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1.   Introduction 

The estimation of parameters and drawing conclusions based on the estimated parameters is one 

of the important aspects of inferential statistics.  The three-parameter gamma and Weibull 

distributions are commonly used in life time data analysis.  These distributions have many 

desirable statistical properties.  For more information on these distributions see Alexander [1] and 

Jackson [6]. 

 

Mudholkar [9] considered a three-parameter exponentiated Weibull distribution.  This new family 

is suitable for modeling data that indicate non-monotone hazard rates and can be adopted for 

testing goodness of fit of Weibull as a submodel.  It is a right skewed unimodal density function.  

The usefulness and flexibility of the family is illustrated by reanalyzing five classical data sets on 

bus-motor failures. 

 

Gupta [3] proposed special cases of the exponentiated Weibull and exponentiated exponential 

models and compared their performances with the two-parameter gamma family and two-

parameter Weibull family, mainly through data analysis and computer simulations.  For more on 

exponentiated Weibull, beta Gumbel, and beta exponentiated distribution see Nadarajah [10], 

Nadarajah and Kotz [11], Nadarajah and Kotz [12], Nassar and Eissa [13], and Raqab and 

Ahsanullah [14]. 

 

A three-parameter generalized exponential distribution was suggested by Gupta and Kundu [4].  

This distribution is a particular case of the exponentiated Weibull distribution originally proposed 

by Mudholkar, Srivastava, and Freimer [9].  Since its distribution function has closed form the 
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inference based on the censored data can be handled more easily than gamma family.  One of its 

drawbacks being it is less flexible than the other two families for graduating tail thickness. 

 

Recently, Kundu and Gupta [7] introduced the bivariate generalized exponential distribution so 

that the marginal have generalized exponential distributions.  They reanalyzed one set of data and 

the results have shown that the bivariate generalized exponential distribution provides a better fit 

than the bivariate exponential distribution.  

  

Hossain and Ahsanullah [5] introduced a new three-parameter generalized exponential distribution 

that represents a different type of generalization than Gupta and Kundu [4].  This distribution 

approaches a two parameter exponential distribution when the shape parameter approaches zero, 

whereas the distribution in Gupta and Kundu [4] approaches two-parameter exponential if the 

shape parameter approaches one.  

 

In this article we have considered the estimation of parameters of the three-parameter generalized 

exponential distribution introduced by Hossain and Ahsanullah [5] by using the maximum 

likelihood estimation and the method of moments.  A sufficient condition for the existence of 

unique solution for the parameters estimated by the method of moments is derived.  A real time 

numerical example is analyzed and compared with four other similar distributions. 

 

The rest of the article is organized as follows: Section 2 introduces the generalized exponential 

distribution and some its important properties.  In section 3 we described the parameter estimation 

procedure using maximum likelihood method and method of moments.  In section 4 we showed 
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the applications by analyzing a set of real time data and compared the results with similar three-

parameter distributions. 

 

2.   Generalized Exponential Distribution 

 

2.1  Distribution and density functions 

A random variable X is said to have generalized exponential distribution (GE2) if it has the 

following distribution function  
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The corresponding probability density function is given by 
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Hossain and Ahsanullah [5] has showed that  f x is approaches a two-parameter exponential 

distribution when 0  .  Therefore we will limit our discussions on close to zero.  However, 

later discussions will justify that 0 1  . 

 

The generalized exponential distribution introduced by Gupta and Kundu [4] is given by 
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The distribution is a two-parameter exponential distribution when 1  . 

 

To keep a clear distinction between GE2 and the Gupta and Kundu [4], the generalized exponential 

distribution in Gupta and Kundu [4] will be denoted as GE1. 

 

The graphs of probability density function and distribution function for various values of 

parameters , ,  and  are shown in Figure 1 and Figure 2 respectively. 

541

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 3 (September 2018) 537-553



 

 

Figure 1. Plots of probability density function for various values of parameters 

 

Figure 2. Plots of distribution function for various values of parameters 
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3.   Estimation of the Parameters 

 

3.1 Maximum Likelihood Method 

In this section we briefly discuss the maximum likelihood estimators, see Bickel and Docksum 

[2].  Let 1 2, , , nx x x be a random sample of size n from  GE2 , ,   ; then the likelihood function,

 , ,L    , is given by 
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Clearly, the maximum likelihood estimate ̂ of  is 

 1 2
ˆ , , , nMin x x x     if            0 1  .             (1) 

We estimate the parameters  and  by solving the following normal equations 
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It may be arduous to determine the necessary and sufficient conditions for the existence of unique 

solution to the parameters for nonlinear equations.  However, two equations in two variables 

should be solvable with modern technology unless solution does not exist for the parameters.  Note 

that the MLEs exist only if 0 1  . 
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3.2 Method of Moments 

The r-th raw moment of the generalized exponential distribution, Hossain and Ahsanullah [5], is 

given by
 
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, and will be used to determine the raw moments of the 

distribution.  If a parametric family has r parameters, the moment equations are 
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   where  ' |j

jμ E X θ a function of the unknown parameter vectorθ .  

The method of moments estimator, see Bickel and Docksum [2], is the solution to these equations. 

 

Theorem 3.1. The parameters obtained by the method of moments for a  , ,α δ σ generalized 

exponential distribution to have a unique solution, it is sufficient to show that the sample skewness 

is bounded between 0 and 2, that is, 
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Proof. Equating the sample raw moments with the corresponding population raw moments 

(Hossain and Ahsanullah [5]) we obtain the following three equations in terms of the parameters

, ,  and . 
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Solving equations (4) and (5) simultaneously for and , we obtain   
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Substituting and δ from the equations (7) and (8) into the equation (6), we obtain  
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On further simplification, we obtain 
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Now it comes down to solving a non-linear equation in only one unknown parameter . Let
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Equation (10) shows that  f α is decreasing in  if 0K  .  It can be easily shown that  0 1f K    

and   0f   .  Thus,  f α has a unique solution in  if1 0K  .  Therefore, unique solution for 

 exists and can be obtained by solving equation (9) if 0 1K  , that is,  
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  0 < Sample Skewness < 2.  

 

The unique solution for  and δ  can be obtained by solving equations (7) and (8) respectively.  

This completes the proof. 
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4.   Application 

 

4.1 Data Analysis 

In this section we analyze a set of data that arose in tests on the endurance of deep grove ball 

bearings.  They were discussed by Lieblein and Zelen [8], Gupta and Kundu [3], and Gupta and 

Kundu [4].  The data are the number of revolutions in millions before failure for each of the 23 

ball bearings in the life test and they are –  

 

      17.88     28.92     33.00     41.52     42.12     45.60    48.40    51.84    51.96     

      54.12     55.56     67.80     68.64     68.64     68.88    84.12    93.12    98.64 

      105.12   105.84   127.92   128.04   173.40  

 

We have fitted four distributions, namely three-parameter Weibull, three-parameter gamma, and 

three parameter GE1, and three-parameter GE2 to this data set. 

 

4.1.1 ML estimates 

From equation (1) we obtain the ML estimate for location parameter ˆ 17.88δ  .  By solving the 

equations (2) and (3) simultaneously we obtain ML estimates ˆ 0.4341α  and ˆ 77.33σ  .    

 

4.1.2 Method of moments estimates 

The sufficient condition for the existence of unique solution is given by
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Therefore, satisfies the condition of Theorem 1 for unique solution of all three parameters.  Solving 

equations (4) and (5) for δ and in terms of , and substituting these in equation (6), we obtain 
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
.                (11)  

 

Solving equation (11) for and substituting back into equations (7) and (8) we obtain the estimated 

parameters: ˆ 0.2957α  , ˆ 59.9330σ  , and ˆ 25.9650  . 

 

The following TABLE 1 appends the ML estimates of parameters, chi-squared statistics, and the 

Kolmogorov-Smirnov (K-S) statistics of four three-parameter distributions and the moments 

estimate of parameters for GE2.  The TABLE 2 shows the observed and the expected frequencies.  

All the distributions fit well to this popular data set.  The moment estimates of parameters of GE2 

performed better than the other three-parameter distributions with ML estimated parameters except 

for GE1.  The GE1 distribution fitted marginally better than GE2 for this data set. 
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TABLE 1 

Estimates of parameters for similar three-parameter distributions 

 

  

  

  

  

  

 

 

 

TABLE 2 

Observed and expected frequencies 

  

 

 

 

 

 

 

 

 

 

 

 
̂  ̂  ̂  

2χ  K – S 

Gamma (MLE) 

Weibull (MLE) 

GE1 (MLE) 

GE2(MLE) 

GE2(Moments) 

2.7316 

1.5979 

4.1658 

0.4341 

0.2957 

0.0441 

0.0156 

0.0314 

77.3300 

59.9330 

10.2583 

14.8479 

4.7476 

17.8800 

25.9650 

0.950 

1.321 

0.675 

4.289 

1.557 

0.107 

0.118 

0.103 

0.112 

0.185 

Intervals Observed Gamma Weibull   GE1 GE2(Moments) GE2(ML) 

0 – 40 

40 – 80 

80 – 120 

120 – 160 

160 – 200 

3 

12 

5 

2 

1 

4.493 

10.658 

5.423 

1.805 

0.621 

4.738 

10.016 

5.627 

1.992 

0.627 

4.322 

10.913 

5.303 

1.739 

0.723 

4.956 

9.984 

5.268 

2.201 

0.560 

6. 053 

8. 382 

5. 331 

2. 655 

0.381 
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  (a)          (b) 

 

 

 

                         
                                                                          (c) 

 

Figure 3. Plots of (a) estimated probability density function, (b) estimated distribution function, 

and (c) expected values under different models and observed values. 
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5.   Conclusion 

This paper offers a new family of three-parameter generalized exponential distribution.  The 

distribution can be used as an alternative to analyzing skewed data.  Since the distribution function 

is in closed form, the inference based on the censored data can be handled by this model more 

easily than the gamma family distributions. 

 

The model is bounded on both sides by positive values and has an increasing hazard rate function.  

This makes the model suitable for demographers and actuaries to determine the force of mortality 

for older age groups. 

 

The Generalized exponential distribution (GE2) is a right skewed unimodal density function.  Its 

hazard function is monotonically increasing for 0 1  .  The one real life example used in this 

article shows that this distribution can quite effectively be used to analyze lifetime data in place of 

generalized gamma, generalized Weibull and generalized exponential (GE1) distributions.  This 

three-parameter GE2 distribution is always as flexible as the three-parameter GE1, Weibull or 

gamma distributions. 
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