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Abstract—In adaptive medical ultrasound imaging, the 
performance of the adaptive beamformer directly depends on the 
estimation of the spatial characteristic of the noise and 
interferences. Accurate estimation of the array covariance matrix 
leads to significant improvement in image quality compared with 
non-adaptive delay-and-sum (DAS) beamformers. Most of the 
techniques have been employed to get a good estimation of array 
covariance matrix are based on spatial smoothing and diagonal 
loading. In this paper, spatial smoothing with data dependent 
weighting has been applied for array covariance matrix 
estimation, which is then employed in minimum variance (MV) 
weights calculation. The adaptive weighting spatial smoothing 
(AWSS) MV beamformer utilizes forward-backward averaging 
and data dependent weights to make the estimated array 
covariance matrix as close to Toeplitz matrix as possible. Using 
AWSS beamformer instead of the normal forward-only 
beamformers leads to more accurate estimation of the array 
covariance matrix, significantly improve the imaging resolution 
and contrast without the need for temporal smoothing and 
diagonal loading. The performance of the proposed approach is 
demonstrated by several simulated examples.  

Keywords—ultrasound imaging; adaptive beamforming; spatial 
smoothing; minimum variance 

I. INTRODUCTION 

In medical ultrasound imaging, reducing the destructive 
contribution of the off-axis echoes, originating from off-axis 
targets, can result in images with enhanced resolution and 
contrast. The off-axis echoes elimination capabilities of image 
array depends on the number of array elements and their 
weights. Delay-and-sum (DAS) beamforming is the standard 
technique in medical ultrasound imaging. As predetermined 
weights are used to construct the echo signal originating from 
the main target, the beamformed signals have a wide the 
mainlobe and large sidelobe levels. This means DAS 
beamformer has poor resolution and weak suppression of 
interference signals. The sidelobe of the DAS beamformer can 
be controlled using aperture shading, but this increases the 
mainlobe width. In other word, applying DAS beamformer in 
medical ultrasound imaging results in enhanced contrast at the 
expense of resolution. In contrast to DAS beamformer,  

Adaptive beamforming technique uses the estimation of 
spatial characteristics of noise and interferences to calculate 
the aperture weight vector. The weights of adaptive 
beamformers are data-dependent and time-varying. Thus, it 
can suppress off-axis echoes effectively and lead to 
simultaneous improvement in resolution and contrast [1]. 

Adaptive beamformer have been applied to medical 
ultrasound imaging by several researchers, and demonstrated 
improved imaging contrast and resolution compared with DAS 
beamformer in the past years [2]. Mann and Wallker [3] first 
applied a constrained adaptive beamformer on experimental 
data of a single-point and a cyst phantom, showing improved 
resolution and contrast. Synnevag et al. [4] applied adaptive 
beamformer on both simulated and experimental data and 
showed that adaptive beamformer outperforms DAS in terms 
of contrast and resolution. Recently, the combination of the 
MV beamformer and coherence factor (CF) weighting has 
been applied to ultrasound data and demonstrated the 
effectiveness in simultaneous improvement of imaging 
resolution and contrast [5]. 

Most of the above adaptive beamformers are based on the 
minimum variance (MV) beamforming theory devised by 
Capon. The weights of MV beamformer are computed by 
minimizing the power of beamformer outputs subject to the 
constraint that the beamformer must gives a constant response 
in the look-direction. Under the assumption that the signals of 
interest must not be correlated with the noise and interference 
and sufficient statistical information is available to form a 
robust covariance matrix, the weights of MV beamformer are 
optimum. Unfortunately, these constrains are not satisfied in 
medical ultrasound imaging and several measures must be 
taken to enhance the image quality. Thus, spatial smoothing, 
diagonal loading and temporal averaging are combined to 
obtain an accurate estimation of the array covariance matrix 
before applying MV method on returned echoes [6]. In [7], 
spatial smoothing (SS) was applied to medical ultrasound 
imaging to decorrelate the strongly correlated returned echoes 
and get a more robust estimation of array covariance matrix. 
In [8], diagonal loading (DL) and temporal smoothing 
techniques were employed to make the MV method be robust 
to parameter mismatch and have speckle that resembles that of 
conventional imaging. 

In this paper, we apply adaptive spatial smoothing 
beamformer to medical ultrasound imaging. By simulation 
examples, we show that our proposed method properly 
satisfied with the medical ultrasound limitations and results in 
simultaneously improvement of imaging resolution, contrast 
and sidelobes, outperforms both MV and DAS beamformers. 
We use adaptive weighting spatial smoothing (AWSS), instead 
of the conventional forward only (F-only) spatial smoothing to 
obtain a more accurate estimation of array covariance matrix, 
which is needed for computing the optimum weights of MV 
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beamformer. In addition, we show that when we use AFB 
weights instead of MV weights, the signal cancellation can be 
effectively mitigated and the proposed beamformer is less 
depend on the choice of model parameters, such as the amount 
of diagonal loading, the number of samples needed for 
temporal averaging.   

The rest of the paper is organized as follows. Section 2 
contains the sensor signal model and presents the MV solution. 
Our proposed method is represented in Section 3. The 
performance evaluation of our proposed method compared 
with DAS beamformer and MV beamformer on simulated data 
are illustrated in Section 4. Finally, we draw conclusion in 
Section 5. 

II. SNESOR SIGNAL AND MV-BEAMFORMING  

Consider a uniformly spaced linear array of M elements 
and some point scatters in the near-field of the array. The 
vector of array observations vector at time t  could be 
modeled as 

     ( ) It t t t  x s a i a n            (1) 

where  ts  is the desired signal, ( )ti  and  tn  are 

off-axis interference and noise components received by array, 
respectively. a  and Ia  is the steering vector of the desired 
signal and interferences with wavelength   arriving from 
angle  , respectively: 

      T2 sin / 2 sin 1 /1, j d j d Me e          a      (2) 

where d represent the space of array element. 

The output of a beamformer for time t  is the weighted 
combination of the individual channel data: 

 H

1

( ) ( ) ( )
M

i i i
i

y t t w t x t


   w x       (3) 

where ( )iw t  is the weight for array element i , and 

 T 1
1, , CM

Mw w  w  . i  is the time delay applied to 

element i  to focus at a special point in the image, and  T , 

 H denotes transpose and conjugate transpose respectively. 

The classical MV beamformer minimizes the array output 
energy while maintaining a distortionless response to the 
desired signal 

H Hs.t.    1min 
w

w Rw w a          (4) 

The solution to (4), which can be easily solved by means 
of using Largrange multiplier method, is given by 

1

H 1




R a

w
a R a

               (5) 

In practice, it is not feasible to calculate the exact spatial 
covariance matrix R  and it would be estimated by the 
sample covariance matrix  

   
1

1ˆ
K

H

k

k k
K 

 R x x              (6) 

where K  is the number of recently received samples. 

III. ESTIMATION OF SPATIAL COVARIANCE MATRIX 

As mentioned earlier, the weights of MV beamformer are 
calculated from the estimation of spatial covariance matrix. 
Thus, in adaptive ultrasound imaging, the performance of the 
adaptive beamformer, and consequently the quality of the 
ultrasound image, directly depends on the accurate estimation 
of the array covariance matrix. To get a more accurate 
estimation of array covariance matrix, several methods need to 
taken before applying MV beamformer on medical ultrasound 
imaging. 

SS is the main measure used to decorrelate the high 
coherence between the on-axis and off-axis echoes, which 
may result in signal cancellation. In this method, the 
M elements linear array is grouped into 1M L   subarrays 
of length L , each overlapping its neighboring subarray by all 
but one element: 

 T1 1( ) ( ( )), , ( ( ))

0,1, ,
l l l l L l Lt x n n x n n

l M L
       

 

x 


(7) 

The covariance matrix of these subarray are averaged to 
estimate the spatially smoothed array output covariance matrix 
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     (8) 

Temporal averaging means averaging over a small range 
gate, which is comparable in extent to the transmit pulse. By 
using temporal averaging, similar speckles statistics that 
resembles DAS speckle statistics can be retained. The general 
estimate of the covariance matrix with subarry of length L  
and temporal averaging over 2 1K   samples then becomes 

   
1

1

1ˆ ( )
(2 1)( 1)

K M L
H

ST l l
n K l

t t n t n
K M L

 

 

  
    R x x

 (9) 

The transmitted pulses in medical ultrasound imaging are 
short and nonstationary. Hence, the samples that can be used 
to calculation spatial covariance matrix estimation are limited. 
To estimate the spatial covariance matrix more accurately and 
improve the robustness of the MV beamformer against model 
mismatch and numerical errors, the spatial covariance matrix 
is diagonally loaded by adding a scaled identity matrix. After 
applying (7), (9) and DL to estimate the spatial covariance 
matrix, the 1L  MV optimum weights can be rewritten as 

1

H 1

( )
ˆ

( )
ST

ST












R I a

w
a R I a

           (10) 

where ˆ( ( ))STtrace t    R  is the loading factor, which can 
be set to   times of the power of the received signals [6].  
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IV. SPATIAL COVARIANCE MATRIX WITH ADAPTIVE 

WEIGHTS 

SS is a kind of matrix tapering method which highlights 
the diagonal elements of the spatial covariance matrix. Thus, 
SS cannot avoid signal cancellation owing to the remaining 
correlation between the on-axis signals and off-axis signals for 
finite array size. Besides, the interference rejection ability of 
SS depends on the spacing and the directions of the coherent 
sources. In the case of small-size array and closely-spaced 
coherent signals, SS always proves futile. 

To improve the interference rejection performance and 
eliminate signal cancellation, we use AWSS method instead of 
SS to estimate the spatial covariance matrix. In this approach, 
the spatially averaged covariance matrix ˆ

WR  is given by  

1

1

1ˆ ( ) ( )
1

M L

W l l
l

t v R t
M L

 




  R      (11) 

where 1 1[ , ]L Mv v  V   is averaging weights vector for the 
spatial covariance matrix of the subarry. The proper choice of 
V  can be considered to be a linearly constrained 
minimization and it can be expressed as follows: 

2 H H Hs.t.    V 1min I I 
V

Va a V E    (12) 

where   is the correlation factor, E  is a L -dimensional 
vector in which all the elements are unity. The solution to (12) 
is 

1

H 1opt




D E

V
E D E

              (13) 

where H
I ID a a . (13) is valid for any angle of interference 

arrival and any subarray size greater than two. Thus, applying 

optV  in spatial covariance matrix estimation ensures complete 

decorrelation of the on-axis signals and off-axis interference 
regardless of the arrival angle of the interference and the size 
of the subarray. As the arrival angles of interference are often 
unknown, the matrix D  can be replaced by the known 
subarray matrix ˆ

SR  

In [16], Asl et al. applied MV beamformer coupled with 
forward-backword spatial smoothing to decorrelate on-axis 
and off-axis signals and also get a good estimate of the spatial 
covariance matrix. Based on the theory of forward-backword 
spatial smoothing, the subarry spatial covariance ( )lR t  
matrix in (8) can be replace by 

 T1
( ) ( ) ( )

2FB l

l
lR t R t R t  J J         (14) 

where J  is the reflection matrix that has unity elements 
along the cross diagonal. Then, the final smoothed spatial 
covariance matrix is given by 

 
1

T
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By estimation of the subarry spatial covariance matrix 

( )lR t , the optimal weighting vector, 
T1 1, , CL L

o ow w    w  , 

can be computed by (15), (5), and then the output of the 
proposed beamformer can be given by   

1

1

1
( ) ( )

1

M L
l
o l

l

y t w R t
M L

 




           (16) 

V. SIMULATION AND RESULTS 

In this section, we provide several simulation examples to 
show that the proposed beamformer outperforms DAS 
beamformer and MV beamformer in terms of resolution, 
contrast and robustness.  

In all examples, we applied fixed focus on transmission 
and dynamic focus on reception. By doing so, the echoes 
originating from receiving focus seemingly always arrives 
from broadside. Thus, the steering vector of MV beamformer 
simply becomes a vector of ones. For MV beamformer, spatial 
smoothing with subarray length of / 2L M  was used to 
decorrelate the on-axis and off-axis echoes and mitigate signal 
cancellation. Then, the estimated spatial covariance matrix 
was diagonally loaded to increased numerical stability when 
computing the optimum weights. Temporal averaging over 
2 1K   samples was also implemented to improve the 
robustness of the MV beamformer. For the proposed 
beamformer, the spatial covariance matrix was estimated by 
(15) and the optimum weighting vectors were computed by (5) 
before beamforming. 

All the simulations were performed with a ULA consisting 
of 64 elements with / 2  spacing. using Field II [9]. The 
central frequency of the array elements was set to 2.5 MHz. 
The excitation pulse was modeled as a two-cycle square at the 
central frequency of the array, and the bandwidth was 60%. 
The speed of propagation was 1540 m/s. 

A. Simulated Point Targets 

Figure 1 shows the reconstructed B-mode images of 
scatterer pairs over 60 dB display dynamic range, with 
rectangular, MV, and the proposed beamformers. The 10 
simulated point scatters were located at every 20 mm from 40 
mm and separated by 2 mm. 
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           (A)           (B)           (C)           (D) 

FIGURE I. SIMULATED POINT TARGETS: (A) DAS (B) MV (No DL) (C) 
MV (DL = 1/100L, K = 20) (D) AWSS-MV 

As shown in Figure 1, the rectangular weighting DAS 
beamformer has poor lateral resolution and high sidelobes, it 
can hardly resolve the scatterers and presents the worst 
performance. By effectively suppressing off-axis signals and 
reducing the sidelobes, The MV beamformer in Figure 1 (b) 
leads to much better lateral resolution than the DAS. But it can 
not accurately estimates the magnitudes of the scatterer pair 
located at 30 mm. The beamforer employing DL ( 1/100L  ) 
and temporal averaging ( 10K  ) can results in more accurate 
estimation of the scatterer pairs at the expanse of reduced 
resolution and contrast. These results were presented in Figure 
1 (c). Figure 1 (d) shows that the beamformer using the 
proposed spatial covariance matrix estimation approach can 
accurately estimate the amplitude of the scatterer pairs and 
presents the better lateral resolution for the scatterer pairs. 
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FIGURE II. (A)   
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FIGURE II. (B) 
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FIGURE II. (C) 

FIGURE II. SIMULATED LATERAL CROSS SECTIONS: (A) 3MM (B) 
70MM (C) 90MM 

In Figure 2 we show the lateral variation of the 
beamformed responses located at depths of 30 mm, 70 mm, 
and 90mm, respectively. As results show, the proposed 
beamformer presents accurate estimation of amplitude of the 
scatterer pairs at all depths. The amplitudes of the point targets 
were underestimated by about 9 dB for MV beamformer. 
Adding DL and temporal averaging to MV beamformer leads 
to much accurate estimation of the spatial covariance matrix, 
which can effectively compensate the amplitude loss. But this 
leads to broaden mainlobe width compared to MV (No DL) 
beamformer. It also can be seen that the proposed beamformer 
presents the narrowest mainlobe and lowest sidelobes. Figure 
1 (b) shows that the scatterer pairs were better resolved in the 
proposed beamformer by about 3 dB and 12 dB comparing 
with MV (No DL) and MV ( 1/100L  , 10K  ), 
respectively. In Figure 1 (c), we see that the DAS and MV 
( 1/100L  , 10K  ) beamformer are unable to resolve the 
scatterer pairs while the proposed beamformer can resolve 
them by up to 40 dB. The sidelobe of the proposed 
beamformer are about 15 dB lower than DAS ones and 6 dB 
lower than MV (No DL) ones. 

B. Simulated Cyst Phantom  

To investigate the contrast of the beamformers, a circle 
cyst phantom in a speckle pattern was simulated. The circular 
cyst has a radius of 3mm and center at ( , )x z  =  (0,50) mm. 
The speckle pattern was simulated with 10 randomly placed 
scatters within a resolution cell of 3  to ensure fully 
developed speckle [10], where   was the central wavelength 
of the propagating waveform in the medium. The scattering 
amplitudes were Gaussian distributed. The resultant images 
were shown in Figure 3. All images are displayed with 60 dB 
dynamic range.  
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         (A)             (B)              (C)             (D) 

FIGURE III. SIMULATED CYST PHANTOM. (A) DAS (B) MV (NO DL) 
(C) MV-DL  (D) AWSS-MV 
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FIGURE IV. CROSS SECTIONS OF SIMULATED CIRCULAR CYST 

The cross-section for the tested cyst was shown in Figure 4. 
It is clear that the proposed method demonstrates superior 
contrast than DAS and MV beamformers. We also see that the 
noise inside the cyst is suppressed better by the proposed 
beamformer than that of DAS and MV beamformers. It also 
can be seen that the decrease of the proposed beamformer to 
the background noise level is faster than the others. 

We further confirmed the superiority of the proposed 
beamformer in terms of contrast ratio (CR) and the contrast to 
noise ratio (CNR). The CR is defined as the ratio of the mean 
value in the background to the mean value in the cyst region, 
and the CNR is defined as the CR divided by the standard 
deviation of image intensity in the background region. Table. 1 
lists the relative CR and CNR for each beamforming method. 

TABLE I. CONTRAST STATICS 

Weighting 
Methods 

Mean 
intensity in  
cyst region 
(dB) 

Mean intensity 
in background
(dB) 

CR 
(dB) 

CN 
R(dB) 

Background 
standard 
deviation 
(dB) 

DAS -49.85 -25.45 24.40 3.52 6.92 
MV (No DL) -53.65 -29.42 24.23 3.41 7.10 

MV (DL) -51.42 -25.25 26.17 3.88 6.75 

AWSS-MV -59.74 -25.47 34.27 4.90 7.04 

As seen from Tab. 1, the MV (No DL) beamformer presets 
the worst contrast. The MV beamformer ( 1/100L  , 10K  ) 
gives CR improvement of 1.7 dB and CNR about 7.5% 
compared with DAS beamformer. Also, the background 
standard deviation is approximately the same for these two 
beamformers. Using our proposed beamforming method 
results in an image in which the speckle intensity is similar to 
DAS while the cyst region intensity is decreased by about 9.9 
dB with respect to DAS. As a result, the CR of the proposed 
beamformer is increased by about 9.8 dB compared with DAS. 
In addition, the proposed beamformer obtains a 5.23 dB 
increase of CR and about 25.6% improvement of CNR relative 
to MV (No DL) beamformer. Thus, our proposed AWSS-MV 
beamformer results in significant improvement of contrast, 
outperforming DAS and MV beamformers . 

VI. CONCLUSIONS 

In this paper, we have applied an AWSS-based MV 
beamformer to medical ultrasound imaging and shown the 
effectiveness of the proposed beamformer using simulated 
phantoms. The proposed beamformer uses adaptive weighting 
spatial smoothing instead of forward only spatial smoothing to 

obtain a more accurate estimation of the spatial covariance 
matrix, which is then used to MV weights calculation. This 
leads to improved sidelobes, amplitude resolution, and less 
model parameter dependent compared with MV beamformer 
combined with diagonal loading. Therefore, applying the 
proposed beamformer to medical ultrasound imaging can 
significantly enhance the resolution and contrast of the images, 
outperforming both the DAS and regularized MV 
beamformers. 
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