
f -Majorization with Applications to Stochastic Comparison of Extreme Order Statistics

Esmaeil Bashkar

Department of Statistics, Yazd University, Yazd, 89175-741, Iran
e.bashkar@stu.yazd.ac.ir

Hamzeh Torabi

Department of Statistics, Yazd University, Yazd, 89175-741, Iran
htorabi@yazd.ac.ir

Ali Dolati

Department of Statistics, Yazd University, Yazd, 89175-741, Iran
adolati@yazd.ac.ir

Félix Belzunce

Department of Statistics and Operations Research, University of Murcia, Murcia, Spain
belzunce@um.es

In this paper, we use a new partial order, called f -majorization order. The new order includes as special cases
the majorization, the reciprocal majorization and the p-larger orders. We provide a comprehensive account of
the mathematical properties of the f -majorization order and give applications of this order in the context of
stochastic comparison for extreme order statistics of independent samples following the Frèchet distribution
and scale model. We discuss stochastic comparisons of series systems with independent heterogeneous expo-
nentiated scale components in terms of the usual stochastic order and the hazard rate order. We also derive
new result on the usual stochastic order for the largest order statistics of samples having exponentiated scale
marginals and Archimedean copula structure.
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1. Introduction

In the modern life, applications of order statistics can be found in numerous fields, for example
in statistical inference, life testing and reliability theory. The first important work devoted to the
stochastic comparisons of order statistics arising from heterogeneous exponential random variables
is the one by Pledger and Proschan [33]. Some other papers in this direction, and in particular
devoted to the comparison of extreme order statistics from heterogeneous exponential distributions
are [12], [34], [19]. There are many other papers on the comparison of extreme order statistics for
some other models of parametric distributions. For example [21], [36], [25] and [38] deal with the
case of heterogeneous Weibull distributions, [16] and [23] deal with with the case of heterogeneous
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exponentiated Weibull distributions, [3] deals with the case of heterogeneous generalized expo-
nential distributions and [17] deals with the case of heterogeneous Frèchet distributions. A recent
review on the topic can be also found in [4].

In these applications, various notions of majorization are used very often. The majorization
orders which are used for finding some nice and applicable inequalities is also useful in understand-
ing the insight of the theory. This concept deals with the diversity of the components of a vector
in Rn. Another interesting weaker order related to the majorization orders introduced in [9] is the
p-larger order. In [40] the reciprocal majorization is introduced. Note that, for basic notation and
terminologies on majorization where we use in this paper, we shall follow [28]. Fang and Zhang [15]
and Fang [13] used a notion of majorization to prove Slepian’s inequality. In this paper, we use this
notion, (called f -majorization order) and give applications of this order in the context of stochas-
tic comparison of parallel/series systems with independent and dependent components. This notion
includes as particular cases some of the previous ones.

The paper is organized as follows. In Section 2 we provide several notions of stochastic orders
and majorization orders, and some known results. We also review notion of f -majorization, and
then we present the the relationships with the previous notions and some new lemmas that will
be used later. In Section 3 we provide new results for the comparison of extreme order statistics
from heterogeneous Frèchet, scale and the exponentiated scale populations. We also derive new
result on the usual stochastic order for the largest order statistics of the random samples having
exponentiated scale marginals and Archimedean copula structure. To finish some conclusions are
provided in Section 4.

Throughout this paper, we use the notations R= (−∞,+∞), R+ = [0,+∞) and R++ = (0,+∞)

and the term increasing means nondecreasing and decreasing means nonincreasing. Also the nota-
tion X1:n (Xn:n) is used to denote the smallest (largest) order statistic of n random variables X1, . . . ,Xn.
For any differentiable function f (·), we write f ′(·) to denote the first derivative. The random vari-
ables considered in this paper are all nonnegative.

2. Preliminaries on majorization and new definitions

In this section, we recall some notions of stochastic orders, majorization and related orders and
some useful lemmas, which are helpful for proving our main results.

Let X and Y be univariate random variables with distribution functions F and G, density func-
tions f and g, survival functions F̄ = 1−F and Ḡ = 1−G, hazard rate functions rF = f/F̄ and
rG = g/Ḡ, and reversed hazard rate functions r̃F = f/F and r̃g = g/G, respectively. Based on these
functions several notions of stocahstic orders have been defined, to compare the magnitudes of two
random variables. Next we recall some defintions of stocahstic orders that will be used along the
paper. For a comprehensive discussion on various stochastic orders, please refer to [30], [35], [26]
and more recently [8].

Definition 2.1. Let X and Y be two random variables with common support R++. The random
variable X is said to be smaller than Y in the

(i) dispersive order, denoted by X ≤disp Y , if F−1(β )−F−1(α) ≤ G−1(β )−G−1(α) for all
0 < α ≤ β < 1,

(ii) hazard rate order, denoted by X ≤hr Y , if rF(x)≥ rG(x) for all x,
(iii) reverse hazard rate order, denoted by X ≤rh Y , if r̃F(x)≤ r̃G(x) for all x,
(iv) usual stochastic order, denoted by X ≤st Y , if F̄(x)≤ Ḡ(x) for all x.
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A real function ϕ is n-monotone on (a,b) ⊆ R if (−1)n−2ϕ (n−2) is decreasing and convex in
(a,b) and (−1)kϕ (k)(x)≥ 0 for all x ∈ (a,b),k = 0,1, . . . ,n−2, in which ϕ (i)(.) is the ith derivative
of ϕ(.). For a n-monotone (n ≥ 2) function ϕ : R+ −→ [0,1] with ϕ(0) = 1 and limx→+∞ ϕ(x) = 0,
let ψ = ϕ ,−1 be the pseudo-inverse, then

Cϕ (u1, . . . ,un) = ϕ(ψ(u1)+ . . .+ψ(un)), ∀ui ∈ [0,1], i = 1, . . . ,n,

is called an Archimedean copula with the generator ϕ . Archimedean copulas cover a wide range of
dependence structures including the independence copula with the generator ϕ(t) = e−t . For more
on Archimedean copulas, readers may refer to [32] and [29].

Next we provide formal definitions of the different majorization notions that can be found in
the literature. Note that, for basic notation and terminologies on majorization used in this paper,
we shall follow [28]. To provide these notions, let us recall that the notation x(1) ≤ x(2) ≤ ...≤ x(n)
(x[1] ≥ x[2] ≥ ...≥ x[n]) is used to denote the increasing (decreasing) arrangement of the components
of the vector xxx = (x1, . . . ,xn).

Definition 2.2. The vector xxx is said to be

(i) weakly submajorized by the vector yyy (denoted by xxx ≼w yyy) if ∑n
i= j x(i) ≤ ∑n

i= j y(i) for all
j = 1, . . . ,n,

(ii) weakly supermajorized by the vector yyy (denoted by xxx
w
≼ yyy) if ∑ j

i=1 x(i) ≥ ∑ j
i=1 y(i) for all

j = 1, . . . ,n,

(iii) majorized by the vector yyy (denoted by xxx
m
≼ yyy) if ∑n

i=1 xi = ∑n
i=1 yi and ∑ j

i=1 x(i) ≥ ∑ j
i=1 y(i)

for all j = 1, . . . ,n−1.
(iv) A vector xxx in Rn

+ is said to be weakly log-majorized by another vector yyy in Rn
+ (denoted by

xxx ≼w
log

yyy ) if

j

∏
i=1

x[i] ≤
j

∏
i=1

y[i], ∀ j = 1, . . . ,n; (2.1)

xxx is said to be log-majorized by yyy (denoted by xxx ≼
log

yyy ) if (2.1) holds with equality for j = n.

(v) A vector xxx in Rn
+ is said to be p-larger than another vector yyy in Rn

+ (denoted by xxx
p
≽ yyy) if

j

∏
i=1

x(i) ≤
j

∏
i=1

y(i), ∀ j = 1, . . . ,n.

(vi) A vector xxx in Rn
+ is said to reciprocal majorized by another vector yyy in Rn

+ (denoted by

xxx
rm
≽ yyy) if

j

∑
i=1

1
x(i)

≥
j

∑
i=1

1
y(i)

, ∀ j = 1, . . . ,n.

The ordering introduced in definition 2.2 (iv), called log-majorization, was defined by Weyl [39]
and studied by Ando and Hiai [1], who delved deeply into applications in matrix theory. Note
that weak log-majorization implies weak submajorization. See 5.A.2.b. of [28]. Bon and Pǎltǎnea

522

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 520-536



[9] and Zhao and Balakrishnan [40] introduced the order of p-larger and reciprocal majorization,
Respectively. Here it should be noted that, for two vectors xxx and yyy, we have

xxx
p
≼ yyy ⇐⇒ (log(x1), . . . , log(xn))

w
≼ (log(y1), . . . , log(yn)).

It is well-known that (cf. [20] and [22])

xxx
rm
≼ yyy ⇐= xxx

p
≼ yyy ⇐= xxx

w
≼ yyy ⇐= xxx

m
≼ yyy =⇒ xxx ≼w yyy, ∀xxx,yyy ∈ Rn

+.

The following lemma is needed for proving the main result.

Lemma 2.1 (Balakrishnan et al. [3]). Let the function h : (0,∞)× (0,1)−→ (0,∞) be defined as

h(α, t) =
α(1− t)tα−1

1− tα .

Then,

(i) for each 0 < α ≤ 1, h(α, t) is decreasing with respect to t;
(ii) for each α ≥ 1, h(α, t) is increasing with respect to t.

We now introduce the main tool for this work. The idea is to use the new majorization notion,
used by Fang and Zhang [15] and Fang [13], that includes as particular cases some of the previous
ones. Also it will be used to provide some new results for the comparison of extreme values for the
Frèchet distribution, scale, and the exponentiated scale model.

Definition 2.3. Let f : A−→ R be a real valued function. The vector xxx is said to be

(i) weakly f -submajorized by the vector yyy, denoted by xxx ≼wf yyy, if f (xxx)≼w f (yyy)

(ii) weakly f -supermajorized by the vector yyy, denoted by xxx
wf
≼ yyy, if f (xxx)

w
≼ f (yyy)

(iii) f -majorized by the vector yyy, denoted by xxx
fm
≼ yyy, if f (xxx)

m
≼ f (yyy),

where f (xxx) = ( f (x1), . . . , f (xn)).

It is easy to see that most of the previous majorization notions are examples of the previous
notion for some particular choices of the function f . In particular we have:

xxx
m
≼ yyy ⇐⇒ xxx

fm
≼ yyy when f (t) = t,

xxx
p
≼ yyy ⇐⇒ xxx

wf
≼ yyy when f (t) = log(t),

xxx
rm
≼ yyy ⇐⇒ xxx ≼wf yyy when f (t) =

1
t
,

xxx ≼w
log

yyy ⇐⇒ xxx ≼wf yyy when f (t) = log(t).

The following lemma show the relation between f -majorization notion and usual majorization
for various functions.

Lemma 2.2.

(i) If an increasing function f is convex, then xxx
wf
≼yyy implies xxx

w
≼yyy,

(ii) If an increasing function f concave, then xxx ≼w f yyy implies xxx ≼w yyy.
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Proof. The proof of this lemma follows easily from Theorem 5.A.2 of [28].

According to Lemma 2.2, all of the results which obtain for weak majorization are also true for
f -majorization.

An interesting special case of Definition 2.3 by taking the exponential function can be achieved.
More precisely, we have the following definition.

Definition 2.4. A vector xxx in Rn
+ is said to be weakly exp-majorized by another vector yyy in Rn

+

(denoted by xxx ≼w
exp

yyy ) if

n

∑
i= j

ex(i) ≤
n

∑
i= j

ey(i) , ∀ j = 1, . . . ,n; (2.2)

xxx is said to be exp-majorized by yyy (denoted by xxx ≼
exp

yyy ) if (2.2) holds with equality for j = 1.

Note that weak sub-majorization implies weak exp-majorization. See 5.A.2.g. of [28]. In the
following example we see that weak exp-majorization does not imply weak sub-majorization.

Example 2.1. Let (x1,x2) = (0.5,0.9) and (y1,y2) = (1.08,0.3). Obviously (x1,x2) ̸≽w (y1,y2) and
(y1,y2) ̸≽w (x1,x2), even though we have (x1,x2)≼w

exp
(y1,y2).

Next we provide an example, which shows that xxx
fm
≼ yyy does not imply xxx

m
≼ yyy.

Example 2.2. Let xxx = (
√

2,5) and yyy = (2,
√

23), then yyy
fm
≼ xxx with f (t) = t2, but it is clear that yyy is

not majorized by xxx.

The following example shows that xxx
wf
≼ yyy does not imply xxx

w
≼ yyy, necessarily.

Example 2.3. Let xxx = (2,3) and yyy = (1,5), and f be any increasing function that assigns

−5,1.5,−4,1 to 1,5,2,3, respectively. We observe that xxx
wf
≼ yyy, but xxx ̸

w
≼ yyy.

Next we provide a set of technical results that will be used along the paper. First we introduce a
lemma, which will be needed to prove our main results and is of interest in its own right.

Lemma 2.3. The function φ : Rn
+ −→ R satisfies

(i)

xxx ≼wf (
wf
≼)yyy =⇒ φ(xxx)≤ φ(yyy) (2.3)

if and only if, φ( f−1(a1), . . . , f−1(an)) is Schur-convex in (a1, . . . ,an) and increasing
(decreasing) in ai, for i = 1, . . . ,n,

(ii)

xxx
fm
≼ yyy =⇒ φ(xxx)≤ (≥)φ(yyy)

if and only if, φ( f−1(a1), . . . , f−1(an)) is Schur-convex (Schur-concave) in (a1, . . . ,an),

where ai = f (xi), for i = 1, . . . ,n and f−1(y) = inf{x| f (x)≥ y}.
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Proof. (i) Using definition 2.3, we see that (2.3) is equivalent to

aaa ≼w (
w
≼)bbb =⇒ φ( f−1(a1), . . . , f−1(an))≤ φ( f−1(b1), . . . , f−1(bn)),

where ai = f (xi) and bi = f (yi), for i = 1, . . . ,n. Taking

ϕ(a1, . . . ,an) = φ( f−1(a1), . . . , f−1(an)),

in Theorem 3.A.8 of [28], we get the required result.
(ii) This case can be proved in a very similar manner.

It is noteworthy that Lemma 2.1 provided by Khaledi and Kochar [20] is a special case of
Lemma 2.3 (i) when f (x) = log(x) and is useful for proving stochastic orders, see [18] and [3].
Recall that a real valued function φ defined on a set A ∈ Rn is said to be Schur-convex (Schur-
concave) on A if

xxx
m
≼ yyy on A =⇒ φ(xxx)≤ (≥)φ(yyy).

3. Applications to the comparison of extreme order statistics

In this section we provide new results for the comparison of extreme values from independent
Frèchet distribution, scale and exponentiated scale model. We also derive new result on the usual
stochastic order for largest order statistics of samples having exponentiated scale marginals and
Archimedean copula structure. As we will see the main tools are the new f -majorization notions
introduced in the previous section.

3.1. Comparison of extreme order statistics for the Frèchet distribution

A random variable X is said to be distributed according to the Frèchet distribution, and will be
denoted by X ∼ Frè(µ,λ ,α), if the distribution function is given by

G(x; µ,λ ,α) = exp

{
−
(

x−µ
λ

)−α
}
, x > µ,

where µ ∈ R is a location parameter, λ > 0 is a scale parameter and α > 0 is a shape parameter.
In this section, we discuss stochastic comparisons of series and parallel systems with Frèchet

distributed components in terms of the hazard rate order and the reverse hazard rate order. The
result established here strengthens and generalizes some of the results of [17]. To begin with we
present a generalization of Theorem 2 of [17] where sufficient condition is based on the weak f -
majorization. This theorem provides the stochastic comparison result for the lifetime of the parallel
systems having independently distributed Frèchet components with varying scale parameters, but
fixed location and shape parameters.

Theorem 3.1. Let X1, . . . ,Xn (X∗
1 , . . . ,X

∗
n ) be independent random variables where Xi ∼

Frè(µ,λi,α) (X∗
i ∼ Frè(µ,λ ∗

i ,α)), i = 1, . . . ,n. Let us consider an strictly decreasing (increasing)
function f .

(i) If ( f−1(·))′( f−1(·))α−1 is increasing (decreasing) and (λ1, . . . ,λn)
wf
≽ (λ ∗

1 , . . . ,λ ∗
n ) then

Xn:n ≥rh (≤rh)X∗
n:n.
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(ii) If ( f−1(·))′( f−1(·))α−1 is decreasing (increasing) and (λ ∗
1 , . . . ,λ ∗

n ) ≽wf (λ1, . . . ,λn) then
Xn:n ≤rh (≥rh)X∗

n:n.

Proof. (i) Let us consider a fixed x > 0, and a strictly monotone function f , then the reversed
hazard rate of Xn:n is given by

r̃Xn:n(x; µ,aaa,α) =
n

∑
i=1

α
f−1(ai)

(
x−µ

f−1(ai)

)−α−1

, x > µ.

From Lemma 2.3, the proof follows if we prove that, for each x > 0, r̃Xn:n(x; µ,aaa,α) is
Schur-convex (Schur-concave) and decreasing (increasing) in ai’s.

Let h(ai) = α(x − µ)−α−1( f−1(ai))
α . By the assumption, f is a strictly decreasing

(increasing) function, therefore we have

∂h(ai)

∂ai
= α2(x−µ)−α−1 ∂ f−1(ai)

∂ai
( f−1(ai))

α−1 ≤ (≥)0.

Hence the reverse hazard rate function of Xn:n is decreasing (increasing) in each ai.
Now, from Proposition 3.C.1 of [28], the Schur-convexity (Schur-concavity) of

r̃Xn:n(x; µ,aaa,α), follows if we prove the convexity (concavity) of h. The convexity (con-
cavity) of h follows from the assumption ( f−1(·))′( f−1(·))α−1 is increasing (decreasing).
This completes the proof of the required result.

(ii) The proof is similar to the proof of part (i) and hence is omitted.

Let us describe some particular cases of previous theorem.
In Theorem 3.1, if we let f (x) = 1

x , we can get the following corollary that generalizes the
corresponding result in Theorem 2 of [17]. In particular the majorization assumption is relaxed to
the weak majorization and the usual stochastic order is replaced by the stronger reversed hazard rate
order.

Corollary 3.1. Let X1, . . . ,Xn (X∗
1 , . . . ,X

∗
n ) be independent random variables where Xi ∼

Frè(µ,λi,α) (X∗
i ∼ Frè(µ,λ ∗

i ,α)), i = 1, . . . ,n. If (
1
λ1

, . . . ,
1
λn

)
w
≽ (

1
λ ∗

1
, . . . ,

1
λ ∗

n
) then Xn:n ≥rh X∗

n:n.

In Theorem 3.1, if we let f (x) = xr, r > 0, we can easily get the following result.

Corollary 3.2. Let X1, . . . ,Xn (X∗
1 , . . . ,X

∗
n ) be independent random variables where Xi ∼

Frè(µ,λi,α) (X∗
i ∼ Frè(µ,λ ∗

i ,α)), i = 1, . . . ,n.

(i) If α ≥ r, and (λ r
1 , . . . ,λ r

n)≽w ((λ ∗
1 )

r, . . . ,(λ ∗
n )

r) then Xn:n ≥rh X∗
n:n.

(ii) If 0 < α ≤ r and (λ r
1 , . . . ,λ r

n)
w
≽ ((λ ∗

1 )
r, . . . ,(λ ∗

n )
r) then Xn:n ≤rh X∗

n:n.

In the next corollary, which is an immediate consequence of Corollary 3.2, we discuss the
stochastic comparison of two maximum order statistics, one from a heterogeneous population and
the other one from a homogeneous population. Heterogeneity (or homogeneity) of a population is
considered with respect to the scale parameters.

Corollary 3.3. Let X1, . . . ,Xn (X∗
1 , . . . ,X

∗
n ) be independent random variables where Xi ∼

Frè(µ,λi,α), i = 1, . . . ,n (X∗
i ∼ Frè(µ,λ ,α)).
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(i) If α ≥ r, and λ ≤ (λ̄ r)
1
r then Xn:n ≥rh X∗

n:n.
(ii) If 0 < α ≤ r and λ ≥ (λ̄ r)

1
r then Xn:n ≤rh X∗

n:n,

where λ̄ r =
∑n

i=1 λ r
i

n
,r > 0.

The first (second) part of the above Corollary gives a lower (upper) bound on the reversed
hazard rate function of a parallel system with non-identical components in terms of the one with
i.i.d. components when the common scale parameter is (λ̄ r)

1
r . The new bounds are better than

the one that follows from the usual majorization which is in terms of the arithmetic mean of the
scale parameters since r̃Xn:n(x; µ,λ ,α) is a increasing function of λ and the fact that According to
the Lyapunov theorem [27], the arithmetic mean of the λi’s is smaller (larger) than (λ̄ r)

1
r when

r > 1(r < 1).
The following theorem present a generalization of Theorem 1 of [17] where sufficient condition

is based on the weak submajorization and by Lemma 2.2 (ii) is true under weak f submajorization
for any increasing concave function f of the location parameters.

Theorem 3.2. Let X1, . . . ,Xn (X∗
1 , . . . ,X

∗
n ) be independent random variables where Xi ∼

Frè(µi,λ ,α) (X∗
i ∼ Frè(µ∗

i ,λ ,α)), i = 1, . . . ,n. If (µ1, . . . ,µn)≽w (µ∗
1 , . . . ,µ∗

n ), then Xn:n ≥rh X∗
n:n.

Proof. It can be seen that the reversed hazard rate of Xn:n is given by

r̃Xn:n(x; µµµ ,λ ,α) =
n

∑
i=1

α
λ

(
x−µi

λ

)−α−1

, x > max(µ1, . . . ,µn).

From Theorem 3.A.8 of [28], the proof follows if we prove that r̃Xn:n(x; µµµ,λ ,α) is Schur-convex
and increasing in µi’s.

Let

h(µi) =
α
λ

(
x−µi

λ

)−α−1

,

then we have

∂h(µi)

∂ µi
=

α
λ−α (α +1)(x−µi)

−α−2 ≥ 0.

Therefore the reverse hazard rate function of Xn:n is increasing in each µi.
Now, from Proposition 3.C.1 of [28], we only need to prove the convexity of h to get the Schur-

convexity of r̃Xn:n(x; µµµ,λ ,α).
In this case, we have that

∂ 2h(µi)

∂ µ2
i

=
α

λ−α (α +1)(α +2)(x−µi)
−α−3.

Therefore we have that h is a convex function. This completes the proof.

Note that (µ1, . . . ,µn)
m
≽ (µ∗

1 , . . . ,µ∗
n ) implies (µ1, . . . ,µn) ≽w (µ∗

1 , . . . ,µ∗
n ), Theorem 3.2 sub-

stantially improves Theorem 1 of [17].
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3.2. Comparison of extreme values for scale model

Independent random variables X1, . . . ,Xn are said to belong to the scale family of distributions if
Xi ∼ G(λix) where λi > 0, i = 1, . . . ,n and G is called the baseline distribution and is an absolutely
continuous distribution function with density function g. In the Theorem 3.3 we extend result of
Theorem 2.1 of [18] to the case when the two sets of scale parameters weakly majorize each other
instead of usual majorization which by Lemma 2.2 is true under weak f majorization of the scale
parameters.

Theorem 3.3. Suppose Xi and X∗
i as in the setting of Theorem 3.3. If xr(x) is increasing in x, x2r′(x)

is decreasing (increasing) in x and (λ1, . . . ,λn)
w
≽ (≽w)(λ ∗

1 , . . . ,λ ∗
n ), then

(i) X1:n ≥hr (≤hr)X∗
1:n, and

(ii) if r(x) is decreasing then X1:n ≥disp (≤disp)X∗
1:n.

Proof. (i) Fix x > 0. Then the hazard rate of X1:n is

rX1:n(x,λλλ ) =
n

∑
i=1

λir(λix) =
∑n

i=1 φ(λix)
x

,

where φ(u) = ur(u), u ≥ 0. From Theorem 3.A.8 of [28], it suffices to show that, for each x > 0,
rX1:n(x,λλλ ) is Schur-concave (Schur-convex) and increasing in λi’s. By the assumptions, φ(u) is
increasing in u, then the hazard rate function of X1:n is increasing in each λi.

Now, from Proposition 3.C.1 of [28], the concavity (convexity) of φ(λix) is needed to prove
Schur-concavity (Schur-convexity) of rX1:n(x,λλλ ). Note that the assumption that u2r′(u) is decreasing
(increasing) in u is equivalent to r(u)+ur′(u) is decreasing (increasing) in u since[

u2r′(u)
]′
= u(2r′(u)+ur′′(u)) = u

[
r(u)+ur′(u)

]′
,

and r(u)+ur′(u) is decreasing (increasing) in u is equivalent to ur(u) is concave (convex) in u since

[ur(u)]′ = r(u)+ur′(u).

Hence, φ(u) is concave (convex). This completes the proof of part (i).
(ii) Using the assumption that r(x) is decreasing in x and part (i), the required result follows

from Theorem 2.1 in [2] and Theorem 1 in [5].

Note that the conditions of Theorem 3.3 are satisfied by the generalized gamma distribution
as [18] proved that for X ∼ GG(p,q), xr(x) is an increasing function of x and x2r′(x) is an increas-
ing function of x when p,q > 1 and is a decreasing function of x when p,q < 1. Recall that a random
variable X has a generalized gamma distribution, denoted by X ∼ GG(p,q), when its density func-
tion has the following form

g(x) =
p

Γ( q
p)

xq−1e−xp
, x > 0,

where p,q > 0 are the shapes parameters. The conditions of Theorem 3.3 are also satisfied by the
Weibull distribution because for Xi ∼W (α,λ ), xr(x) is an increasing function of x and x2r′(x) is an
increasing function of x when α ≥ 1 and is a decreasing function of x when α ≤ 1, so Theorem 3.3
is also a generalization of Theorem 2.3 of [21].
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Lastly, we get some new results on the lifetimes of parallel systems in terms of the usual stochas-
tic order. It is noteworthy that [18] in Theorem 2.1 proved Theorem 3.4 when f (x) = log(x) and [19]
in Theorem 2.2 proved Theorem 3.4 when the baseline distribution in the scale model is exponential
and f (x) = log(x).

Theorem 3.4. Let X1, . . . ,Xn be a set of independent nonnegative random variables with Xi ∼
G(λix), i= 1, . . . ,n. Let X∗

1 , . . . ,X
∗
n be another set of independent nonnegative random variables with

X∗
i ∼ G(λ ∗

i x), i = 1, . . . ,n. If ( f−1)′(y)r̃( f−1(y)) is decreasing in y, where f is a strictly increasing
function, then

(λ1, . . . ,λn)
wf
≽ (λ ∗

1 , . . . ,λ ∗
n ) =⇒ Xn:n ≥st X∗

n:n. (3.1)

Proof. The survival function of Xn:n can be written as

ḠXn:n(t,aaa) = 1−
n

∏
i=1

G( f−1(ai)t), (3.2)

where ai = f (λi), for i= 1, . . . ,n. Using Lemma 2.3, it is enough to show that the function ḠXn:n(t,aaa)
given in (3.2) is Schur-convex and decreasing in ai’s. To prove its Schur-convexity, it follows from
Theorem 3.A.4. in [28] that we have to show that for i ̸= j,

(ai −a j)

(
∂ ḠXn:n

∂ai
− ∂ ḠXn:n

∂a j

)
≥ 0,

that is, for i ̸= j,

(ai −a j)
n

∏
k=1

G( f−1(ak)t)
(

t( f−1)′(a j)
g( f−1(a j)t)
G( f−1(a j)t)

− t( f−1)′(ai)
g( f−1(ai)t)
G( f−1(ai)t)

)
≥ 0. (3.3)

The assumption ( f−1)′(y)r̃( f−1(y)) is decreasing in y implies that the function
t( f−1)′(ai)r̃( f−1(a j)t) is decreasing in ai, for i = 1, . . . ,n, from which it follows that (3.3) holds.
The partial derivative of ḠXn:n(t,aaa) with respect to ai is negative, which in turn implies that the sur-
vival function of Xn:n is decreasing in ai for i = 1, . . . ,n. This completes the proof of the required
result.

3.3. Comparison of extreme values for exponentiated scale model

Recall that random variable X belongs to the exponentiated scale family of distributions if X ∼
H(x) = [G(λx)]α , where α,λ > 0 and G is called the baseline distribution and is an absolutely
continuous distribution function. We denote this family by ES(α,λ ). Bashkar et al. [6] discussed
stochastic comparisons of extreme order statistics from independent heterogeneous exponentiated
scale samples. In this section, we provide new results for the comparison of smallest order statistics
from samples following exponentiated scale model. In the following theorem, we compare series
systems with independent heterogeneous ES components when one of the parameters is fixed, and
the results are then developed with respect to the other parameter. Again by Lemma 2.2, this result is
true under weak f -supermajorization where f is a non-negative strictly increasing convex function.
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Theorem 3.5. Let X1, . . . ,Xn (X∗
1 , . . . ,X

∗
n ) be independent random variables with Xi ∼ ES(αi,λ )

(X∗
i ∼ ES(α∗

i ,λ )), i = 1, ...,n. Then, for any λ > 0, we have

(α1, . . . ,αn)
w
≽ (α∗

1 , . . . ,α∗
n ) =⇒ X1:n ≤hr X∗

1:n.

Proof. Fix x > 0. Then the hazard rate of X1:n is

rX1:n(x,ααα ,λ ) =
n

∑
i=1

αiλg(λx)
(G(λx))αi−1

1− (G(λx))αi
= λ r(λx)

n

∑
i=1

φ(αi,G(λx)),

where φ(x, p) =
xpx

1− px , x ≥ 0,0 ≤ p < 1. From Theorem 3.A.8 of [28], it suffices to show that, for

each x > 0, rX1:n(x,ααα ,λ ) is Schur-convex and decreasing in αi’s. By the Lemma 2.8 of [37], φ(x, p)
is decreasing and convex in x ≥ 0, then the hazard rate function of X1:n is decreasing and convex
in each αi. So, from Proposition 3.C.1 of [28], the Schur-convexity of rX1:n(x,ααα ,λ ) follows from
convexity of φ(x, p). This completes the proof of the Required result.

Recall that, a random variable X is said to be distributed according the generalized exponential
distribution, and will be denoted by X ∼ GE(α,λ ), if the distribution function is given by

G(x) = (1− exp{−λx})α , x > 0,

where α > 0 is a shape parameter and λ > 0 is a scale parameter. GE distribution is a member of ES
family with underlying distribution G(x) = 1−exp{−x}. Therefore, we can get the following corol-
lary that generalizes the corresponding result in Theorem 15 of [3]. In particular the majorization
assumption is relaxed to the weak supermajorization.

Corollary 3.4. For i = 1, . . . ,n, let Xi and X∗
i be two sets of mutually independent random variables

with Xi ∼ GE(αi,λ ) and X∗
i ∼ GE(α∗

i ,λ ). Then, for any λ > 0, we have

(α1, . . . ,αn)
w
≽ (α∗

1 , . . . ,α∗
n ) =⇒ X1:n ≤hr X∗

1:n.

The following result considers the comparison on the lifetimes of series systems in terms of the
usual stochastic order when two sets of scale parameters weakly majorize each other.

Theorem 3.6. Let X1, . . . ,Xn (X∗
1 , . . . ,X

∗
n ) be independent random variables with Xi ∼ ES(α,λi)

(X∗
i ∼ ES(α,λ ∗

i )), i = 1, ...,n. If q(α,x) = α r̃(x)
Gα(x)

1−Gα(x)
is decreasing (increasing) in x,

(λ1, . . . ,λn)
w
≽ (≽w)(λ ∗

1 , . . . ,λ ∗
n ), then X1:n ≥st (≤st)X∗

1:n.

Proof. For a fixed x > 0, the survival function of X1:n can be written as

F̄X1:n(x,λλλ ) =
n

∏
i=1

(
1−G(λix))α). (3.4)

Now, using Theorem 3.A.8 of [28], it is enough to show that the function F̄X1:n(x,λλλ ) given in
(3.4) is Schur-convex (Schur-concave) and decreasing in λi’s.
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The partial derivatives of F̄X1:n(x,λλλ ) with respect to λi is given by

∂ F̄X1:n(x,λλλ )
∂λi

=−xF̄X1:n(x,λλλ )q(α,λix),

where q(α,x) = α r̃(x)
Gα(x)

1−Gα(x)
> 0. Then we have that F̄X1:n(x,λλλ ) is decreasing in each λi.

From Theorem 3.A.4. in [28] the Schur-convexity (Schur-concavity) follows if we prove that,
for any i ̸= j,

(λi −λ j)

(
∂ F̄X1:n(x,λλλ )

∂λi
− ∂ F̄X1:n(x,λλλ )

∂λ j

)
≥ (≤)0,

that is, for i ̸= j,

xF̄X1:n(x,λλλ )(λi −λ j)

(
q(α,λ jx)−q(α,λix)

)
≥ (≤)0. (3.5)

By the assumption q(α,x) is decreasing (increasing) in x, which in turn implies that the function
q(α,λix) is decreasing (increasing) in λi for i = 1, . . . ,n. This completes the proof of the required
result.

According to Lemma 2.1, for the GE distribution q(α,x) = h(α,1− exp{−x}) is decreasing
(increasing) in x for any 0 < α ≤ 1 (α ≥ 1), so we have the following corollary.

Corollary 3.5. Let X1, . . . ,Xn (X∗
1 , . . . ,X

∗
n ) be independent random variables with Xi ∼ GE(α,λi)

(X∗
i ∼ GE(α,λ ∗

i )), i = 1, ...,n. If 0 < α ≤ 1(α ≥ 1) and (λ1, . . . ,λn)
w
≽ (≽w)(λ ∗

1 , . . . ,λ ∗
n ), then

X1:n ≥st (≤st)X∗
1:n.

Note that (λ1, . . . ,λn)
m
≽ (λ ∗

1 , . . . ,λ ∗
n ) implies both (λ1, . . . ,λn)

w
≽ (λ ∗

1 , . . . ,λ ∗
n )

and (λ1, . . . ,λn)≽w (λ ∗
1 , . . . ,λ ∗

n ), Corollary 3.5 substantially improves the corresponding ones pro-
vided by Balakrishnan et al. [3], in the sense that the majorization is relaxed to the weak majoriza-
tion. Naturally, one may wonder whether the following two statements are actually also true: (i) For
α ≥ 1, (λ1, . . . ,λn) ≽w

exp
(λ ∗

1 , . . . ,λ ∗
n ) gives rise to the usual stochastic order between X1:n and X∗

1:n;

(ii) For 0 < α ≤ 1, (λ1, . . . ,λn)
p
≽ (λ ∗

1 , . . . ,λ ∗
n ) gives rise to the usual stochastic order between X1:n

and X∗
1:n. The following example gives negative answers to these two conjectures.

Example 3.1. Let (X1,X2) ((X∗
1 ,X

∗
2 )) be a vector of independent heterogeneous GE random vari-

ables.

(i) Set α = 2, (λ1,λ2) = (4,0.5) and (λ ∗
1 ,λ ∗

2 ) = (2,3). Obviously (λ1,λ2) ≽w
exp

(λ ∗
1 ,λ ∗

2 ), how-

ever X1:2 and X∗
1:2 are not ordered in the usual stochastic order as can be seen in Fig. 1.

(ii) Set α = 0.6. For (λ1,λ2) = (1,5.5)
p
≽ (2,3) = (λ ∗

1 ,λ ∗
2 ), X1:2 ≤st X∗

1:2; however, for

(λ1,λ2) = (1,2.25)
p
≽ (1.1,2.14) = (λ ∗

1 ,λ ∗
2 ), X1:2 ≥st X∗

1:2. So, (λ1,λ2)
p
≽ (λ ∗

1 ,λ ∗
2 ) implies

neither X1:2 ≤st X∗
1:2 nor X1:2 ≥st X∗

1:2 for 0 < α ≤ 1.
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Fig. 1. Plot of the survival functions of X1:2 (dashed line) and X∗
1:2 (continuous line) when α = 2, (λ1,λ2) = (4,0.5) and

(λ ∗
1 ,λ

∗
2 ) = (2,3) for random variables with GE distributions.

3.4. Dependent samples with Archimedean structure

Recently, some efforts are made to investigate stochastic comparisons on order statistics of ran-
dom variables with Archimedean copulas. See, for example, [6], [25], [24] and [14]. In this section
we derive new result on the usual stochastic order between extreme order statistics of two hetero-
geneous random vectors with the dependent components having ES marginals and Archimedean
copula structure. Specifically, by XXX ∼ ES(ααα ,λ ,ϕ) we denote the sample having the Archimedean
copula with generator ϕ and for i = 1, ...,n, Xi ∼ ES(αi,λ ).

The largest order statistic Xn:n of the sample XXX ∼ ES(ααα,λ ,ϕ1) gets distribution function

GXn:n(x) = ϕ
( n

∑
i=1

ψ(Gαi(λx))
)
= J(ααα,λ ,x,ϕ) (3.6)

Theorem 3.7. For XXX ∼ ES(ααα,λ ,ϕ1) and XXX∗ ∼ ES(ααα∗,λ ,ϕ2),

(i) if ϕ1 or ϕ2 is log-convex, and ψ2 ◦ ϕ1 is super-additive, then (α1, . . . ,αn) ≽w (α∗
1 , . . . ,α∗

n )

implies Xn:n ≥st X∗
n:n;

(ii) if ϕ1 or ϕ2 is log-concave, and ψ1 ◦ ϕ2 is super-additive, then (α1, . . . ,αn)
w
≽ (α∗

1 , . . . ,α∗
n )

implies Xn:n ≤st X∗
n:n.

Proof. According to Equation (3.6), Xn:n and X∗
n:n have their respective distributin functions

J(ααα ,λ ,x,ϕ1) and J(ααα∗,λ ,x,ϕ2), for x ≥ 0.
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(i) We only prove the case that ϕ1 is log-convex, and the other case can be finished similarly.
First we show that J(ααα,λ ,x,ϕ1) is decreasing and Schur-concave function of αi, i= 1, . . . ,n.
Since ϕ1 is decreasing, we have

∂J(ααα,λ ,x,ϕ1)

∂αi
= log(G(λx))(G(λx))αi

ϕ ′
1
(

∑n
i=1 ψ1(Gαi(λx))

)
ϕ ′

1

(
ψ1(Gαi(λx))

) ≤ 0,

for all x > 0,

That is, J(ααα,λ ,x,ϕ1) is decreasing in αi for i = 1, . . . ,n. Furthermore, for i ̸= j, the decreas-
ing ϕ1 implies

(αi −α j)
(∂J(ααα ,λ ,x,ϕ1)

∂αi
− ∂J(ααα ,λ ,x,ϕ1)

∂α j

)
=

(αi −α j) log(G(λx))ϕ ′
1
( n

∑
i=1

ψ1(Gαi(λx))
)

(
(G(λx))αi

ϕ ′
1

(
ψ1(Gαi(λx))

) − (G(λx))α j

ϕ ′
1

(
ψ1(Gα j(λx))

))

sgn
=(αi −α j)

(
(G(λx))αi

ϕ ′
1

(
ψ1(Gαi(λx))

) − (G(λx))α j

ϕ ′
1

(
ψ1(Gα j(λx))

)).
where

sgn
= means that both sides have the same sign. Note that the log-convexity of

ϕ1 implies the decreasing property of ϕ1
ϕ ′

1
. Since ψ1(Gαi(x)) is increasing in αi, then

Gαi(x)
ϕ ′

1

(
ψ1((G(x))α

i )
) =

ϕ1(ψ1((G(x))αi))

ϕ ′
1

(
ψ1((G(x))αi)

) is decreasing in ai. So, for i ̸= j,

(αi −α j)
(∂J(ααα ,λ ,x,ϕ1)

∂αi
− ∂J(ααα ,λ ,x,ϕ1)

∂α j

)
≤ 0.

Then Schur-concavity of J(ααα,λ ,x,ϕ1) follows from Theorem 3.A.4. in [28]. According
to Theorem 3.A.8 of [28], ααα ≽w ααα∗ implies J(ααα ,λ ,x,ϕ1) ≤ J(ααα∗,λ ,x,ϕ1). On the other
hand, since ψ2 ◦ ϕ1 is super-additive, by Lemma A.1. of [24], we have J(ααα∗,λ ,x,ϕ1) ≤
J(ααα∗,λ ,x,ϕ2). So, it holds that

J(ααα,λ ,x,ϕ1)≤ J(ααα∗,λ ,x,ϕ1)≤ J(ααα∗,λ ,x,ϕ2).

That is, Xn:n ≥st X∗
n:n.

(ii) We omit its proof due to the similarity to that of Part (i).

Note that Theorem 3.7 for particular case λ = 1 in [14] has been proved.
From Theorem 3.7 (i) and the fact that weak log-majorization implies weak submajorization,

we readily obtain the following corollary.
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Corollary 3.6. For XXX ∼ ES(ααα,λ ,ϕ1) and XXX∗ ∼ ES(ααα∗,λ ,ϕ2),
if ϕ1 or ϕ2 is log-convex, and ψ2◦ϕ1 is super-additive, then (α1, . . . ,αn)≻w

log
(α∗

1 , . . . ,α∗
n ) implies

Xn:n ≤st X∗
n:n.

Letting λ = 1 in Corollary 3.6 leads to the following corollary for PRH samples.

Corollary 3.7. For XXX ∼ PRH(ααα,ϕ1) and XXX∗ ∼ PRH(ααα∗,λ ,ϕ2),
if ϕ1 or ϕ2 is log-convex, and ψ2◦ϕ1 is super-additive, then (α1, . . . ,αn)≻w

log
(α∗

1 , . . . ,α∗
n ) implies

Xn:n ≤st X∗
n:n.

Note that [14] in Theorem 5.2 proved the stochastic order between two largest order statistics
when − logϕ1 or − logϕ2 is log-concave, but according to Corollary 3.7, we do not need to check
the log-concavity of − logϕ1 or − logϕ2 and it is only enough that ϕ1 or ϕ2 be log-convex.

4. Conclusions

We used a new majorization notion, called f -majorization. The new majorization notion includes,
as special cases, the usual majorization, the reciprocal majorization and the p-larger majorization
notions. We provided a comprehensive account of the mathematical properties of the f -majorization
order and gave applications of this order in the context of stochastic comparison of extreme order
statistics.
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