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Abstract 

Sanitary porcelain products might have several defects, causing potential high-grade 
desirable products be converted into low-grade ones.  Some of the defects are such that 
a few of them in the products will result in a great fall of product rating and consequently 
reduction of its value and price. Among these defects is a defect called pinhole.                  
In this article, it has been tried to identify, from a list of factors, the most influential 
factors of the production process which cause the pinhole defect affecting the product 
rating. It then tries to present a prediction model for the number of pinholes.  For this 
purpose, initially seven factors were chosen to help presenting a suitable prediction 
model and several statistical tools and artificial intelligence prediction tools were 
investigated to present a suitable prediction model.  The presented model could be used 
by the company to enhance the product rating through choosing right value for the right 
factors causing the pinhole defect and to decrease the wastes  and the expenditures. 

Keywords:  sanitary porcelain, pinhole, artificial neural networks, regression, correlation coefficient 

1.Introduction 

Defects in sanitary-ware products affect the quality (rating) of the products and the factory expenditures . 
If we can predict the defects through a model, we would be able to predict the rating, to enhance the 
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quality and to reduce the wastes and expenditures,  by choosing right amounts for the factors participating 
in the model. Several defects (blisters, pinholes, specks, stuck, cracks, deformation, green spots,�)  may 
be found in sanitary porcelains which tend to reduce the rating of these products.   Some of these defects 
are identified before the baking phase� �and some are identified after the phase.� �The defective products 
with defects identifiable after the baking phase�are not suitable for reproduction   pinholes, which are 
quality flaw appearing as small holes in the fired glaze surface,  are among the defects which could be 
identified after baking phase. 

   

                                                                    Fig. 1.  Pinholes in a  
sanitary-ware product 

 
This defect might occur on all part of the surface of sanitary-ware products.  Figure 1 shows  a surface 
having this flaw. A survey performed in Isatis sanitary porcelain manufacturing co., Yazd, Iran shows 
that 10.5% of the defective products is due to 'pinhole' flaw and causes severe losses to the manufacturer;  
due to this reason the manufacturer decided to do a research on pinhole[1].  The present article is based on 
the research. The manufacturing company would like to know if there is a relationship between "the 
number of pinholes in the products" and some factors such as the followings: 
Glaze viscosity(V) 
Surface  tension of raw material(ST) 
Speed of reaching the maximum temperature(SMT) 
Glaze cooling speed(SC) 
The maximum temperature of the furnace (MT) 
Abrasion of Glaze raw materials(AG)  
glaze dying time(TD) 
curvature(S=smooth or C =curved) 
The purpose of the present research is to find  the key factors (if any) causing the pinhole phenomena 
from the above list and,  using the key factors as input,  to present a model for predicting the number 
pinholes in the product and thereby predicting the rating  of the products with pinholes. If a suitable 
model is reached, the quality of the products could be improved by modifying the factors and  the plant 
expenditures be decreased. This research is based on [1] and our literature survey did not result in any 
significant work in the prediction of pinhole defect; therefore this research could be regarded a new one. 
However [2] and [3] are helpful references for understanding some concepts regarding ceramics and  
component analysis used in this research. 
 
2. Data 

The data for this research is obtained from producing  42 curved and 122 smooth specimens  with 
dimension of nearly 10cmൈ10cm at Istatis sanitary-ware plant located in Yazd, Iran with different values 
for V, ST, SMT, MT, AG & TD.  Table 1 shows the mean of the values used for   V, ST, SMT, MT, AG 
& TD variables and the mean number of pinholes created in 164 specimen as well as some  other 
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information (minimum, maximum, median, range, standard deviation) about the mentioned features. 
 
 
 

Table 1 mean, median, minimum, maximum, range, standard deviation of the initial data 
Feature 

(dimension) 
Curvature Mean Median Minimum Maximum Range Std. Dev. 

V 
(poise) 

S 138.459 137.00 111.00 181.00 80.000 16.965 

C 139.357 139.00 111.50 191.00 89.500 24.697 

ALL 138.689 137.50 111.00 191.00 90.000 19.163 

ST 
(G) 

S 4.558 4.575 3.33000 5.680 2.350 0.396 

C 4.784 4.825 2.79000 6.840 4.050 0.877 

ALL 4.616 4.605 2.79000 6.840 4.050 0.565 

SMT 
(minute) 

S 312.746 312.80 309.00 315.800 6.800 1.250 

C 313.371 313.25 307.70 318.800 11.10 2.250 

ALL 312.906 312.90 307.70 308.800 1.10 1.584 

SC 
(minute) 

S 438.302 438.40 428.00 447.000 19.00 3.108 

C 439.867 439.45 424.100 453.000 29.90 5.994 

ALL 438.703 438.65 424.100 453.000 29.90 4.084 

MT 
(centigrade) 

S 1084.468 1085.45  1061.100 1094.000 33 6.416 

C 1084.160 1083.50 1064.20 1109.000 45 8.681 

ALL 1084.389 1084.800 1061.10 1109.000 48 7.038 

AG 
(mesh) 

S 2.80 2.87 1.84 3.16 1.32 2.633 

C 2.81 2.80 2.02 3.69 1.67 3.09 

ALL 2.80 02.84 1.84 3.69 1.85 2.74 

TD 
(second) 

S 133.211 133.300 130.20 135.90 5.700 1.906 

C 133.479 133.550 131.40 135.40 4.00 1.89 

ALL 133.280 133.350 130.20 135.90 5.70 1.90 

Pinhole 
S 7.21 4.46 0 40 40 7.62 

C 10.55 7.16 1 29 28 7.63 

ALL 8.87 5.97 0 40 40 7.69 

 

2.1 Initial evaluation of data 

Figure 2 shows the probability plot the number of pinholes in both curved (C)  and smooth (S) specimens.   
According to the figure  the pinhole data are not normally distributed. 
An  algorithm called Johnson  transformation was applied on the pinhole data.  The resulted data is 
referred as  J-pinhole.  As  the normal probability  plot  of J-pinhole in  Fig. 3  shows,  the J-pinhole data 
is normally distributed. 
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                          Fig. 2.  Normal probability plot for the pinholes in the sample

 

��
                       
                     Fig. 3. Normal probability plot for 
                       pinholes in the specimens  after applying Johnson  transformation)
 
A fit of  linear regression model including  all variable
of  pinholes  showed that the model is not appropriate
 
A stepwise regression model was then applied to J
correlation  coefficient was 11%
 

Normal probability plot for the pinholes in the sample 

Normal probability plot for J-pinhole data (i.e. the number of 
pinholes in the specimens  after applying Johnson  transformation) 

A fit of  linear regression model including  all variables  i.e. V, ST, SMT, MT, AG, TD to predict number 
of  pinholes  showed that the model is not appropriate for the pinhole data. 

model was then applied to J-pinhole data.  Table 2 shows the result
11% which is not acceptable. 

 

the number of  
 

SMT, MT, AG, TD to predict number 

 shows the result.   The model 
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Table 2   Stepwise Regression: J_Pinhole versus V, ST, 

 
 
 
 
 
SMT                  0.148 
T-Value               3.08 
P-Value              0.002 
 

S                      0.981    0.957 
R-Sq                7.97    13.12 
R-Sq(adj)         6.83    11.50 
Mallows Cp     16.1      8.4 
 

   
Alpha-to-Enter: 0.15  Alpha-to-Remove: 0.15 
 
Response is J_Pinhole on 8 predictors, with N = 164 
 

Step                   1        2 
Constant    -0.1354  -2.1142 
 

V                0.0113   0.0113 
T-Value        2.82     2.90 
P-Value       0.005    0.004 
 

CURVE-       -0.42    -0.33 
T-Value       -2.39    -1.89 
P-Value       0.018    0.061 

 
These two experiments indicate either the relationship between pinhole data as the response versus V, ST, 
SMT,�. is not linear or some other variables should be considered or stronger tools are needed to model 
the relationship.  
In the rest of this research J-pinhole data which are normally distributed are used.  
 
What follows is about the effect of curvature on the number of pinholes. 
The relationship between curvature and pinholes 
To study the effect of curvature on the number of pinholes the following  2 tests of hypothesis were 
performed on the smooth and curved specimens:  
  
   A)a  two sided F-test for the equality of  the variance of J-pinhole data concerning curved surface   
       and  the variance of J-pinhole data concerning smooth surface;         
 

   B)a two sided t-test for the equality of  the mean of J-pinhole data concerning curved surface             
and  the  mean of J-pinhole data concerning smooth surface. 
We were allowed to perform the F-test & t-test on the J-pinholes data, because these data were proved to 
be normally distributed.  Tables 3 &4 shows the results 
 

Table 3  F-test for the equality of variances of J_Pinholes in the   smoothed and curved surfaces 
A) Test and CI for Two Variances: J_Pinhole vs Curve 

Method 
Null hypothesis         Sigma(S) / Sigma(C) = 1 
Alternative hypothesis  Sigma(S) / Sigma(C) not = 1 
Significance level      Alpha = 0.05 
 
Statistics 
curve     N    St. Dev    Variance 
s          122     1.021     1.043 
c          42      0.944      0.891 
Ratio of standard deviations = 1.082 

Ratio of variances = 1.171 

 
 
 
 
95% Confidence Intervals 
  CI for 
Distribution CI for StDe  Variance 
of Data           Ratio                      Ratio 
Normal          (0.827, 1.372)  (0.684, 1.882) 
Continuous    (0.833, 1.492)  (0.695, 2.227) 

 
Tests 
Test Method               ����������������� DF1  DF2  Statistic  P-Value 
F Test (normal)   �������������������������121 � 41     1.17    �����0.571 
Levene's Test (any continuous)    1  ���162      0.72 �����   0.397 
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From Table 3 it could be concluded that curvature does not increase or decrease the variance of the 
number of pinholes. 
 

Table 4   t-test for the equality of mean  of J_Pinholes in the smoothed and curved surfaces 
B) Two-Sample t-test and CI: J_Pinhole, curvature  

 
Cur.    N        Mean    St Dev    SE Mean 
s      122  -0.12   1.02    0.092 
c       42  0.310  0.944     0.15 
Difference = mu (s) - mu (c) 
Estimate for difference:  -0.431 
95% CI for difference:  (-0.785, -0.076) 
T-Test of difference = 0 (vs not =): T-Value = -2.40  P-Value = 0.017  DF = 162 
Both use Pooled StDev = 1.0023 

 
The  t-test  of  Table 4 indicate that, on the average, the surface curvature causes more pinholes in 
comparison to the surface smoothness.  
Are  variables V, ST, SMT, MT, AG, TD normally distributed ?  
Utilizing Anderson-Darling test show that some of the variables are normally distributed and some not.  
The result of the test for both curved and smooth cases is shown in Table 5. 
 
 

Table 5  The status of the  normality of the distribution of variables 
Feature V ST SMT SC MT AG TD 
smooth     - - - 
curved     - -  

  
As Table 5 indicates the variables MT, AG are not normally distributed for both cases (smooth& curved) 
and TD is not normally distributed for smooth case. As stated earlier, J- pinhole data i.e. the results of 
Johnson transformation on the pinhole data will be used throughout this research.  
 
3.  Description of the method 
 
The steps carried out during our research is as follows: 
 
 

3.1. Step 1:    Evaluation of   data-detection  of outlier data 
 
 

In this phase of  step 1 the outliers are detected in the multivariate data.  Pair-wise scatter plots will not 
work as it is possible for an outlier to exist in all dimensions but not an outlier in any of the 2 dimensional 
subspaces.  
 It is important to realize, cases which are multivariate outliers may not necessarily be univariate outliers.  
In other words being an outlier on one of the variables under consideration is not necessarily a 
multivariate outlier. 
One of the best ways to check for multivariate outliers is through Mahalanobis� distance.   Mahalanobis� 
distance accounts for the different scale and the variance of each of the variables in a probabilistic way; in 
other words, if one considers the probability of a case being a member of the multivariate distribution, 
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then one must account for the density function, or standard deviation, of each variable in the multivariate 
set.   Minitab 16 which does such a multivariate outliers detection resulted in Fig.4. 
 
One smooth specimen which had too much Mahalanobis� distance was excluded from 164 (122 smooth 
+42 curved)  pieces and Table 1 was updated into  Table 6 according to the remaining 121 and 42 pieces.    
 
   

Table 6  ( revised  Table 1) Data for model development 
Feature 

(dimension) 
Curve Mean Median Minimum Maximum Range Std. Dev. 

V 
(poise) 

S 138.34 137.00 101.00 181.0000 80.00 16.99 
C 139.35 139.00 101.500 191.0000 89.50 24.69 

ALL 138.60 137.00 101.000 191.0000 90.00 19.19 

ST 
(G) 

S 4.55 4.57 3.3300 5.6800 2.35 0.39443 
C 4.78 4.82 2.790 6.8400 4.05 0.87 

ALL 4.61 4.60 2.790 6.8400 4.05 0.56 

SMT 
(minute) 

S 312.72 312.80 309.00 315.8000 6.80 1.23 
C 313.37 313.25 307.70 318.8000 11.10 12.25 

ALL 312.89 312.90 307.70 318.8000 11.10 11.58 

SC 
(minute) 

S 438.30 438.40 428.00 447.0000 19.00 13.12 
C 439.86 439.45 424.10 453.0000 28.90 15.99 

ALL 438.70 438.70 424.10 453.0000 28.90 14.09 

MT 
(centigrade) 

S 1084.46 1085.50 1061.10 1094.0000 32.90 6.44 
C 1084.15 1083.50 1064.20 1109.0000 44.80 8.68 

ALL 1084.38 1084.80 1061.10 1109.0000 47.90 7.05 

AG 
(mesh) 

S 2.80 2.87 1.84 3.16 1.32 0.26 
C 2.81 2.80 2.02 3.69 1.67 0.30 

ALL 2.80 2.84 1.84 3.69 1.85 0.27 

TD 
(second) 

S 133.20 133.30 130.20 135.90 5.70 1.90 
C 133.47 133.55 131.40 135.40 4.0 1.89 

ALL 133.27 133.30 130.20 135.90 5.70 1.90 

Pinhole 
S 7.47 5.10 4 40 36 7.64 
C 10.08 7.80 4 29 25 7.63 

ALL 8.144 5.80 4 40 36 7.70 
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                        Fig. 4. Mahalanobis interval for the factors causing pinhole defect
 
 3.1.1 The relationship between
 
 The scatter plot of J-pinhole versus
are given in the  matrix plot shown in
the black cycle for smooth specimens
As Fig. 5 shows AG & MT, and also 
 

     

                Fig. 5. Matrix plot  of  

 
Mahalanobis interval for the factors causing pinhole defect 

between variables V, ST, SMT, MT, AG, TD� and  J-

versus individual variables as well as scatter plot of every 
shown in Fig. 5.  The red cycle  have been used for curved specimens 

for smooth specimens. 
and also SC&SMT are strongly linearly correlated. 

 
Matrix plot  of  V, ST, SMT,SC, MT, AG, TD� and J-pinhole 

 

 

- pinhole 

as well as scatter plot of every pair  of  variables  
been used for curved specimens  and 
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Table 7 shows the correlation coefficient ( R) between the J-pinhole and individual variables as well as 
between each pair of  the variables, calculated using SPSS software. 
 

Table 7  Correlation coefficients(R)��
Correlations V ST SMT SC MT AG TD 

ST -0.176 
SMT -0.004 0.666 
SC -0.001 0.733 0.983 
MT 0.263 -0.549 0.227 0.153 
AG 0.219 -0.43 0.376 0.274 0.97 
TD 0.004 0.109 0.667 0.523 0.462 0.658 

J-Pinhole 0.219 0.168 0.26 0.251 0.09 0.135 0.178 
 

 
3.1.2 Problem Dimension reduction 
 
As the last row of Table 7 shows, J-pinhole has the greatest  correlation  with SMT and the least 
correlation with MT.  There are several filtering (feature selection) approaches to removing irrelevant 
data, eliminating redundant features from a set of features and reducing the number of features or 
variables.  Correlation-based Feature Selection (CFS), Principal Component Analysis (PCA), Fast 
Correlation  based  Feature selection , Gain Ratio Attribute Evaluation, Chi-square Feature Selection, Fast 
Information-Gain-Ratio Feature selection, and  Markov Blanket Filter  are among the feature selection 
techniques proposed by researchers for feature selection .   In this research, CFS and PCA were utilized 
for finding the principal components of data and reducing the problem dimension. 
 
Some softwares  such as MINITAB have  the capability of  reducing the number of variables of the 
problem utilizing Principal component analysis (PCA ) tool.  For the variables causing pinhole defect, 
MINITAB was used to do the analysis.  Table 8 shows the result of the analysis. 
 

Table 8  Principal component analysis (PCA ) 

Principal Component Analysis on Factors : V, ST, SMT, SC, MT, AG, TD 
 

Eigen analysis of the Correlation Matrix 
Eigen  value 3.1892   2.4881   0.9361   0.3745   0.0095   0.0022   0.0005 
Proportion 0.456 0.355      0.134     0.053      0.001      0.000      0.000 
Cumulative 0.456     0.811      0.945     0.998      1.000      1.000      1.000      

        
Variable PC1 PC2  PC3  PC4 PC5  PC6 PC7  

V 0.066 0.221   -0.953    0.197     -0.001   -0.005     -0.000 
ST 0.166      -0.598   -0.134     -0.034     -0.762    0.124      0.016 

SMT 0.507 -0.263   -0.046 0.106      -0.279   -0.404     0.647 
SC 0.469      -0.316   -0.109     -0.322     0.412    0.252     -0.576 
MT 0.330      0.487    0.051     -0.398     -0.199    0.587      0.330 
AG 0.406      0.428    0.104     -0.130     -0.364   -0.594     -0.372 
TD 0.466      0.068    0.216      0.818      0.013    0.245    -0.040 

 

��
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The first  4  variables  i.e. V, ST, SMT, SC were selected using PCA. 
The data of V, ST, SMT, SC  as well as curvature and J-pinhole  data are identified as �PCA data set�. 
 
Some softwares, such as WEKA, do CFS study to reduce a problem dimension.  Table 9 shows the result 
of applying this study on our problem. 

 
 
 
 
 
 
 

��
 
 
 
 
 
 
 
 
 
 
 

 
This  CFS study  selects variables  V, SMT as well as curvature as the principal characteristics causing 
pinhole flaw in the products of  Isatis sanitary-ware plant.  V, SMT as well as curvature and J-pinhole  
data are identified as �CFS data set�. 
 
3.2 Step 2:    Data  pre-processing 
 
The  other variables are modified according the following relationship: 
   

)min()max(
)min(*

XX

XX
X




  

 
Curvature is a  an attribute and not a variable.  Using the following indicator, we could change our only 
qualitative attribute in this study i.e. curvature into a variable: 
 
� ൌ ቄͳ������������������������������Ͳ��������������������������������    
 
3.3 Step 3:  Choosing right variables for the regressors 
In this research neural network and regression modeling are used to predict the number of  pinholes in the 
products. 

Table 9  A correlation-based feature selection (CFS) )  on factors causing pinholes 

>>>>>>>> 
=== Attribute Selection on all input data === 
 
Search Method: 
 Best first. 
 Start set: no attributes 
 Search direction: forward 
 Stale search after 5 node expansions 
 Total number of subsets evaluated: 39 
 Merit of best subset found:    0.287 
 
Attribute Subset Evaluator (supervised, Class 
(numeric): 9 J_Pinhole): 
 CFS Subset Evaluator 
 Including locally predictive attributes 
 
Selected attributes: 1,2,4 : 3 
                     V 
                     Curve 
                     SMT 

=== Run information === 
 
Evaluator:    
weka.attributeSelection.CfsSubsetEval  
Search:       weka.attributeSelection.BestFirst -D 
1 -N 5 
Relation:     FINAL-
weka.filters.unsupervised.attribute.Remove-R9-10 
Instances:    163 
Attributes:   9 
              V 
              Curve 
              ST 
              SMT 
              SC 
              MT 
              AG 
              TD 
              J_Pinhole 
Evaluation mode:    evaluate on all training data 
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We have identified 3 sets of data so far
and J-pinhole ," PCA data set"   
chosen for modeling. 
Using  3 sets of data, several multi
regression neural networks (GRNN
model was calculated using the mean squared error(MSE)
observed set of data and the corresponding set predicted by the model.
 
 

Table 

GRNN  

R MSE Data 
set 

0.2891850.80835 Full 
0.296010.78939 PCA 

0.3162230.52889 CFS 
 
 
Table  10 shows that the RBF neural networks used for the research produced poor 
therefore  it was excluded. 
 
Figure 6 shows the coefficient of variation
regressor and different inputs.   
full set, as evident from MSE and R  indices.

 

��
 
                        Fig. 6.  Correlation coefficient for  different repressors using different 
 
More study lead to choosing MLP  and 
following inputs for entering the next step. 

 

˹

˹̄˺

˹̄˻

˹̄˼

˹̄̊

Additive 
Regression

 sets of data so far:  Full set data including V, ST, SMT, SC, MT, AG, TD
 and  "CFS data set".   In step 3 we will try to find which 

everal multi-layer perception  (MLP), Radial Basis Functions(RBF), generalized 
(GRNN ) were trained as well as Additive Regression 

model was calculated using the mean squared error(MSE) and also  correlation coefficient (R) of 
observed set of data and the corresponding set predicted by the model.  Table 10 shows the result

Table 10  Comparison  of  the efficiency of  different models 

RBF MLP 

MSER MSE R MSE  

1.0068120.0402 1.055551 0.2344 1.165752 0.289185 
0.0437650.1412 0.037018 0.2586 0.041047 0.29601 
0.9755510.0308 1.061724 0.205 1.12169281 0.316223 

the RBF neural networks used for the research produced poor 

shows the coefficient of variation between observed and predicted pinhole data 
   The PCA and  CFS sets of data produced better results  compared to the  

full set, as evident from MSE and R  indices. 

Correlation coefficient for  different repressors using different 

MLP  and GRNN  networks as well as Additive Regression with the 
puts for entering the next step.

Additive 
Regression

RBF MLP GRNN

Full PCA CFS

data including V, ST, SMT, SC, MT, AG, TD, curvature  
 we will try to find which set(s) should be 

layer perception  (MLP), Radial Basis Functions(RBF), generalized 
as well as Additive Regression . The efficiency of the 

on coefficient (R) of  the 
 shows the result.   

Additive 
Regression 

R MSE 

0.3343 1.006812 
0.1737 0.043765 
0.3262 0.975551 

the RBF neural networks used for the research produced poor correlation coefficient; 

between observed and predicted pinhole data  using  different 
The PCA and  CFS sets of data produced better results  compared to the  

Correlation coefficient for  different repressors using different input sets  

Additive Regression with the 

GRNN
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��

3.4 Step 4: Training 
 
MATLAB was used to train GRN
by  WEKA.   To train the regressor networks each data set were divided into two 
training and a subset for testing the  regressor 
modeling tools was determined by R and MSE 

��

MLP (PCA) 
Additive regression 

(PCA)��
Additive regression 

(CFS)��
GRNN (CFS)��

 Fig 7.  Correlation coefficient of  observed and 
predicted data  for  different regressors                                          

Table 11 Inputs suitable for the modeling tools��
Input data set  regressor 

PCA CFS 
  MLP 
  Additive regression��
  GRNN 

MATLAB was used to train GRNN.   MLP was trained with WEKA .  Additive regression was applied 
the regressor networks each data set were divided into two 

set for testing the  regressor  with the  proportion of  2 to 1.   The efficiency of the 
was determined by R and MSE as shown in Table 12 and figures 7

Table 12   Efficiency of the  3 modeling tool 
R(%) MSE��

training test training 
57.68 0.975946 0.731367 

 
67.79 

 
1.197711 

 
0.569119 

Additive regression 

 
58.49 

 
0.957601 

 
0.912579 

Additive regression 

88 0.9119 0.246 
 
��

Fig 8. Mean squared error of  observed and predicted 
data  for different regressors��

Correlation coefficient of  observed and         
predicted data  for  different regressors                                          

��

��

Additive regression was applied 
the regressor networks each data set were divided into two subsets  i.e. a subset for 

The efficiency of the 3 
7&8.

R(%)
test 

42.47 
 

36.90 
 

0.49.75 
20 

Mean squared error of  observed and predicted 
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  GRNN correlation coefficient for the training data  
might be due to over-fitting .  Th
training and the test data sets.  This observation lead in the  exclusion 
one could make a similar argument for 
exclude it  because  the way it has  

 
3.5 Combination of the regressors
 
In this phase of step 4, the weighted average
and  the pair with the  better R & MSE is determined
are the  plots for showing how efficiency varies with  the
"MLP(PCA)+Additive Regression (PCA)"  
The best MSE occurs   at weight 
The best R       occurs   at weight 
 
          
 
 

 
Fig. 9. The efficiency versus weight for 
"MLP+Additive regression" (PCA)
 
 
Table 13 shows the result of identifying the weights with the best efficiency based on R and MSE
different combinations. 
 
 
 
 
 
 
 
 
 
 

GRNN correlation coefficient for the training data  is high, while this index for t
This inference could also  be made  from evaluating the  MSE for the 
This observation lead in the  exclusion of  the GRNN network.  Although 

could make a similar argument for Additive Regression (with PCA data set as input
the way it has dealt  with the test data is not that different from the other methods

Combination of the regressors 

weighted average of the results of each two different regressors  
better R & MSE is determined.   Various weights were  tested

plots for showing how efficiency varies with  the weight for  one combination
"MLP(PCA)+Additive Regression (PCA)"  as an example .  

he best MSE occurs   at weight=0.28 for the training data  and  weight=0.76 for 
occurs   at weight=0.28 for the  training data  and  weight=0.66 for 

The efficiency versus weight for 
"MLP+Additive regression" (PCA)-training data 

Fig. 10. The efficiency versus 
"MLP+Additive regression" (PCA)
 

shows the result of identifying the weights with the best efficiency based on R and MSE

test data is low; which 
from evaluating the  MSE for the 

the GRNN network.  Although 
data set as input); but we do not 

t from the other methods.  

different regressors  is calculated  
tested.  Figures 9 and 10 

combination i.e.  

 for the test  data. 
 for the test  data.

 

The efficiency versus weight for  
"MLP+Additive regression" (PCA)-test data 

shows the result of identifying the weights with the best efficiency based on R and MSE, for 3 
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Table  ��
R(%) 

training Combined 
 regressors 

70.19 MLP 
(PCA) 

Additive 
Regressi
on (PCA) 

63.13 MLP 
(PCA) 

Additive 
Regressi
on (CFS) 

70.14 
Additive 
Regressio
n (PCA) 

Additive 
Regressi
on (CFS) 
*the weights in Table 13 corresponds to the regr

 
Figure 11 compares R for the ��

 

Fig. 11
                                            predicted data for combination of regressors

 
Our  criteria for  choosing  the suitable combination is having  relative high efficiency based on R & MSE 
and  the closeness of the R & MSE  
choosing  the combination of MLP 
analysis, which has the best results among the combination 

 
 Table  14  shows that the efficiency of the combination  of the 
of the individuals. 

Table  13  The efficiency of  combined regressors *
MSE weight (%) 

training test training test 

0.9525350.5407454
41 0.66 0.28 44.07 

0.8391460.6348606
5 0.20 0.40 50.72 

0.7956230.5538054
9 0.55 0.64 47.26 

corresponds to the regressor colored in gray. 

 compares R for the 3 combinations.

 
11   Correlation coefficient of the observed and 

predicted data for combination of regressors 
��

ng  the suitable combination is having  relative high efficiency based on R & MSE 
R & MSE  for training data set   with those  for the test data set

MLP  and the additive regression with  the input obtained from CFS 
has the best results among the combinations.  

shows that the efficiency of the combination  of the 2 regressors   is better than t

weight 

test training test 

0.76 0.28 0.952535 

0.07 0.44 0.839146 

0.73 0.75 0.795623 

ng  the suitable combination is having  relative high efficiency based on R & MSE 
test data set.  This lead us in 

th  the input obtained from CFS 

is better than the efficiency 
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��
 

 
Table 14   Comparison  of the chosen combination and the  components 

R (%) MSE ��
test  training test  training  

50.72 63.13 0.839146 0.63486065 
Additive regression (CFS) 

+��
MLP (PCA)  

42.47 57.68 0.975946 0.731367 MLP (PCA) 
49.75 58.49 0.957601 0.912579 Additive regression (CFS) 

 
 
According to the result of  CFS analysis  V,SMT as well as curvature have  the most influence on the  
number of pinholes ,and according to the PCA  analysis  V, ST, SMT, SC  as well as curvature are the 
most influential variables. 
Based on a sensitivity analysis SMT is the most influential variable affecting the  number of pinholes. 
 
 
Conclusions 
This research shows that  
 

1)  In the production process  of  sanitary-ware  products at  Isatis sanitary porcelain plant,Yazd, 
Iran , Glaze viscosity (V)  and the  speed of reaching the maximum temperature (SMT) as well  as 
curvature  (as opposed to smoothness  of the product) and also the surface  tension of raw 
material (ST)and glaze cooling speed (SC) are the most influential characteristics affecting the 
number of pinholes occurring in the finished  product of the plant.     

 
2) Multilayer perception neural networks and additive regression proved to be efficient in predicting 

the number of pinholes and thereby  the rating of  the product.  Trial and error with giving 
different values for the input variables of  these  models could yield  a design the production 
design experiment which could  result in  low wastes  and reduction of costs. 

 
 For future research, other  factors (other than V, ST, SMT, MT, AG & TD as well as curvature)  might be 
studied and other modeling tools  such as other  neural networks might be tested. 
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