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Abstract—Accurate translation and robust scale estimation 

are two challenging problems for visual object tracking. Many 
existing trackers use some feature extraction methods and the 
exhaustive scale methods to solve above two problems, 
respectively. This paper continues to discuss above problems in 
the  tracking-by-detection framework. It proposes an efficient 
tracker that applies Principal-Component-Analysis (PCA) 
features to learn the PCA correlation  filters, which predicts the 
location of the target more accurately. Furthermore, our 
proposed tracker keeps the good performance for the scale 
variation by using an accurate scale estimation method. 
Experimental results show that our proposed tracker has a better 
accuracy for predicting  the location of the target and a higher 
percent in the average overlap precision than some other 
methods on the 30 benchmark sequences with scale variation. 

Keywords—visual tracking; correlation filter; principal 
component analysis filter 

I. INTRODUCTION 

Visual tracking has wide applications in real life, such as 
motion analysis, activity recognition, visual surveillance, traffic 
monitoring, and so on. Although many excellent tracking 
methods have been proposed in recent years, there still exist a 
lot of problems for overcoming, such as deformation, partial 
occlusion, motion blur, and so on.  

In general, visual tracking mainly consists of two main 
issues. One is to estimate the location of the target in each 
frame of an image sequence. The other is to select an optimal 
scale of the tracking box for the object. Therefore, it is urgent 
and challenge to solve these two problems well, especially 
confronting the large scale variation in some complex video 
sequences. 

Recently, some detection-based tracking methods [1–3] 
have shown their good tracking effect. These tracking methods 
regard the task of target localization as a problem of 
classification. The decision boundary is obtained by means of 
learning a discriminative classifier online with some image 
patches from the target and the background. For example, Bao 
et al. [4] proposed a tracker that found an adaptive correlation 
filter by minimizing the output sum of squared error (MOSSE). 
Henriques et al. [2] proposed a tracker that worked by learning 
a kernelized least-squares classifier of the target appearance. 
These methods improve the development of tracking methods 
based on discriminative correlation filters. The rule of 
discriminative-correlation-filter-based trackers is to train a 
correlation filter online with a set of training image patches 

from the object and background. Then the target location can 
be determined by the optimal value of the learned correlation 
filter acting on the image patch sequence. Subsequently, 
Danelljan et al. [5] proposed a tracker, named DSST tracker, by 
means of learning the separate filters for translation and scale 
estimation based on MOSSE. DSST tracker has shown the 
commendable performance and a high tracking speed. 

Generally, it is an important step to design a good feature 
extraction method for training the correlation filters in those 
trackers. DSST tracker [5] uses the HOG features for training 
the translation filter and concatenates it with the usual image 
intensity features. In this paper, we propose an efficient 
tracking method based on the DSST tracker with a simple and 
efficient feature extraction, Principal Component Analysis 
(PCA), for training the filters. The proposed tracker has an 
accurate tracking result in detecting the location of target and 
still keeps the adaption for the scale variation of the target in 
the process of tracking. 

II. OUR PROPOSED TRACKER 

In this section, we describe our proposed tracking method 
based on the DSST tracker and PCA correlation filters. 
Subsection 2.1 proposes a simple and efficient feature 
extraction, Principal Component Analysis (PCA), to extract 
the feature of the patch for training the PCA correlation filters 
in our tracker. Subsection 2.2 gives the process of training 
PCA correlation filters for the multidimensional features. 
Subsection 2.3 describes the scale estimation method. 

A. Feature Extraction  

In our proposed tracker, we will use some features of the 
target appearance as samples for training the correlation filters. 
In this subsection, we use PCA to extract the multi-dimension 
features of the target patch for training the PCA correlation 
filters in our tracker. 

Given an image patch m nz  of the target object, we can 
get 1: ( 1)q m k   2( 1)n k    patches 1 2, , , qX X X  

1 2k k by a sliding window of size 1 2k k on the object patch. 

Let ix be the corresponding vectorization of the patch 

,iX 1,2, ,i q  , and put them together, we can get a matrix 
1 2

1 2[ , , , ] q k k
qX x x x R   . 
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Assuming that the number of correlation filters in our 
tracker is d , solve the eigenvalues of the covariance matrix 

XX  and rearrange them from large to small. Select d largest 
eigenvalues and get the corresponding eigenvectors. Let 

( )lq XX   means the l -th principal eigenvector, 1,2, ,l d  . 
Put 

1 2

1 2
( ( )) ,k kl

k k lW mat q XX R 
     1,2, ,l d    (1) 

where 
1 2

( )k kmat v  is an operation that maps 1 2k kv R  to a 

matrix of size 1 2k k . We call the matrix lW the PCA filter. 
With these PCA filters, we can get the features for each 

patch z  by the following formula 

,l lz z W       1,2, ,l d                          (2) 

where   denotes the circular correlation.    

B. Mutil-channel PCA Correlation Filters 

In this subsection, we give the process of training PCA 
correlation filters with the multi-dimensional features. For the 
rectangular patch of the target f  and a desired correlation 

output g , extract the features 1{ }l d
lf  of f with the feature 

extraction method in subsection 2.1. The goal of our tracker is 
to find the optimal PCA correlation filters 1{ }l d

lh  . They can be 

achieved by minimizing the following 2l -error of the 
correlation response to the desired correlation output g : 

1

2
2

{ } 1 1

arg min ,
l d

l

d d
l l l

h l l

h f g h
  

                 (3) 

where g  is the desired correlation output constructed as a two-
dimensional Gaussian function with its peak located at the 
target centre,   denotes the circular correlation, and  is a 
positive regularization parameter. 

We solve the optimal problem (3) on the frequent area with 
discrete Fourier transform (DFT). Then the DFT of lh in (3) 
can be obtained by 

1

,
l

l
d k k

k

GF
H

F F 





     1,2, ,l d  ,              (4) 

where , ,l lH G F are the corresponding DFT of , ,l lh g f , 

respectively, the bar G  means the complex conjugation of G , 
and the multiplications and divisions are performed in point-
wise. 

As shown in [9], the optimal correlation PCA filters can be 
obtained by minimizing the output error over all training 

patches. However, it requires to solve a d d linear system of 
equations per pixel. Therefore, we compute a robust 
approximation by updating the numerator l

tA and the 

denominator tB of the correlation filter l
tH as 

1(1 )l l l
t t t tA A G F                          (5) 

and  

1
1

(1 )
d

k k
t t t t

k

B B F F 


                     (6) 

where the scalar   is a learning rate, ,l
t tA B , and l

tH are the 
numerator, the denominator, and the correlation filter at frame 
t . 

For a test rectangular region z centered around the 
predicted target location, extract the features 1{ }l d

lz   with the 
feature extraction method in subsection 2.1. Then its 
correlation score y can be computed by  

1 1 .

d l l
tl

t

A z
y F

B 
 
      


                                (7) 

The estimate location of the target in the new frame is obtained 
by finding the maximum correlation score y . 

C. Extracting Appropriate Scale 

With Subsection 2.1 and Subsection 2.2, we can get a 
precise location of the target in a new frame by learning a 
multi-channel correlation PCA filters from a single sample f . 
In this step, we get a two-dimensional translation PCA 
correlation filters. However, the size of the filter is not fixed. 
We may suppose that the scale filter is one dimension. 
Therefore, the same method can be used to learn a one-
dimensional scale estimation filter. Although the scale 
estimation of the tracker increases a little computational cost, 
we can get more accurate target location and size. 

We confirm the size of the target by learning an extra scale 
filter. To get the training sample, we extract features using 
variable patch sizes centered around the target. Assume 
P Q  denotes the target size in the current frame and s  be 
the size of the scale filter. In the light of each 

1 1
, ,

2 2

s s
n

              
 , we extract an image patch nJ of 

size n na P a Q centred around the target. Here, a  denotes 
the scale factor between feature layers. At scale level n , the 
value ( )f n  about the training sample is set to the d -

dimensional feature descriptor of nJ . 
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Finally, the scale filter with the new sample is updated by 
formulas (5) and (6). In this case, we use a one-dimensional 
Gaussian as the desired correlation output g. In general, the 
size change of the target between two adjacent frames is 
smaller than the position change. Therefore, we first compute 
the position. Afterwards, the scale filter is applied at the new 
target location. 

Algorithm 1 provides a brief outline of our proposed 
tracker. 

Algorithm 1 Proposed tracking method: iteration at frame 
t . 

Require: Image tI , previous target position 1tP  and scale 

1ts  , translation model 1
trans
tA  , 1

trans
tB  and the scale model 

1
scale
tA  , 1

scale
tB  . 

Ensure: Estimated the target position tP and scale ts , 

updated the translation model trans
tA , trans

tB and the scale 

model scale
tA , scale

tB . 

     Feature Extraction 
1: Divide the target image into patches, and use them to 
construct a matrix; 
2: Apply PCA method to the matrix to construct PCA filters 

lW ; 
3: With these PCA filters, get the features of the target 
patch; 

Position Detection 
4: For a translation sample transz from tI at the target 

position 1tP and scale 1ts  , extract its PCA features. 

5: Compute the translation correlation transy using PCA 

features, 1
trans
tA  , and 1

trans
tB   in (7). 

6: Let tP be the target location that minimizes trany . 

     Scale Detection 
7: For a sacle sample transz from tI  at the target position tP  

and scale 1ts  , extract its PCA features. 

8: Compute the scale correlation scaley using PCA features, 

1
scale
tA  , and 1

scale
tB   in (7). 

9: Let ts be the target scale that minimizes scaley . 

     Updating 

10: Update the translation model trans
tA , and trans

tB in (7) . 

11: Update the scale model  scale
tA , and scale

tB in (7) . 

III. EXPERIMENTAL RESULTS 

In this section, we compare our tracker with some other 
state-of-the-art trackers, such as DSST [5], IVT [6], MTT [7], 
LOT [8], OAB [10], LSK [11], MIL [12], SBT [13], CT [3], 
KMS [14], SMS [15] and DFT [16]. All the experiments are 
performed in Matlab2015b on a computer with Intel Xeon CPU 
E5-1620 v3 @ 3.50GHz. 

To evaluate the performance of our proposed tracker, we 
carried out some experiments on 30 available challenging 
image sequences with 11 attributes: low resolution (LR), in-
plane rotation (IPR), out-of-plane rotation (OPR), scale 
variation (SV), occlusion (OCC), deformation (DEF), backgro-
und clutter (BC), illumination variation (IV), motion blur (MB), 
fast motion (FM), and out of view (OV). 

We set the regularization parameter 0.01   and the 
learning rate 0.025  . The filter size P Q  is set to twice 
the initial target size. The standard deviations for desired 
correlation output is set to 1/16 of the target size for translation 
filter and 1.5 in the scale filter. The scale number is 33 with a 
scale factor of 1.02a  . The number of convolution filter is 
set to 50 and the patch size is 9 × 9. We keep the same 
parameters values for all the sequences. The 51-dimensional 
feature is grayscale map of sample. 33 different sizes of scale 
training samples extracted from each frame are resized to the 
same size, which ensures a maximum feature descriptor length 
of 992. Finally, the extracted features are always multiplied by 
a Hann window, as described in [4]. 

We employ the success plot, the precision plot, and the 
centre location error (CLE) as the quantitative evaluations. The 
precision plot shows the percentage of frames whose center 
locations are in the given threshold to the ground truth. The 
success plot is based on an overlap ratio defined as  

( ) / ( ),t g t gS Area r r Area r r                     (8) 

where tr is the bounding box of the tracking result and 

gr denotes that of the groundtruth,   and  represent the 

intersection and union of two regions, respectively. We count 
the number of successful frames with overlap ratio S  greater 
than the predefined 0t and calculate the ratio of successful 

frames throughout all thresholds 0 [0,1]t  to draw the success 
plot. We employ the area under the curve (AUC) of each 
success plot and precision plot to rank the trackers. CLE is the 
average value of the Euclidean distance between the 
groundtruth and the estimated centre location.  

Figure 1 shows the success plot and precision plot of 13 
trackers in a benchmark database. We rank the trackers using 
their corresponding representative scores with a threshold of 20 
pixels. As observed from Figure 1, our track ranks the first in 
both precision plot and success plot. In the precision plot of 
OPE, our tracker gets a score 0.590 that outperforms the DSST 
tracker with 0.028. In the success plot of OPE, our tracker gets 
a score 0.447 that outperforms the DSST tracker with 0.002. 
The experimental results show that our tracker has a good 
performance in finding the location of the target center, and a 
little improvement in detecting the scale of target. 
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(a) 

 
(b) 

FIGURE I. THE PRECISION PLOT AND SUCCESS PLOT OF OUR 
TRACKER WITH OTHER 12 TRACKERS. 

Figure 2 shows the precision plot of OPE on the attribution 
deformation and background clutter, and the success plot of 
OPE on the attribution background clutter for 13 trackers in a 
benchmark database. As observed from Figure 2, our tracker 
ranks the first in both precision plot and success plot on some 
attributions. Especially on the attribution background clutter, 
our tracker gets a precision plot of OPE 0.674 that outperforms 
the DSST tracker with 0.048. And our tracker gets a success 
plot 0.501 that outperforms the DSST tracker with 0.013. 

 
(a) 

 
(b) 

 
(c) 

FIGURE II. OUR ADVANTAGES IN SOME ATTRIBUTES. 

Figure 3 shows the Euclidean distance of the detection 
center position and the standard position of 6 trackers over 6 
sequences: Bolt2, MountainBike, Man, Crowds, CarDark, and 
David2. As observed from Figure 3, our tracker always has 
small Euclidean distances among 6 trackers, which implies that 
our tracker can tracking the target very well.  
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FIGURE III. THE EUCLIDEAN DISTANCE OF THE DETECTION 

CENTER POSITION AND THE STANDARD POSITION OF 6 TRACKERS 
OVER 6 SEQUENCES: BOLT2, MOUNTAINBIKE, MAN, CROWDS, 

CAR-DARK, AND DAVID2. 

Figure 4 shows the sampled tracking results of 6 trackers 
over 6 sequences. 

 
FIGURE IV. A SIMPLE COMPARISON OF OUR TRACKER (IN 

RED) WITH OTHER FIVE TRACKERS, IVT (IN GREEN), MTT (IN BLUE), 
LOT (IN BLACK), DFT (IN ROSE RED), AND DSST (IN SKY BLUE). 

Table 1 shows the precision of 6 trackers on 30 sequences. 
As observed from Table 1, our tracker has the best precision on 
24 sequences among 5 trackers. On the sequences: Car2, 
CarDark, Fish, Coupon, and Car1, all 5 trakers have unsatisfied 
tracking results. The reason is that the objects in these 
sequences are affected by appearance variation and 
illumination variation. 

TABLE I. THE PRECISION OF 6 TRACKERS ON 30 VIDEO SEQUENCES (%). 

Precision Diving Dudek David2 BlurFace BlurBody Bolt2 
Mountain 

Bike 
Football1 Panda Man 

Ours 100 100 100 100 100 100 100 100 100 100 

DSST 100 100 100 100 100 100 100 100 100 100 

CT 98.6 84.7 83.3 79.6 63.8 54.9 52.2 48.8 45.9 45.2 

LOT 100 100 100 98.9 87.7 74.8 69.3 66.1 61.3 61.1 

DFT 100 100 100 100 93.3 86.1 84.3 80.4 60.7 56 

Precision Crowds Box Kitesurf MotorRolling Singer1 Human7 Football Jump Freeman1 Car4 

Ours 55.3 51.4 45.2 44.7 44.4 38.7 37.9 34.4 33.8 10.7 

DSST 51.4 45.2 40.9 39 38.7 38 29.2 23.7 9.02 3.84 

CT 24.6 21.3 21.1 17.1 15.4 11.2 5 4.19 2.3 1.86 

LOT 23.1 22.5 18.5 16.4 12.3 11.3 10.7 10.5 7.14 5.4 

DFT 28.2 26.4 23.2 23.1 18.8 18.5 13.4 12.3 10.8 10.7 

Precision Sylvester Skating1 Skater2 Car24 Walking Car2 CarDark Fish Coupon Car1 

Ours 100 99.6 83.8 79.8 65.7 4.37 0 0 0 0 

DSST 100 96.9 84.2 79.8 57.8 1.71 0 0 0 0 

CT 38.3 37.2 36.8 32.5 31.1 1.83 0.865 0.599 0.509 0.372 

LOT 53.7 51.2 44 39.4 27 5.39 5.01 3.7 3.66 2.02 

DFT 54.5 47.3 41.7 35.1 31.2 8.55 7.19 4.27 3.45 1.71 
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Table 2 describes the median of success, precision, CLE, 
and frame per second (FPS) of our proposed tracker with DSST, 
CT, LOT, and DFT trackers. As observed from Table 2, our 
tracker has the best median precision and median CLE, a 
second median success, and the third median FPS among 5 
trackers. The reason for the slower tracking speed than DSST is 
that our tracker needs to extract the PCA features. 

TABLE II. THE MEDIAN OF SUCCESS, PRECISION, CLE, AND FRAME 
PER SECOND (FPS) OF OUR PROPOSED TRACKER WITH DSST, CT, 

LOT, AND DFT TRACKERS. 

Method 
Median 
success 

Median 
precision 

Median CLE 
Median 

FPS 
Ours 36.5 65.7 27.1 19.27 
DSST 39.2 57.8 34.7 38.15 

CT 20.8 31.1 81.7 49.87 
LOT 21 27 78.3 0.49 
DFT 25.6 31.2 58.7 10.73 

IV. CONCLUSIONS 

In this paper, we have proposed an efficient tracker that 
applies Principal-Component-Analysis (PCA) features to learn 
the PCA correlation filters, which predicts the location of the 
target more accurately. Furthermore, our proposed tracker 
keeps the good performance for the scale variation by using an 
accurate scale estimation method. Experimental results 
showthat our proposed tracker has a better accuracy for 
predicting the location of the target and a higher percent in the 
average overlap precision than some other methods on the 30 
benchmark sequences with scale variation. 
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