its
pmf is given by

P(X = k) = P(k | p) =

{
p(1− p)k if k = 0,1,2, . . .

0 otherwise.
(1.3)

The support set of this random variable is {0,1,2,. . .}, which makes it different from the distribution

in (1.2). The above model in (1.3), henceforth referred to as “Geometric(p)” has mean
1− p

p
and

variance
1− p

p2 and is the only distribution with non-negative integer support that can be charac-

terized by the “memoryless property” or the “Markovian property”. Many other characterizations
of this distribution can be found in Feller (1968, 1969) [6] [7]. The distribution occurs in many
applications and some of them are indicated in the references below:

• The famous problem of Banach’s match boxes (Feller (1968) [6]);
• The runs of one plant species with respect to another in transects through plant populations

(Pielou (1962, 1963) [13] [14]);
• A ticket control problem (Jagers (1973) [8]);
• A survillance system for congenital malformations (Chen (1978) [4]);
• The number of tosses of a fair coin before the first head (success) appears;
• The number of drills in an area before observing the first productive well by an oil prospec-

tor (Wackerly et al. (2008) [15]).

The Geometric model in (1.3) which is widely used for modeling count data may be inadequate
for dealing with overdispersed count data. One such instance is the abundance of zero counts in
the data, and (1.3) may be an inefficient model for such cases due to the presence of heterogeneity,
which usually results in undesired over dispersion. Therefore, to overcome this situation, i.e., to
explain or capture such heterogeneity, we consider a ‘two-mass distribution’ by giving mass π1 to
0 counts, and mass (1− π1) to the other class which follows Geometric(p). The result of such a
‘mixture distribution’ is called the ‘Zero-Inflated Geometric’ (ZIG) distribution with the probability
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mass function

P(k | p,π1) =

{
π1 +(1−π1)p if k = 0

(1−π1)P(k | p) if k = 1,2, . . .
(1.4)

where, p > 0, and P(k | p) is given in (1.3). However the mixing parameter π is chosen such that
P(k = 0)∈ (0,1) in (1.4), i.e., it ranges over the interval− p

1−p < π1 < 1. This allows the distribution
to be well defined for certain negative values of π1, depending on p. Although the mixing interpreta-
tion is lost when π1 < 0, these values have a natural interpretation in terms of zero-deflation, relative
to a Geometric(p) model. Correspondingly, π1 > 0 can be regarded as zero inflation as discussed in
Johnson et al. (2005) [9].

A further generalization of (1.4) can be obtained by inflating/deflating the Geometric distribu-
tion at several specific values. To be precise, if the discrete random variable X is thought to have
inflated probabilities at the values k1, ....,km ∈ {0,1,2, ....}, then the following general probability
mass function can be considered:

P(k | p,πi,1≤ i≤ m) =


πi +

(
1−

m
∑

i=1
πi

)
P(k | p) if k = k1,k2, . . . ,km(

1−
m
∑

i=1
πi

)
P(k | p) if k 6= ki;1≤ i≤ m

(1.5)

where k = 0,1,2, . . . ; p > 0 and πi’s are chosen in such a way that P(ki)∈ (0,1) for all i = 1,2, ...,m
in (1.5). For the remainder of this work, we will refer to (1.5) as the Generalized Inflated Geometric
(GIG) distribution which is the main focus of this work.

Table 1. Observed number of children
(= count) per woman.

Count Frequency Proportion
0 114 .097
1 205 .175
2 466 .398
3 242 .207
4 85 .073
5 35 .030
6 16 .014
7 4 .003
8 1 .001

10 1 .001
12 1 .001

Total 1,170 1.000

We will consider some special cases of the (GIG) distribution such as Zero-One-Inflated Geo-
metric (ZOIG) distribution in the case k = 2 with k1 = 0 and k2 = 1 or Zero-One-Two Inflated
Geometric (ZOTIG) models. Similar type of Generalized Inflated Poisson (GIP) models have been
considered by Melkersson and Rooth (2000) [11] to study a women’s fertility data of 1170 Swedish
women of the age group 46-76 years (Table 1). This data set consists of the number of child(ren)
per woman, who have crossed the childbearing age in the year 1991. They justified the Zero-Two
Inflated Poisson distribution was the best to model it. However recently, Begum et al. (2014) [2]
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studied the same data set and found that a Zero-Two-Three Inflated Poisson (ZTTIP) distribution
was a better fit.

Instead of using an Inflated Poisson model, we will consider fitting appropriate Inflated Geo-
metric models to the data in Table 1. Now, which model is the best fit whether a GIG model with
focus on counts (0, 1), i.e., ZOIG or a GIG model focusing on some other set {k1,k2, ...,km} is
appropriate for the above data will be eventually decided by different model selection criteria in
section 5. The rest of the paper is organized as follows. In the next section, we provide some prop-
erties of the GIG distribution. In section 3, we discuss different techniques of parameter estimation
namely, the method of moments (MME), empirical probability generating function (epgf) based
methods (EPGE) suggested by Kemp and Kemp (1988) [10], and the maximum likelihood estima-
tion (MLE). In section 4, we compare the performances of MMEs, EPGEs and MLEs for different
GIG model parameters using simulation studies. Finally conclusion is given in section 6.

2. Some Properties

In this section, we present some properties of the GIG distribution and that of some special cases of
this distribution.
Proposition 1. The probability generating function (pgf) of a random variable X following a GIG in
(1.5) with parameters π1, . . . ,πm and p is given by

GX(s) =
m

∑
i=1

skiπi +

(1−
m
∑

i=1
πi)p

1−{(1− p)s}
if s <

1
1− p

. (2.1)

Proof.

GX(s) =
∞

∑
k=0

skP(k|p,πi,1≤ i≤ m)

=
m

∑
i=1

skiπi +

(
1−

m

∑
i=1

πi

)
∞

∑
k=0

skP(k|p)

=
m

∑
i=1

skiπi +

(
1−

m

∑
i=1

πi

)
∞

∑
k=0

p{(1− p)s}k

=
m

∑
i=1

skiπi +

(1−
m
∑

i=1
πi)p

1−{(1− p)s}
.

The infinite sum converges, if (1− p)s < 1⇔ s < 1
1−p . �

Proposition 2. The rth raw moment of a random variable X following a GIG in (1.5) with parameters
π1, . . . ,πm and p is given by

E[X r] =
m

∑
i=1

kr
i πi +

(
1−

m

∑
i=1

πi

)
µ
′
r(p) (2.2)

where µ ′r(p) is the the rth raw moment of Geometric(p) distribution and can be calculated eas-
ily by differentiating its moment generating function (mgf) given by

p
1− (1− p)et , i.e., µ ′r(p) =

494

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 491-519



dr

dtr

(
p

1− (1− p)et

)∣∣∣∣
t=0

.

Proof.

E[X r] =
∞

∑
k=0

krP(k|p,πi,1≤ i≤ m)

=
m

∑
i=1

kr
i πi +

(
1−

m

∑
i=1

πi

)
∞

∑
k=0

krP(k|p)

=
m

∑
i=1

kr
i πi +

(
1−

m

∑
i=1

πi

)
µ
′
r(p). �

For the ZIG distribution, i.e., when m = 1 and k1 = 0, using (2.1) we get the pgf as

GX(s) = π1 +
(1−π1)p

1−{(1− p)s}
.

Using (2.2) the population mean and population variance in this special case can be obtained as

E(X) = (1−π1)
(1− p)

p
and Var(X) = (1−π1){1+π1(1− p)}(1− p)

p2 . (2.3)

Note that ∂E(X)/∂π1 < 0 and ∂E(X)/∂ p < 0, and therefore the mean decreases with both parame-
ters π1 and p. Table (2) shows the variance-to-mean ratio, i.e., Var(X)/E(X) for different values of
the parameters π1 and p. It can be observed that this ratio is increasing (decreasing) with the values
of π1 (p). Also it is always larger than 1, and thus ZIG distribution seems to be overdispersed.

Table 2. Var(X)/E(X) for ZIG distribution

π1 p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10.90 5.40 3.57 2.65 2.10 1.73 1.47 1.28 1.12
0.2 11.80 5.80 3.80 2.80 2.20 1.80 1.51 1.30 1.13
0.3 12.70 6.20 4.03 2.95 2.30 1.87 1.56 1.33 1.14
0.4 13.60 6.60 4.27 3.10 2.40 1.93 1.60 1.35 1.16
0.5 14.50 7.00 4.50 3.25 2.50 2.00 1.64 1.38 1.17
0.6 15.40 7.40 4.73 3.40 2.60 2.07 1.69 1.40 1.18
0.7 16.30 7.80 4.97 3.55 2.70 2.13 1.73 1.43 1.19
0.8 17.20 8.20 5.20 3.70 2.80 2.20 1.77 1.45 1.20
0.9 18.10 8.60 5.43 3.85 2.90 2.27 1.81 1.48 1.21

The cumulative distribution function (cdf) of the ZIG distribution is given by

F(k | p,π1) =

{
0 if k < 0

π1 +(1−π1){1− (1− p)k+1} if k = 0,1,2, . . .
(2.4)
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Thus, the survival function for the ZIG distribution is given by

S(k) = P(X > k) =

{
1 if k < 0

(1−π1)(1− p)k+1 if k = 0,1,2, . . .
(2.5)

The failure rate (hazard function) for ZIG, using (1.4) and (2.5), is given by

r(k) = P(X = k|X ≥ k)

=
P(X = k)

P(X > k−1)
=

P(k)
S(k−1)

=

{
π1 +(1−π1)p if k = 0

p if k = 1,2, . . .

which is a constant function of X, except at 0.
Using (1.5), the probability mass function of ’Zero-One-Inflated Geometric’ (ZOIG) distribu-

tion, i.e., when m = 2 and k1 = 0 and k2 = 1, can be obtained as

P(k | p,π1,π2) =


π1 +(1−π1−π2)p if k = 0

π2 +(1−π1−π2)p(1− p) if k = 1

(1−π1−π2)P(k | p) if k = 2,3, . . .

(2.6)

From (2.6), the cdf of ZOIG can be easily obtained as

F(k | p,π1,π2) =


0 if k < 0

π1 +(1−π1−π2)p if k = 0

π1 +π2 +(1−π1−π2){1− (1− p)k+1} if k = 1,2, . . .

(2.7)

Thus, the survival function of ZOIG distribution is given by

S(k) =


1 if k < 0

(1−π1)(1− p)+π2 p if k = 0

(1−π1−π2)(1− p)k+1 if k = 1,2, . . .

(2.8)

Therefore, the hazard function becomes

r(k) =


π1 +(1−π1−π2)p if k = 0
π2+(1−π1−π2)p(1−p)
(1−π1)(1−p)+π2 p if k = 1

p if k = 2,3, . . .

(2.9)

which is a constant function of X, except at 0 and 1.
Also using (2.1), we obtain the pgf of ZOIG distribution as

GX(s) = π1 + sπ2 +
(1−π1−π2)p
1−{(1− p)s}

.

3. Estimation of Model Parameters

In this section, we estimate the parameters by three well known methods of parameter estima-
tion namely the method of moment estimations, methods based on empirical probability generating
function and the method of maximum likelihood estimations.
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3.1. Method of Moments Estimation (MME)

The easiest way to obtain estimators of the parameters is through the method of moments esti-
mation (MME). Given a random sample X1, ....,Xn, i.e. independent and identically distributed (iid)
observations from the GIG distribution, we equate the sample moments with the corresponding pop-
ulation moments (2.2) to get a system of (m+1) equations involving the (m+1) model parameters
p,π1, . . . ,πm of the form

m′r =
m

∑
i=1

kr
i πi +

(
1−

m

∑
i=1

πi

)
µ
′
r(p) (3.1)

where r = 1,2, . . . ,(m+ 1). Note that m′r = ∑
n
j=1 X r

j /n is the rth raw sample moment. The values
of πi, i = 1,2, ....,m, and p obtained by solving the system of equations (3.1) are denoted by π̂i(MM)

and p̂MM respectively. The subscript “(MM)” indicates the MME approach. Note that the parameter
p is non-negative and hence the estimate must obey this restriction. But there is no such guarantee,
as such we propose the corrected MME’s to ensure non-negativity of this moment estimator as

p̂c
MM = p̂MM truncated at 0 and 1 and π̂

c
i(MM) = π̂i(MM) (3.2)

where π̂c
i(MM) is the solution of πi in (3.1) obtained after substituting p̂MM.

Consider the case of ZIG distribution when m = 1 i.e., k1 = 0, resulting into only two parameters
to estimate, i.e. π1 and p. In order to obtain the method of moments estimators, we can equate the
mean and variance given in (2.3) with sample mean (X̄) and sample variance (s2) respectively.
This is an alternative approach to estimate the parameters instead of dealing with the sample raw
moments. Hence we obtain,

(1−π1)
(1− p)

p
= X̄

(1−π1){1+π1(1− p)}(1− p)
p2 = s2 (3.3)

Solving the above equations simultaneously for p and π1, we get, p̂c
MM =

2X̄
(s2 + X̄ + X̄2)

and

π̂c
1(MM) =

s2− X̄− X̄2

s2− X̄ + X̄2 .

Now let us consider another special case of GIG, the Zero-One Inflated Geometric (ZOIG)
distribution, i.e., m = 2 and k1 = 0 and k2 = 1. It has three parameters π1, π2 and p and to estimate
them we need to equate the first three raw sample moments with the corresponding population
moments and we thus obtain the following system of equations:

m′1 = π2 +(1−π1−π2)
(1− p)

p

m′2 = π2 +(1−π1−π2)
(p2−3p+2)

p2

m′3 = π2 +(1−π1−π2)
(1− p)(p2−6p+6)

p3 (3.4)

Similarly, another special case of GIG is the Zero-One-Two Inflated Geometric (ZOTIG) dis-
tribution. Here we have four parameters π1, π2, π3 and p to estimate. This is done by solving the
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following system of four equations obtained by equating the first four raw sample moments with
their corresponding population moments to have,

m′1 = π2 +2π3 +(1−π1−π2−π3)
(1− p)

p

m′2 = π2 +4π3 +(1−π1−π2−π3)
(1− p)(2− p)

p2

m′3 = π2 +8π3 +(1−π1−π2−π3)
(1− p)(p2−6p+6)

p3

m′4 = π2 +16π3 +(1−π1−π2−π3)
(1− p)(2− p)(p2−12p+12)

p4 (3.5)

Algebraic solutions to these systems of equations in (3.4) and (3.5) are obtained by using Math-
ematica. We note that these solutions may not fall in the feasible regions of the parameter space, so
we put appropriate restrictions to these solutions as discussed for the ZIG distribution to obtain the
corrected MMEs.

3.2. Methods based on Probability Generating Function (EPGE)

Given a random sample X1,X2, . . . ,Xn of size n from a distribution with pgf G(s), the empirical
probability generating function (epgf) is defined as

Gn(s) =
1
n

n

∑
i=1

sXi . (3.6)

Number of parameter estimation methods have been proposed based on the the epgf, due to the fact
that the epgf Gn(s) converges pgf G(s) in various modes as n→ ∞. The simplest of these method
for estimating θ = (θ1,θ2, . . . ,θm) is by equating the epgf to the pgf at m different numerical values
of s, and then solving the system of m equations of the form

Gn(si) = G(si) , i = 1,2, . . .m, (3.7)

where,−1≤ si≤ 1. Another system of estimating equations can be obtained and solved by equating
the derivatives,

G′n(si) = G′(si) , i = 1,2, . . .m, (3.8)

or by considering the derivatives of logs,

G′n(si)G(si) = G′(si)Gn(si) , i = 1,2, . . .m. (3.9)

A combination of these three types of estimating equations can be used as well. Kemp and Kemp
(1988) [10] showed that some well known estimation procedures, such as, the method of moments
discussed earlier are special cases of these methods. For the case of ZIG, i.e. when m = 2, we used
one such well-known procedure, the method of mean-and-zero-frequency, where the sample mean
is equated to the population mean and the relative frequency of X = 0 in the sample ( f0) is equated
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to P(X = 0). Hence we obtain,

X̄ = (1−π1)
(1− p)

p
f0 = π1 +(1−π1)p. (3.10)

Solving the above set of equations for p and π1, we get, p̂PG =
1− f0

X̄
and π̂1(PG) =

X̄ f0 + f0−1
X̄ + f0−1

.

The subscript “(PG)” indicates the EPGE approach. As in the case of the MME approach, the
parameter estimates obtained using EPGE approach may lie outside the parameter space. In that
case, like the MME approach we need to correct them by appropriately truncating them. We can
extend this approach to any GIG distribution by equating the sample mean with the population mean
and probability of the inflated points P(X = ki) with the relative frequencies of those in the sample
( fki). For example, in case of ZOIG distribution, we obtain the following set of equations:

X̄ = π2 +(1−π1−π2)
(1− p)

p
f0 = π1 +(1−π1−π2)p

f1 = π2 +(1−π1−π2)p(1− p) (3.11)

and for ZOTIG distribution, we have

X̄ = π2 +2π3 +(1−π1−π2−π3)
(1− p)

p
f0 = π1 +(1−π1−π2−π3)p

f1 = π2 +(1−π1−π2−π3)p(1− p)

f2 = π3 +(1−π1−π2−π3)p(1− p)2 (3.12)

Again, algebraic solutions to these systems of equations in (3.11) and (3.12) are obtained by using
Mathematica.

3.3. Maximum Likelihood Estimation (MLE)

Now we discuss the approach of estimating our parameters by the method of Maximum Likelihood
Estimation(MLE). Based on the random sample X = (X1,X2, . . . ,Xn), we define the likelihood func-
tion L = L(p,πi,1≤ i≤ m| X) as follows. Let Yi = the number of observations at ki with inflated
probability, i.e., if I is an indicator function, then Yi = ∑

n
j=1 I(X j = ki), 1 ≤ i ≤ m, which means Yi

is the total number of observed counts at ki. Also, let Y . = ∑
m
i=1Yi = total number of observations

with inflated observations, n = total number of observations and, (n−Y .) is the total number of
non-inflated observations. Then,

L =
m

∏
i=1

{
πi +

(
1−

m

∑
l=1

πl

)
P(ki | p)

}Yi

∏
X j 6=ki

{(
1−

m

∑
l=1

πl

)
P(X j|p)

}

=
m

∏
i=1

{
πi +

(
1−

m

∑
l=1

πl

)
P(ki | p)

}Yi
(

1−
m

∑
l=1

πl

)(n−Y.)

∏
X j 6=ki

P(X j|p)

(3.13)
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The log likelihood function l = lnL is given by

l =
m

∑
i=1

Yi ln

{
πi +

(
1−

m

∑
l=1

πl

)
P(ki | p)

}
+(n−Y.) ln

(
1−

m

∑
l=1

πl

)
+ ∑

X j 6=ki

lnP(X j | p)

But we have,

∑
X j 6=ki

lnP(X j | p) = (n−Y.) ln p+ ln(1− p)(
n

∑
j=1

X j−
m

∑
l=1

klYl)

hence the log likelihood function becomes

l =
m

∑
i=1

Yi ln

{
πi +

(
1−

m

∑
l=1

πl

)
P(ki | p)

}
+(n−Y.) ln

(
1−

m

∑
l=1

πl

)

+(n−Y.) ln p+ ln(1− p)(
n

∑
j=1

X j−
m

∑
l=1

klYl)

(3.14)

Now to obtain the MLEs, we maximize l in (3.14) with respect to the parameters πi, 1≤ i≤m, and
p over the appropriate parameter space. Differentiating l partially w.r.t the parameters and setting
them equal to zero yields the following system of likelihood equations or score equations.

∂ l
∂πi

=
Yi

{πi +(1−∑
m
l=1 πl)P(ki|p)}

−
m

∑
i=1

YiP(ki|p)
{πi +(1−∑

m
l=1 πl)P(ki|p)}

− (n−Y.)
(1−∑

m
l=1 πl)

= 0, ∀i = 1, . . . ,m;

∂ l
∂ p

=
m

∑
i=1

Yi(1−∑
m
l=1 πl)P(p)(ki|p)

{πi +(1−∑
m
l=1 πl)P(ki|p)}

+
(n−Y.)

p
− (nX̄−∑

m
l=1 klYl)

(1− p)
= 0

(3.15)

where, P(p)(ki|p) = (∂/∂ p)P(ki|p).
Usually, of the three methods discussed, MLE is known to work best but in absence of closed

form expression we have to resort to numerical optimization techniques, which makes it the most
difficult one to obtain. Using the other two methods (MME and EPGE), estimators are much easier
to obtain and do not require extensive computation, but they may lie outside the feasibility region of
the parameter space. So we need to appropriately correct them. Therefore, we conduct simulation
studies in the next section which can provide some guidance about their performances.

4. Simulation Study

We have considered the following three cases for our simulation study:
(i) m = 1,k1 = 0 (Zero Inflated Geometric (ZIG) distribution)
(ii) m = 2,k1 = 0,k2 = 1 (Zero-One Inflated Geometric (ZOIG) distribution)
(iii) m = 3,k1 = 0,k2 = 1,k3 = 2 (Zero-One-Two Inflated Geometric (ZOTIG) distribution)

For each model mentioned above, we generate random data X1, ...,Xn from the distribution (with
given parameter values) N = 10,000 times. Let us denote a parameter (either πi or p) by the generic
notation θ . The parameter θ is estimated by three possible estimators θ̂

(c)
MM (the corrected MME),

θ̂
(c)
PG (the corrected EPGE) and θ̂ML (the MLE). At the lth replication, 1≤ l ≤ N, the estimates of θ
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are θ̂
(c)(l)
MM , θ̂

(c)(l)
PG and θ̂

(l)
ML respectively. Then the standardized bias (called ‘SBias’) and standardized

mean squared error (called ‘SMSE’) are defined and approximated as below

SBias(θ̂) = E(θ̂ −θ)/θ ≈

{
N

∑
l=1

(θ̂ (l)−θ)/θ

}/
N

SMSE(θ̂) = E(θ̂ −θ)2/θ
2 ≈

{
N

∑
l=1

(θ̂ (l)−θ)2/θ
2

}/
N (4.1)

Note that θ̂ will be replaced by θ̂
(c)
MM, θ̂

(c)
PG and θ̂ML in our simulation study. Further observe

that we are using SBias and SMSE instead of the actual Bias and MSE, because the standardized
versions provide more information. An error of magnitude 0.01 in estimating a parameter with true
value 1.00 is more severe than a situation where the parameter’s true value is 10.0. This fact is
revealed through SBias and/or SMSE more than the actual bias and/or MSE.

4.1. The ZIG Distribution
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Fig. 1. Plots of the SBias and SMSE of the CMMEs, EPGEs and MLEs of π1 and p (from ZIG distribution) plotted
against π1 for p = 0.2 and n = 25. The solid blue line represents the SBias or SMSE of the CMME. The dashed red line
represents the SBias or SMSE of the EPGE and the longdashed black line is for the MLE. (a) Comparison of SBias of
π1 estimators. (b) Comparison of SBias of p estimators. (c) Comparison of SMSE of π1 estimators. (d) Comparison of
SMSE of p estimators.
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In our simulation study for the Zero Inflated Geometric (ZIG) distribution, we fix p = 0.2 and
vary π1 from 0.1 to 0.8 with an increment of 0.1 for n = 25, 100. The constrained optimization algo-
rithm “L-BFGS-B” (Byrd et al. (1995)) [3] is implemented in R programming language to obtain
the maximum likelihood estimators (MLEs) of the parameters p and π1, and the corrected MMEs
and EPGEs are obtained by solving a system of equations and imposing appropriate restrictions on
the parameters. In order to compare the performances of the MLEs with that of the CMMEs and
EPGEs, we plot the standardized biases (SBias) and standardized MSE (SMSE) of these estimators
obtained over the allowable range of π1. The SBias and SMSE plots are presented in Figure 1 for
sample size 25. Due to space constraint, the plot for sample size 100 is presented in Figure 8 in the
Appendix. Also we have presented in the Appendix a plot when p = 0.7 and n = 100 (Figure 9).

For the ZIG distribution with n = 25, from Figure 1(a) we see that MLE and EPGE outperforms
CMME for all values of π1 with respect to SBias except at π1 = 0.1. All the estimators beyond 0.2
are negatively biased. In Figure 1(b), we again see that MLE and EPGE uniformly outperforms
the CMME and are increasing with values of π1. In Figure 1(c), MLE and EPGE consistently
outperforms CMME at all points w.r.t SMSE. For all the estimators, the SMSE starts off at their
highest values and then decreases rapidly until it reaches nearly zero. The SMSE of MLE and
EPGE consistently outperforms that of CMME in Figure 1(d). They both start off at their lowest
values, and increase as values of π1 get higher. For n = 100, from Figure 8 we see a similar pattern.
However, as expected the values of sBias and SMSE are considerably smaller for all estimators.

When p = 0.7, from Figure 9 we observe that MLE outperforms both CMME and EPGE. Again
all estimators of π1 seems to be negatively biased and MLE and EPGE of p is almost unbiased up to
π1 = 0.7. We also observe that SMSE of MLE for both the parameters π1 and p is smallest among
the three estimators.

4.2. The ZOIG Distribution

In the case of the Zero-One Inflated Geometric (ZOIG) distribution we have three parameters to
consider, namely π1, π2 and p. For fixed p = 0.3 we vary π1 and π2 one at a time for sample
sizes 25 and 100. Figure 2 presents the comparisons for the three different type of estimators for
three parameters π1, π2 and p in terms of standardized bias and standardized MSE for n = 25,
varying π1 from 0.1 to 0.5 and keeping π2 and p fixed at 0.15 and 0.3 respectively. Figure 10
in the Appendix presents the same for sample size 100. Also in the Appendix a plot when p is
fixed at 0.7 and n = 100 is given in Figure 11. In Figure 2(a), both MLE and EPGE outperforms
CMME at all points with respect to SBias. SBias of MLE and EPGE starts above zero and quickly
becomes negative, whereas that of CMME is throughout negative. In Figure 2(b), we see that the
MLE is almost unbiased for values of π1 up to 0.4, and SBias of both CMME and EPGE are always
negative. Again in Figure 2(c), we see that MLE outperforms both CMME and EPGE. In Figure
2(d), SMSE of all the estimators are decreasing, but SMSE of MLE stays below that of other two
estimators. In Figure 2(e), SMSE of MLE stays constant at 0.55 and in 2(f), SMSE of MLE stays
below that of the other estimators.

For sample size n = 100 from Figure 10, we observe that both MLE and EPGE for all the
parameters are almost unbiased and performs better than CMME. However, SMSE wise MLE is
marginally better. We also observe that with the increase in sample size the SBias and SMSE of all
the estimators have gone down.
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Fig. 2. Plots of the SBias and SMSE of the CMMEs, EPGEs and MLEs of π1, π2 and p (from ZOIG distribution) by
varying π1 for fixed π2 = 0.15, p = 0.3 and n = 25. The solid blue line represents the SBias or SMSE of the corrected
MME. The dashed red line and longdashed black line represents the SBias or SMSE of the EPGE and MLE respectively.
(a)-(c) Comparisons of SBiases of π1, π2 and p estimators respectively. (d)-(f) Comparisons of SMSEs of π1, π2 and p
estimators respectively.

When p = 0.7 and n = 100, from Figure 11 we observe that SBias of π1 is decreasing for all the
estimators. However for π2, SBias of MLE starts of with very small positive value and then becomes
negative, whereas both EPGE and CMME are negatively biased and MLE is almost unbiased for
parameter p. Also SMSE wise, MLE seems to be the best estimator.

In our second scenario which is presented in Figure 3 for sample size 25, we vary π2 keeping
π1 and p fixed at 0.15 and 0.3 respectively. Figure 12 in the Appendix contains the same plots for
sample size 100. Also in the Appendix we present comparison plots of SBias and SMSE in Figure 13
for sample size 100, varying π2 keeping π1 and p fixed at 0.15 and 0.7 respectively. In Figure 3(a),
we see that all three estimators are negatively biased, but MLE is always performing better. However
in Figure 3(b), MLE starts of with a positive bias and then becomes almost unbiased for π2. SBias
of EPGE is negative throughout but stays very close 0. SBias of CMME stays throughout between
-0.6 and -0.8. In Figure 3(c), we see that MLE outperforms both CMME and EPGE throughout with
respect to SBias. From Figures 3(d), 3(e) and 3(f), it is clear that MLE outperforms both CMME
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and EPGE with respect to SMSE for all permissible values of π2. Thus we observe that the MLEs
of the all three parameters perform better in terms of the both SBias and SMSE.
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Fig. 3. Plots of the SBias and SMSE of the CMMEs, EPGEs and MLEs of π1, π2 and p (from ZOIG distribution) by
varying π2 for fixed π1 = 0.15, p = 0.3 and n = 25. The solid blue line represents the SBias or SMSE of the corrected
MME. The dashed red line and longdashed black line represents the SBias or SMSE of the EPGE and MLE respectively.
(a)-(c) Comparisons of SBiases of π1, π2 and p estimators respectively. (d)-(f) Comparisons of SMSEs of π1, π2 and p
estimators respectively.

We observe very similar behavior from the plots for n = 100, presented in Figure 12. MLE
seems to be performing best and SBias and SMSEs are going down as expected with an increase in
sample size except for SMSE of π2 (Figure 12(e)).

Again from Figure 13, when p = 0.7 and n = 100, we observe that MLE is performing better
than EPGE and CMME w.r.t both SBias and SMSE.

4.3. The ZOTIG Distribution

For the Zero-One-Two Inflated Geometric (ZOTIG) distribution we have four parameters to con-
sider, namely π1, π2, π3 and p. For fixed p = 0.3 we vary π1, π2, and π3 one at a time from 0.1
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Fig. 4. Plots of the SBias and SMSE of the CMMEs, EPGEs and MLEs of π1, π2, π3 and p (from ZOTIG distribution)
by varying π1 for fixed π2 = π3 = 0.2 and p = 0.3 and n = 25. The solid blue line represents the SBias or SMSE of the
corrected MME. The dashed red line and longdashed black line represents the SBias or SMSE of the EPGE and MLE
respectively. (a)-(d) Comparisons of SBiases of π1, π2, π3 and p estimators respectively. (e)-(h) Comparisons of SMSEs
of π1, π2, π3 and p estimators respectively.

to 0.5 for sample size n = 25. Thus we have 12 estimators π̂
(c)
1(MM), π̂

(c)
2(MM), π̂

(c)
3(MM), p̂(c)(MM), π̂1(PG),

π̂2(PG), π̂3(PG), p̂(PG),π̂1(ML), π̂2(ML), π̂3(ML) and p̂(ML). The comparisons of these estimators in terms
of standardized bias and standardize MSE for sample size n = 25 are presented in Figures 4-6 and
for sample size 100 are presented in the Appendix (Figures 14-16).

In the first scenario of ZOTIG distribution, which is presented in Figure 4, we vary π1 keeping
π2, π3 and p fixed at 0.2, 0.2 and 0.3 respectively. From Figure 4(a, b, c, d), we see that the CMMEs
of all the four parameters perform consistently worse than the MLEs and EPGEs with respect to
SBias. Both MLEs and EPGEs seems to have very similar performance. Also from parts (e, f,
g, h) in Figure 4 concerning the SMSE, we notice that the MLEs of all the parameters perform
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consistently better than the other two type of estimators. We observe similar performance of the
three types of estimators, when sample size is increased to 100 (Figure 14).
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Fig. 5. Plots of the SBias and SMSE of the CMMEs and MLEs of π1, π2, π3 and p (from ZOTIG distribution) by varying
π2 for fixed π1 = π3 = 0.2 and p = 0.3 and n = 25. The solid blue line represents the SBias or SMSE of the corrected
MME. The dashed red line and longdashed black line represents the SBias or SMSE of the EPGE and MLE respectively.
(a)-(d) Comparisons of SBiases of π1, π2, π3 and p estimators respectively. (e)-(h) Comparisons of SMSEs of π1, π2, π3
and p estimators respectively.

In our second scenario which is presented in Figure 5, we vary π2 keeping π1, π3 and p fixed
at 0.2, 0.2 and 0.3 respectively. We observe some interesting things in these plots. From Figure 5
we see that MLE and EPGE of π1, π2, π3 and p are performing better upto π2 = 0.4 with respect to
SBias but after that performance of all the estimators are same. However we see that the MLEs of
all four parameters perform better than their CMME and EPGE counterparts with respect to SMSE.
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In Figure 15, when sample size is 100, we observe that CMMEs are consistently worse w.r.t both
SBias and SMSE and EPGEs are performing marginally better than MLEs.
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Fig. 6. Plots of the SBias and SMSE of the CMMEs and MLEs of π1, π2, π3 and p (from ZOTIG distribution) by varying
π3 for fixed π1 = π2 = 0.2 and p = 0.3 and n = 25. The solid blue line represents the SBias or SMSE of the corrected
MME. The dashed red line and longdashed black line represents the SBias or SMSE of the EPGE and MLE respectively.
(a)-(d) Comparisons of absolute SBiases of π1, π2, π3 and p estimators respectively. (e)-(h) Comparisons of SMSEs of
π1, π2, π3 and p estimators respectively.

In the third scenario which is presented in Figure 6, we vary π3 keeping π1, π2 and p fixed at
0.2, 0.2 and 0.3 respectively. Here also we observe similar results as the second case of ZOTIG
distribution, MLEs and EPGEs for all the four parameters are uniformly outperforming CMMEs
with respect to SBias up to π3 = 0.4. Also as before MLEs uniformly outperform CMMEs and
EPGEs of all the four parameters with respect to SMSE. But as sample size increases to 100, we
observe that EPGEs are performing marginally better than MLEs (Figure 16).
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Thus from our simulation study it is evident that MLE has an overall better performance than
CMME and EPGE for all the Generalized Inflated Geometric models that we have considered. So
in the next chapter, we consider an example where we fit an appropriate GIG model to the Swedish
fertility data set.

5. Application of GIG Distribution

In this section, we consider the Swedish fertility data presented in Table 1 and try to fit a suitable
GIG model. Since our simulation study in the previous section suggests that the MLE has an overall
better performance, all of our estimations of model parameters are carried out using the maximum
likelihood estimation approach. While fitting the Inflated Geometric models, parameter estimates
of some mixing proportions (πi) came out negative. So we need to make sure that all the estimated
probabilities according to the fitted models are non-negative. We tried all possible combinations
of GIG models and then compared each of these Inflated Geometric models using the Chi-square
goodness of fit test, the Akaike’s Information Criterion (AIC) and the Bayesian Information Crite-
rion (BIC). While performing the Chi-square goodness of fit test, the last three categories of Table 1
are collapsed into one group due to small frequencies. More details of our model fitting is presented
below.

First, we try with single-point inflation at each of the four values (0, 1, 2 and 3). In this first
phase, an inflation at 2 seems most plausible as it gives the smallest AIC and BIC values 4188.794
and 4198.924 respectively. However the p-value of the Chi-square test is very close to 0, suggesting
that this is not a good model. Next, we try two-point inflations at {0, 1}, {0, 2}, {0, 3}, {1, 2}, etc.
At this stage, {2, 3} inflation seems most appropriate going by the values of AIC (3947.064) and
BIC ( 3962.258). But p-value of the Chi-square test close to 0 again makes it an inefficient model.

In the next stage, we try three-point inflation models, and here we note that a GIG with inflation
set {0, 2, 3} significantly improves over the earlier {2, 3} inflation model (i.e., TTIG). This ZTTIG
model significantly improves the p-value (but still close to 0) while maintaining a low AIC and BIC
of 3841.169 and 3861.428 respectively. The main reason for low p-value is that this model is unable
to capture the tail behavior. The estimated value of the parameters are (with k1 = 0,k2 = 2,k3 = 3):
π̂1 = -0.2340517, π̂2 = 0.2816816, π̂3 = 0.1376353, and p̂ = 0.4068477 using the Maximum Likeli-
hood Estimation approach. Interpretation of the negative π̂1 is very difficult in this case, perhaps it
can be thought of as a deflation point.

Finally, we fitted the full {0, 1, 2, 3} inflated model. We obtained the maximum likelihood
estimates of the model parameters as π̂1 = -2.60853103, π̂2 = -0.92017233, π̂3 = -0.04498528, π̂3

= 0.02737037, and p̂ = 0.59520603. The AIC and the BIC values for this model are 3800.688
and 3826.012 respectively. Which is significantly lower than all the previous models. Also p-value
of the Chi-square test is 0.810944, thus rendering this Zero-One-Two-Three inflated Geometric
(ZOTTIG) model to be a very good fit. For the sake of completeness, we have also fit a discrete
Lindley distribution, proposed by Bakouch et al. (2014) [1], whose probability mass function is
given in the Appendix (A.1), to the data and obtained the parameter estimate as θ̂ = 0.614. Also the
AIC and BIC are 4353.098 and 4358.163 respectively. Moreover, p-value of the Chi-square test is
almost 0. Recently, this data set was also modeled using a Generalized Inflated Poisson distribution.
It was observed that the Zero-Two-Three inflated Poisson (ZTTIP) model is giving best fit to the
data with an AIC and BIC value of 3805.485 and 3769.226 respectively. Also the Chi-square test
produced a test statistic and p-value of 2.085 and 0.720 respectively. Though both ZOTTIG and
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ZTTIP models seem to be performing reasonably well for this data set, but based on the AIC and
the Chi-square test, the ZOTTIG model seems to be a better fit. We have included a plot of regular
geometric model, discrete Lindley model and the ZOTTIG model in Figure 7. It is evident from
this plot that the ZOTTIG model is performing way better than the regular geometric and discrete
Lindley model for the Swedish fertility data.
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Fig. 7. Plot of the observed frequencies compared to the estimated frequencies from the regular Geometric, discrete
Lindley and the Zero-One-Two-Three Inflated Geometric model.

6. Conclusion

This work deals with a general inflated geometric distribution (GIG) which can be thought of as
a generalization of the regular Geometric distribution. This type of distribution can effectively
model datasets with elevated counts. We have discussed some properties of this distribution and
also outlined the parameter estimation procedure for this distribution using the method of moments
estimation, empirical probability generating function bases methods and the maximum likelihood
estimation techniques. Simulation studies were also performed and we found that MLEs performed
better than the corrected MMEs and EPGEs in estimating the model parameters with respect to
the standardized bias (SBias) and standardized mean squared errors (SMSE). While performing the
simulation, we observed that for certain ranges of the inflated proportions in the GIG models, the
MMEs and EPGEs lie outside the parameter space. Nonetheless, we selected all permissible values
and compared the overall performance of the CMMEs, EPGEs and MLEs for three special cases
of GIG. Different GIG models were used for analyzing the fertility data of Swedish women and
was compared with a discrete Lindley model. It was found that the Zero-One-Two-Three inflated
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Geometric (ZOTTIG) model is a good fit. Because of the extra parameter(s), the GIG distribution
seems to be much more flexible in model fitting than the regular geometric distribution.
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Appendix A.

The probability mass function of the discrete Lindley distribution is given by

P(X = k|θ) = p(k) =

{
e−θk

1+θ
{θ(1−2e−θ )+(1− e−θ )(1+θk)} if k = 0,1,2, . . .

0 otherwise,
(A.1)

where θ > 0.
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Fig. 8. Plots of the SBias and SMSE of the CMMEs, EPGEs and MLEs of π1 and p (from ZIG distribution) plotted
against π1 for p = 0.2 and n = 100. The solid blue line represents the SBias or SMSE of the CMME. The dashed red line
represents the SBias or SMSE of the EPGE and the longdashed black line is for the MLE. (a) Comparison of SBias of
π1 estimators. (b) Comparison of SBias of p estimators. (c) Comparison of SMSE of π1 estimators. (d) Comparison of
SMSE of p estimators.
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Fig. 9. Plots of the SBias and SMSE of the CMMEs, EPGEs and MLEs of π1 and p (from ZIG distribution) plotted
against π1 for p = 0.7 and n = 100. The solid blue line represents the SBias or SMSE of the CMME. The dashed red line
represents the SBias or SMSE of the EPGE and the longdashed black line is for the MLE. (a) Comparison of SBias of
π1 estimators. (b) Comparison of SBias of p estimators. (c) Comparison of SMSE of π1 estimators. (d) Comparison of
SMSE of p estimators.

512

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 491-519



●

●
●

●
●

0.1 0.2 0.3 0.4 0.5

−
0.

4
−

0.
2

0.
0

π1

 (a) 

S
B

ia
s ●

●

●
●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
4

0.
8

1.
2

π1

 (d) 

S
M

S
E

●
●

●
●

●

0.1 0.2 0.3 0.4 0.5

−
0.

8
−

0.
4

0.
0

π2

 (b) 

S
B

ia
s

●

●

●

●
●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
4

0.
8

1.
2

π2

 (e) 

S
M

S
E

● ● ●
●

●

0.1 0.2 0.3 0.4 0.5

−
0.

1
0.

1
0.

3
0.

5

p

 (c) 

S
B

ia
s

● ● ● ●
●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

p

 (f) 

S
M

S
E

Fig. 10. Plots of the SBias and SMSE of the CMMEs, EPGEs and MLEs of π1, π2 and p (from ZOIG distribution) by
varying π1 for fixed π2 = 0.15, p = 0.3 and n = 100. The solid blue line represents the SBias or SMSE of the corrected
MME. The dashed red line and longdashed black line represents the SBias or SMSE of the EPGE and MLE respectively.
(a)-(c) Comparisons of SBiases of π1, π2 and p estimators respectively. (d)-(f) Comparisons of SMSEs of π1, π2 and p
estimators respectively.
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Fig. 11. Plots of the SBias and SMSE of the CMMEs, EPGEs and MLEs of π1, π2 and p (from ZOIG distribution) by
varying π1 for fixed π2 = 0.15, p = 0.7 and n = 100. The solid blue line represents the SBias or SMSE of the corrected
MME. The dashed red line and longdashed black line represents the SBias or SMSE of the EPGE and MLE respectively.
(a)-(c) Comparisons of SBiases of π1, π2 and p estimators respectively. (d)-(f) Comparisons of SMSEs of π1, π2 and p
estimators respectively.
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Fig. 12. Plots of the SBias and SMSE of the CMMEs, EPGEs and MLEs of π1, π2 and p (from ZOIG distribution) by
varying π2 for fixed π1 = 0.15, p = 0.3 and n = 100. The solid blue line represents the SBias or SMSE of the corrected
MME. The dashed red line and longdashed black line represents the SBias or SMSE of the EPGE and MLE respectively.
(a)-(c) Comparisons of SBiases of π1, π2 and p estimators respectively. (d)-(f) Comparisons of SMSEs of π1, π2 and p
estimators respectively.
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Fig. 13. Plots of the SBias and SMSE of the CMMEs, EPGEs and MLEs of π1, π2 and p (from ZOIG distribution) by
varying π2 for fixed π1 = 0.15, p = 0.7 and n = 100. The solid blue line represents the SBias or SMSE of the corrected
MME. The dashed red line and longdashed black line represents the SBias or SMSE of the EPGE and MLE respectively.
(a)-(c) Comparisons of SBiases of π1, π2 and p estimators respectively. (d)-(f) Comparisons of SMSEs of π1, π2 and p
estimators respectively.
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Fig. 14. Plots of the SBias and SMSE of the CMMEs, EPGEs and MLEs of π1, π2, π3 and p (from ZOTIG distribution)
by varying π1 for fixed π2 = π3 = 0.2 and p = 0.3 and n = 100. The solid blue line represents the SBias or SMSE of the
corrected MME. The dashed red line and longdashed black line represents the SBias or SMSE of the EPGE and MLE
respectively. (a)-(d) Comparisons of SBiases of π1, π2, π3 and p estimators respectively. (e)-(h) Comparisons of SMSEs
of π1, π2, π3 and p estimators respectively.

517

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 491-519



● ● ● ●
●

0.1 0.2 0.3 0.4 0.5

−
1.

0
−

0.
2

π1

 (a) 

S
B

ia
s

● ● ● ●

●

0.1 0.2 0.3 0.4 0.5

0.
5

1.
5

π1

 (e) 

S
M

S
E

●

●

●
●

●

0.1 0.2 0.3 0.4 0.5

−
1.

0
1.

0

π2

 (b) 

S
B

ia
s

●
●

●

●
●

0.1 0.2 0.3 0.4 0.5

0.
0

1.
0

2.
0

π2

 (f) 

S
M

S
E

● ● ● ●

●

0.1 0.2 0.3 0.4 0.5

−
1.

0
−

0.
2

π3

 (c) 

S
B

ia
s

● ● ● ●

●

0.1 0.2 0.3 0.4 0.5

0.
0

1.
0

2.
0

π3

 (g) 

S
M

S
E

● ● ●
●

●

0.1 0.2 0.3 0.4 0.5

−
0.

5
1.

0

p

 (d) 

S
B

ia
s

● ● ●
●

●

0.1 0.2 0.3 0.4 0.5

0.
0

1.
0

2.
0

p

 (h) 

S
M

S
E

Fig. 15. Plots of the SBias and SMSE of the CMMEs, EPGEs and MLEs of π1, π2, π3 and p (from ZOTIG distribution)
by varying π2 for fixed π1 = π3 = 0.2 and p = 0.3 and n = 100. The solid blue line represents the SBias or SMSE of the
corrected MME. The dashed red line and longdashed black line represents the SBias or SMSE of the EPGE and MLE
respectively. (a)-(d) Comparisons of SBiases of π1, π2, π3 and p estimators respectively. (e)-(h) Comparisons of SMSEs
of π1, π2, π3 and p estimators respectively.
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Fig. 16. Plots of the SBias and SMSE of the CMMEs, EPGEs and MLEs of π1, π2, π3 and p (from ZOTIG distribution)
by varying π3 for fixed π1 = π2 = 0.2 and p = 0.3 and n = 100. The solid blue line represents the SBias or SMSE of the
corrected MME. The dashed red line and longdashed black line represents the SBias or SMSE of the EPGE and MLE
respectively. (a)-(d) Comparisons of SBiases of π1, π2, π3 and p estimators respectively. (e)-(h) Comparisons of SMSEs
of π1, π2, π3 and p estimators respectively.
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