
FPGA Software Design for the Missile-borne
Computer with DSP and FPGA as Its Core

Tao Yang*, Jinpeng Yang, Shuaibing Wang and Ling Li

China Academy of Aerospace Aerodynamics, Beijing, China
*Corresponding author

Abstract—In order to meet the requirement of stability, real-
time performance and miniaturization, a missile-borne computer
with DSP and FPGA as its core processor is designed. FPGA
communicates with DSP via EMIF for extension of various
peripheral interfaces, including the serial port, AD converter and
IO operation. This paper presents the FPGA software design in
detail. The software structure is shown and its function modules
are analyzed one by one. And also the registers for EMIF are
defined and introduced. After several ground tests, the FPGA
software works well in the missile-borne computer, indicating
that it is feasible and reliable, fulfilling the design demand. The
follow-up flight test in the future will verify its performance
further.

Keywords—missile-borne computer; FPGA; EMIF; software
design

I. INTRODUCTION

Missile-borne computer is the core of the missile control
system [1,2]. According to output of the IMU (Inertial
Measurement Unit), it calculates the attitude and position
parameters of the missile. Based on the relative position
measured by the seeker, it computes the line-of-sight rate. The
missile-borne computer sends corresponding control command
to the actuator system [3]. In this way, it controls the missile
attitude and conducts trajectory correction, leading it to the
intended target. As a result, it is performance of the missile-
borne computer that determines whether the missile can hit the
target [4]. In recent years, with the diversity of fighting
environment and warfare requirement, the demand for longer
firing range and higher attacking precision is more and more
urgent. In the missile-borne computer design, stability, real-
time performance and miniaturization are three main focuses
[5]. Stability means strong environmental adaptability, namely,
counter high overloading ability and anti-electromagnetic
interference ability. Real-time performance requires the fastest
process and calculation of the received sensor data.
Miniaturization calls for smaller size and lighter weight [6].

FIGURE I. THE MISSILE-BORN COMPUTER

Our research group develops a missile-borne computer with
DSP (Digital Signal Processor) selected as the processor of the
missile-borne computer to conduct core navigation algorithm,
while FPGA (Field-Programmable Gate Array) extends the
various peripheral interfaces [7]. Its block diagram is shown in
Figure 1. This paper talks about the FPGA software design. It
is divided into various function modules.

II. THE OVERALL FPGA SOFTWARE DESIGN SCHEME

The structure of the FPGA Software is shown in Figure 2.
FPGA communicates with DSP via EMIF (External Memory
Interface) with 16 bit data bus and 20 bit address bus. The
EMIF module is divided into two parts, the transmission
module EMIF_TX and the reception module EMIF_RX. The
peripherals consist of an ADC, six RS422 serial port interfaces,
one IO input and five IO outputs. The voltage of power supply
is acquired by the ADC for power monitoring.

FIGURE II. STRUCTURE OF THE FPGA SOFTWARE

Only one serial interface is illustrated in Figure 1 and the
others work under the same mechanism. Once inputted into
PFGA, the serial data is transformed into one byte data
according to certain data format via the serial reception
module UART_RX. And then the pulse signal Rx_Byte_Done
is generated. The data is written into the serial reception FIFO
(First Input First Output) UART_RX_FIFO with a depth of
128 bytes. When DSP reads the serial data via EMIF, the
EMIF_TX module generates the read pulse signal FIFO_Read.

75Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Atlantis Highlights in Intelligent Systems (AHIS), volume 1
3rd International Conference on Control, Automation and Artificial Intelligence (CAAI 2018)

It reads the serial data from UART_RX_FIFO and the data is
available later in EMIF data bus. When DSP transmits data via
EMIF, the EMIF_RX module generates the write pulse signal
FIFO_Write, putting data from the EMIF data bus into the
serial transmission FIFO UART_TX_FIFO. Query the status
of the transmission FIFO. If there is data in
UART_TX__FIFO, transmit it in real time via the serial
transmission module UART_TX. What’s more, the serial port
interface can initiate data reception interrupt. Under the
circumstances that the number of data bytes in
UART_TX__FIFO matches the interrupt level, the interrupt
signal is sent to DSP for interrupt process.

III. THE FUNCTION MODULES

A. EMIF Module

DSP communicates with FPGA via EMIF, the transmission
module EMIF_TX and reception module EMIF_RX included.
According to certain EMIF addresses, the EMIF transmission
module puts data in the bidirectional EMIF data bus for DSP to
read, while the EMIF reception module helps to send data from
DSP to FPGA for process.

1) The EMIF transmission module
As shown in Figure 3, there are three control signals: CE,

AOE and ARE. CE stands for memory space enable (active
low), AOE stands for data output from FPGA enable (active
low), ARE stands for data read enable (active low). During the
transmission process, when the setup period starts, the address
becomes valid. CE and AOE drive down from high level. At
the beginning of the strobe period, ARE becomes valid. And
then ARE drives down in the end of the strobe period. And
Data is sampled on the clock rising edge, just prior to the ARE
low-to-high transition. CE and AOE become inactive. The
setup, strobe and hold time of the DSP EMIF needs to be set
properly.

FIGURE III. THE EMIF TRANSMISSION PROCESS

In the EMIF transmission module, there is a driving clock.
It takes several clock cycles to conduct data transmission. At
first, monitor the level of ARE when every clock rising edge
arrives. Once the falling edge of ARE detected, the
transmission process is triggered. Judge whether ARE is high
or not in the flowing clock rising edge. If ARE is high, the
previous falling edge of ARE is interference pulse, stop the
transmission process immediately. Otherwise, if ARE is low,
the normal transmission process is underway. Wait for the next
clock rising edge. When it arrives, the levels of ARE, AOE and

CE are low. According to different EMIF addresses, AD data
and the number of data bytes in serial reception FIFO are put
into EMIF data bus, while generating the read enable signal of
the serial reception FIFO, which is driven down in the next
clock cycle. And then one byte data is read from serial
reception FIFO and appears in EMIF data bus later, thus data
transmission completed.

2) The EMIF Reception Module
As shown in Figure 4, there are two control signals, namely,

CE and AWE. CE stands for memory space enable (active low)
and AWE stands for data write enable (active low). During the
reception process, the setup period starts, along with valid
EMIF address and EMIF data. At the same time, CE turns low
from high. AWE is active at the beginning of the strobe period
and inactive at the beginning of the hold period. CE becomes
inactive at the end of the hold period. Same as the transmission
process, a successful reception process demands appropriate
setup, strobe and hold time.

FIGURE IV. THE EMIF RECEPTION PROCESS

A driving clock exists in the EMIF reception module. It
also takes several clock cycles to conduct data reception. The
AWE level is of much concern in every clock rising edge. Its
falling edge initiates the writing process. Whether AWE is still
high or not in the following clock cycle determines how to
process later. If AWE is high, the previous falling edge is
disturbance. There is no need continuing the reception process.
On the contrary, if AWE keeps low, it indicates a normal
reception process. In the following clock cycle, the levels of
AWE and CE are low. According to different EMIF addresses,
update the serial transmission FIFO data, configure the serial
port hardware, and set the levels of IO output. Later, generate
the write enable signal of serial transmission FIFO, which
sends the latest serial data into the serial transmission FIFO.
And then the reception process is completed.

B. Serial Data FIFO Module

For the simple reason that the FPGA chip selected in the
missile-borne computer is from Xilinx company, the serial data
FIFO module utilizes its IP (Intellectual Property) core in
Figure 5 directly. Set Native as the Interface Type, and choose
Independent Clocks as the option of Read/Write Clock
Domains, namely, different clocks for read or write. Read
Mode is Standard FIFO. The Data Port Parameters is
configured with 8 bits of Write and Read Width as well as 256
bytes of Write and Read Depth. Therefore, the FIFO is used in
8-bit width and the buffer is 256 bytes. For the optimization of

76

Atlantis Highlights in Intelligent Systems (AHIS), volume 1

process speed, it is unnecessary to set the Reset signal and
other flags. According to the FIFO depth, the Write Data Count
and Read Data Count is 8 bit.

FIGURE V. THE IP CORE OF FIFO

1) The serial transmission FIFO
In the serial transmission FIFO UART_TX_FIFO, system

clock is the write and read clock. After one byte data is
received, the high-level enable pulse signal is generated for one
clock cycle and puts data into UART_TX_FIFO. The
rd_data_count increases with it. If the number is more than
zero, data in FIFO UART_TX_FIFO is read and transmitted.
Completion of transmission generates one high-level pulse
signal, in the falling edge of which the rd_data_count is judged
again. If it is not zero, the next transmission is initiated.
However, if it is zero, the data transmission ends. In this way,
data transmission is conducted in real time.

2) The serial reception FIFO
In the serial reception FIFO UART_RX_FIFO, the write

and read clock is the system clock. When one byte valid data is
received in UART_RX, the high-level pulse rx_byte_done is
generated and it lasts for one clock cycle. It serves as the write
enable signal of UART_RX_FIFO. As long as there is data
input, it goes into UART_RX_FIFO immediately. The read
enable signal is generated by the EMIF module and it is a high-
level pulse of one clock period as well, which reads the data
from UART_RX_FIFO and puts it into the EMIF data bus.
Based on the number of data bytes in UART_RX_FIFO, the
wr_data_coun and rd_data_count increase and decrease at the
same time. rd_data_count is selected as the number indicator.
When DSP requests the serial data from UART_RX_FIFO,
first get the number of data bytes, and then read the data
accordingly. In order to avoid FIFO overflow, the number
threshold of data bytes is set as 128. If the number is more than
128, the UART_RX_FIFO moves data out automatically, thus
making sure the serial reception FIFO is not overflow with
updated data.

C. Serial Data Transmission and Reception Module

The serial data transmission and reception module is
driven by the system clock. During initialization, the data
character length, parity enable, parity odd/even selection, stop
bits and baud rate can be configured via EMIF command.

1) The data transmission module
The count value of data transmission clock is set according

to the system frequency and baud rate. Once the transmission

enable pulse is detected, the counter begins. When the counter
value equals the count value, one high-level pulse signal is
generated as the flag to initiate transmission of data bit, parity
bit and stop bit. Once the transmission finished, one high-level
pulse signal generates for indication. The counters stops and
restarts when the next data transmission process begins.

2) The data reception module
On the basis of the system frequency and baud rate, set the

count value of data reception clock. Detection of the data start
bit in serial data reception module starts the counter. When the
counter value matches half of the count value, one high-level
pulse signal is generated as the flag to trigger reception of
every data bit according to data character length. Following
the data bit, the parity bit and stop bit are received, thus
accomplishing data reception of one valid byte. One high-level
pulse signal indicates the end of data reception. The counter
stops and returns to zero, which counts again until the next
data reception process is conducted.

D. Other Modules

FIGURE VI. BLOCK DIAGRAM OF THE FPGA SOFTWARE

The AD7091 is a successive approximation register analog-
to-digital converter, with SPI (Serial Peripheral Interface) as its
communication interface, clock frequency of 2.5MHz and data
acquisition interval of 100us. As shown in Figure 6, the
conversion process and data acquisition are controlled via the
CONVST signal. Its falling edge initiates the conversion. The
12 bit output coding of AD7091 is straight binary. The MSB is
clocked out first and then the DB10 to DB0 are shifted out one
bit by one bit. The AD conversion result appears in the EMIF
data bus according to certain EMIF addresses.

FIGURE VII. BLOCK DIAGRAM OF THE FPGA SOFTWARE

The serial port interfaces has a mechanism of reception
interrupt. If enabled, the interrupt is generated according to the
interrupt level set previously. As shown in Figure 7, there is a
comparator to compare the number of data bytes in
UART_RX_FIFO and the interrupt level. When the number is
bigger than the interrupt level, the comparator output is high. In
other cases, its output is low. There is a multiplexer, whose
address is the interrupt enable signal. If the enable signal is
high, the comparator output is the multiplexer output. On the
contrary, if the enable signal is low, the multiplexer output is

77

Atlantis Highlights in Intelligent Systems (AHIS), volume 1

just low level. The multiplexer output connects an external
interrupt IO of DSP. Set the interrupt polarity on the rising
edge and the serial data reception interrupt is handled.

As for the external IO input, the interrupt mechanism is
adopted too. In normal operation, the IO input is high. The
high-to-low transition triggers the DSP external interrupt, with
the falling edge as the interrupt polarity. In the meanwhile, the
IO output is set directly via EMIF by writing its value into one
certain register.

IV. THE EMIF REGISTERS

DSP and FPGA communicate with each other via EMIF. In
this design, the EMIF address bus is 20 bit and the EMIF data
bus is 16 bit. There are six serial port interfaces, one AD
converter and one IO input as well as several IO output. The
corresponding registers are defined as shown in Table 1. For
simplicity, there are registers of only one serial port interface.
Descriptions of each register are made from Table 2 to Table 8.

TABLE I. EMIF REGISTERS

No. Address Name Description
1 0x10001 SCICCR1 Serial control register1
2 0x10002 SCITXBUF1 Serial transmission register 1
3 0x10003 SCIRXBUF1 Serial reception register 1

4 0x10004 SCIRXFIFO1
Serial reception

data number register 1

5 0x10005 SCIRXIL1
Serial reception

interrupt register 1
6 0x70001 ADDATABUF AD data register
7 0x80001 IOBUF IO register

TABLE II. SCICCR REGISTER

15-10 9-6 5 4 3 2 1 0

RSRV SCIBAUD STOPBITS PARITY PARITYENA SCICHAR

SCICHAR: These bits select the character length from one
to eight bits. PARITYENA: This bit enables or disables the
parity function. PARITY: Odd/even parity selection.
STOPBITS: Number of stop bits. SCIBAUD: Baud rate
selection.

TABLE III. SCITXBUF REGISTER

15-8 7 6 5 4 3 2 1 0

RSRV D7 D6 D5 D4 D3 D2 D1 D0

SCITXBUF: 8 bit data for serial data transmission.

TABLE IV. SCIRXBUF REGISTER

15-8 7 6 5 4 3 2 1 0

RSRV D7 D6 D5 D4 D3 D2 D1 D0

SCITXBUF: 8 bit data of the serial reception data.

TABLE V. SCIRXFIL REGISTER

15-9 8 7-0

RSRV RXIENA RXIL

RXIL: These bits determine the serial reception interrupt
level. RXIENA: This bit enables or disables the serial interrupt
function.

TABLE VI. SCIRXFIFO REGISTER

15-8 7 6 5 4 3 2 1 0

RSRV D7 D6 D5 D4 D3 D2 D1 D0

SCIRXFIFO: 8 bit data indicates the number of data bytes
in serial reception FIFO.

TABLE VII. ADDATABUF REGISTER

15-12 11-0

RSRV D11~D0

ADDATABUF: 12 bit data represents the AD conversion
result.

TABLE VIII. IOBUF REGISTER

15-11 4 3 2 1 0

RSRV Out5 Out4 Out3 Out2 Out1

Out5 ~ Out1: These bits decide the IO output level.

V. CONCLUSION

This paper introduces the FPGA software design for the
missile-borne computer with DSP and FPGA as its core. All
the details about the PFGA software can be found in this paper.
The software helps FPGA to conduct communication between
the missile-born computer and other key devices in the missile
via the serial port. To test and verify the FPGA software, it has
to cooperate with the DSP software. Ground tests prove its
feasibility and reliability. It will be tested in missile flight
missions later.

REFERENCES
[1] Zhang Wei and Zhou Ying, “Research on design method of missile-

borne guidance computer,” in Aeronantical Computing Technique, vol.
39, pp. 123–127, 2009.

[2] Zhang Xiaoxi, Liu Yongqiang and Liu Shuo, “Integrated guided of
missile-borne and design of control system,” in Aeronantical Computing
Technique, vol. 45, pp. 121–124, 2015.

[3] Gao Min, Ren Hailong, Yang Fang and You Weihua. “Design of
missile-borne computer based on DSP+FPGA,” in Computer
Measurement and Control, vol. 22, pp. 3995–3997, 2014.

[4] Shan Yanhu, Xie Lu, Yang Yuhua and Wang Dawei, “Design of
hardware platform for flight control system based on DSP and FPGA,”
in Fire Control and Command Control, vol. 42, pp. 169–173, 2017.

[5] Li Yinhai, Wang Mingang and Sun Chuanxin, “The design of digital
flight control computer based on DSP and FPGA,” in Electronic Design
Engineering, vol. 22, pp. 21–24, 2014.

[6] Yu Shaolin, Han Bo and Li Ping, “Design of multi-serial communication
for flight controlling computer based on FPGA,” in Computer
Engineering, vol. 37, pp. 242–245, 2011.

[7] Chen Zhangzhe and Liu Yabin, “Design and implementation of time-
sharing measurement and control system based on the FPGA,” in
Electronic Design Engineering, vol. 26, pp. 75–78, 2018.

78

Atlantis Highlights in Intelligent Systems (AHIS), volume 1

