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Abstract—Beam Structures are crucial components in 

constructions, and damage identification of beam structures is an 
important research filed in engineering. Swarm intelligence 
algorithms have been widely used in structural damage 
identification for the past few years. The Big Bang-Big Crunch 
algorithm is one of swarm intelligence techniques with 
advantages of simple implementation and high efficiency. 
However, it is easily trapped in local optimal results and difficult 
of tackling with a global optimum problem, such as structural 
damage identification. To overcome this drawback, an improved 
Big Bang-Big Crunch algorithm is proposed with taking some 
measures. Numerical examples illustrate that damage 
identification of beam structures using the frequency-domain 
data has been realized by the improved algorithm. The improved 
Big Bang-Big Crunch algorithm can identify the structural 
damage precisely and is insensitive to measurement noises.   
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I. INTRODUCTION 

Beam structures have found widespread use as main 
bearing structures in constructions, e.g. aircrafts, vehicles, 
bridges and buildings. Damages of the structures are often 
caused by external working circumstances and inner changes of 
material. The structural damages can reduce stiffness, mass and 
damping, and consequently the structures lose their loading 
capability. To localize and quantify structural damages of beam 
structures becomes important for preventing severe structural 
accidents.  

Damage identification can be transformed into a global 
optimization problem in mathematic since a structure can be 
represented as a finite model composed of piecewise 
distributed mass and stiffness. To optimize an objective 
function established by the frequency and modal data is a 
common method to identify structural damages, that is, the 
frequency-domain method. The frequency-domain method is 
popular in damage identification because it is non-destructive 
for structures and the frequency-domain data is more 
convenient to obtain than other types of data [1]. However, 
conventional optimization techniques, e.g. least-squares 
estimation and Lagrangian multiplier method, are difficult of 
optimizing the objective function in the frequency-domain 
method. The reason is that conventional optimization 
techniques are sensitive to initial value and require the 
objective function being analytic. Compared with conventional 
techniques, swarm intelligence algorithms are more flexible 

and operative in global optimization problems. As they can 
overcome the drawbacks of conventional techniques, swarm 
intelligence algorithms have been widely utilized for structural 
damage identification in recent years. For example, Chou and 
Ghaboussi used the Genetic algorithm to identify the location 
and extent of structural damages [2]; Begambrea and Laie put 
forward the Hybrid Particle Swarm Optimization-Simplex 
algorithm for damage identification procedure based on the 
frequency-domain data [3]; Kang achieved structural damage 
identification by combining the Particle Swarm Optimization 
algorithm with the artificial immune system [4]; Li and Lu took 
advantage of the multi-swarm Fruit Fly Optimization to tackle 
the damage identification problem of simply supported beams 
and trusses [5]; Kaveh and Zolghadr identified damages of 
structures based on an improved Charged System Search 
algorithm [6]. 

The Big Bang-Big Crunch algorithm (BB-BC) is a kind of 
swarm intelligence techniques proposed by Osman and Ibrahim 
in 2006 [7]. It has been demonstrated that the BB-BC has the 
benefit of faster convergence and more convenient 
implementation in comparison with some other swarm 
intelligence algorithms [7]. The drawback of the BB-BC is that 
the algorithm is easily trapped into local optimum solutions in a 
global optimum problem. Hence, some improvements are made 
and an improved Big Bang-Big Crunch algorithm is present in 
Section II for the purpose of capitalizing on the BB-BC in 
damage identification of beam structures. Section III introduces 
the model of damage identification of beam structures using 
frequency-domain method. The feasibility and effectiveness of 
the improved algorithm in damage identification of beam 
structures are examined by numerical examples simulated in 
Section IV. Section V draws a conclusion finally. 

II. THE BIG BANG-BIG CRUNCH ALGORITHM 

A. The Original Big Bang-Big Crunch Algorithm 

The BB-BC is one of the swarm intelligence algorithms 
based on the Big Bang and Big Crunch theory of the universe 
evolution. It consists of the following two phases: 

1) The Big Bang phase: candidate solutions are blast 
randomly in the sreach area according to the following 
equation [7]. 

Xi = XC + r·R(k) ·L/2             (1) 
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R(k) = 1 / k                                 (2) 

where Xi represents the i-th candidate solution in the n-
dimensional search area, XC is a temporary optimum solution 
called mass center, r is a normal random number, L is the 
length of the search area, N is the number of candidates, R is a 
function limiting the blast range and k is the iteration times. 

2) The Big Crunch phase: the candidate solutions 
converge into a new mass center based on the following 
equation [7]. 

XCnew = (∑i=1,2…,N Xi/fi) / (∑i=1,2…,N 1/fi)         (3) 

where fi is the value of the objective function with respect to 
the i-th candidate solution Xi and XCnew  is the new mass center. 
Then, replace XC by XCnew , that is,  

XCXCnew                                   (4) 

With repeating the Big Bang phase and Big Crunch phase in 
iterations, the mass center is approaching the global optimum 
solution.  

B. The Improved Big Bang-Big Crunch Algorithm 

The two phases in the original BB-BC can be operated 
conveniently because the formulas are not difficult for program. 
However, it can be found that the BB-BC converges 
excessively fast according to Equation (2). The value of the 
blast function R decreases rapidly with the iteration processing 
as R is an inverse proportional function with respect to the 
iteration time k. The over speed of the reduction of blast range 
(what Function R stands for) likely makes the mass center 
being trapped into local searching area and missing the global 
optimum solution. Thus, measures are taken to improve the 
original BB-BC as follows. 

1) Modifying the blast function R: the form of the blast 
function R is modified as the following equation. 

R(k) = (1 – k / kmax)2                         (5) 

where kmax is the maximum number of iterations. The form of 
Function R is changed into a quadratic function. It can be 
calculated that the value of R decreased slower than that in 
Equation (2). 

2) Producing several mass centers in later iterations: if k 
≤ γkmax, produce a new mass center XCnew from XC in an 
iteration time; if k > γkmax, several new mass centers Xj

Cnew, j = 
1, 2,…, M are generated from XC in an iteration time with the 
Big Bang phase and Big Crunch phase repeating M times. γ is 
a  constant parameter in the range of (0, 1] and M is the 
number of those mass centers. Revising Equation (4), the 
calculation of XC for next iteration follows the following 
equation. 

XC = (∑j=1,2…,M Xj
Cnew/fj

Cnew) / (∑j=1,2…,M 1/fj
Cnew)          (6) 

where fi
Cnew is the value of the objective function with respect 

to Xj
Cnew . Multiple mass centers provide more opportunities for 

XC  to exit a local area through the weighted average based on 
Equation (6). This contributes to accessing a solution closer to 
the global optimum solution within the limited searching area, 
instead of a local optimum solution.  

An improved Big Bang-Big Crunch algorithm is put 
forward with taking the above two improvements. The 
improved algorithm comprises Equations (1), (3), (5) and (6), 
and Table I displays its process. 

TABLE I.  PROCESS OF THE IMPROVED ALGORITHM 

- set initial population X0
C = [x01, x01,…, x0n ]; 

- define the maximum number of iterations kmax , para-
meter γ , and error tolerance ε; 

- for k = 1 : kmax 
   - if k ≤  γkmax , define the number of mass center M = 1, 

- else if k >  γkmax , define the number of mass center M 
= m (m > 1); 

- for j = 1 : M 
% the Big Bang phase 

   - for i = 1 : N  Xi = XC + r·R(k) ·L/2, fi = f(Xi) end 
% the Big Crunch phase 

  - XCnew = (∑i=1,2…,N Xi/fi) / (∑i=1,2…,N 1/fi), fj
Cnew

 = f(Xj
Cnew)

  - end for 
  - XC = (∑j=1,2…,M Xj

Cnew/fj
Cnew) / (∑j=1,2…,M 1/fj

Cnew)  
- if | fC – f(XC) | < ε, break 

- end for 

III. MODEL FOR DAMAGE IDENTIFICATION 

A cantilever beam is selected as an example for damage 
identification in this study. It is divided into a finite model with 
10 elements, and the geometry properties are shown in Figure I. 
There are total 20 dofs in the cantilever beam model. Because 
the height-to-length ratio of the beam is 1/30 less than 1/20, the 
beam should be modeled as an Euler-Bernoulli beam. Hence, 
the shear effect is ignored, and the considering material 
properties of the beam are that Young’s modulus E = 34 GPa 
and density ρ= 2800 kg/m3.  

 
FIGURE I.  THE FINITE MODEL OF CANTILEVER BEAM WITH 10 

ELEMENTS.  

A. Objective Function 

Damage identification of beam structures using frequency-
domain data is to minimize an objective function with respect 
to natural frequencies and mode shapes of the structure. The 
objective function is established as the following equation 
combining the calculated data with measured data [4].  
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f = ∑i=1,2…,NOR {(|ωi
C – ωi

M| / |ωi
M|)2 + [1– (Φi

C – Φi
M)2 / (ǁΦi

Cǁ
2ǁΦi

Mǁ2)] }  (7)

where superscript ‘C’ represents the calculated data and 
superscript ‘M’ stands for the measured data; NOR is the 
number of measured orders; ωi and Φi are the i-th order natural 
frequency and its corresponding modal respectively.  

B. The Calculated Data 

The natural frequency and modal of beam structures can be 
calculated based on a finite model. It is a generalized 
eigenvalue problem subject to the following equations. 

(K – ωi
CM)Φi

C = 0                                   (8) 

K =∑i=1,2…,nel (1– αi)Ki
e                            (9) 

M =∑i=1,2…,nel (1– βi)Mi
e                          (10) 

where K and M are the assembled stiffness and mass matrixes 
respectively; Ki

e and Mi
e are the element stiffness and mass 

matrixes of the i-th element  respectively; nel is the number of 
elements; αi and βi are the damage coefficient of the stiffness 
and mass of the i-th element respectively, and they stand for 
damage extents of elements. Note that 0 ≤ αi, βi ≤ 1, where 1 
means completely destroyed and 0 represents intact.  

C. The Measured Data with Measurement Noise  

The measured frequency and modal data are generally 
influenced by environment noise in practice. Herein, artificial 
noise is added into the simulation of damage identification 
based on the following equations [8]. 

ωi
M = ωi (1+ρωri)                           (11) 

Φi
M = Φi (1+ρΦri)                          (12) 

where ρω and ρΦ are the noise level of natural frequency and 
modal respectively; ri is a normal random parameter. 

IV. NUMERICAL EXAMPLES 

The original BB-BC and the improved BB-BC are applied 
to identify locations (the damaged element number) and extents 
(damage coefficient α and β) of damages in the cantilever beam 
shown in Figure I. Table II lists several different cases which is 
assumed to examine the performance of the improved BB-BC. 
The parameters in the improved BB-BC are: the number of 
candidates N = 60, the maximum number of mass centers M = 
2, the maximum iteration time kmax = 3000, parameter γ = 0.5 
and the measured order NOR = 5 (which is a half of the number 
of elements). Simulation of each case is carried out 50 times, 
and Figure II presents the statistical results where the bar 
represents the mean value of damage coefficient of all 50-times 
simulations.  

TABLE II.  THE LIST  OF IDENTIFIED CASES  

Case Algorithm 
Damaged 
element 

Damage extent 
 (α, β) 

Noise level 
(ρω, ρΦ) 

1 
The original 

BB-BC 
5 (15%, 5%) (0%, 0%) 

2 
The improved 

BB-BC 
5 (15%, 5%) (0%, 0%) 

3 
The improved 

BB-BC 
5 (15%, 5%) (0.5%, 5%)

4 
The improved 

BB-BC 
5 (15%, 5%) (1%, 10%)

5 
The original 

BB-BC 
2, 8, 9 

(5%, 0%), (15%, 
5%), (30%, 10%),

(0%, 0%) 

6 
The improved 

BB-BC 
2, 8, 9 

(5%, 0%), (15%, 
5%), (30%, 10%),

(0%, 0%) 

7 
The improved 

BB-BC 
2, 8, 9 

(5%, 0%), (15%, 
5%), (30%, 10%),

(0.5%, 5%)

8 
The improved 

BB-BC 
2, 8, 9 

(5%, 0%), (15%, 
5%), (30%, 10%),

(1%, 10%)
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Figure II. (A) 
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Figure II. (B) 

FIGURE II.  RESULTS OF SIMULATIONSL: (A) RESULTS OF CASES 1 
TO 4;  (B) RESULTS OF CASES 5 TO 8; . 

Cases 1 to 4 are single site damage identifications where 
only Element 5 is destroyed, and Cases 5 to 8 are multiple sites 
damage identifications with Elements 2, 8 and 9 damaged. 
Figure II demonstrates that the original BB-BC cannot identify 
the locations and extents of damages; in contrast, the improved 
BB-BC finds out the damaged locations accurately and detects 
the damaged extent with tolerable errors. Compared Cases 2, 3 
and 4 (or Cases 6, 7 and 8), the improved BB-BC accomplish 
damage identification with the impact of different noise levels. 
The precisions of the results are indistinguishable with the 
noise level up. The improved BB-BC performs insensitive to 
the measurement noise in structural damage identification. The 
maximum relative error between the actual and the simulated 
values is less than 2% among all the cases. This illustrates that 
the improved BB-BC is accurate for damage identification of 
beam structures. Moreover, the precision of the improved BB-
BC depends on the number of candidates N and the maximum 
number of mass centers M. The measured order NOR and the 
maximum iteration time kmax determine the achievement of 
damage identification and the convergence speed. 

V. CONCLUSIONS 

In this paper, an improved Big Bang-Big Crunch algorithm 
is proposed for damage identification of beam structures using 
the frequency-domain data. It has been verified that the 
improved algorithm can accurately detect the locations and 
extents of damages in beam structures. The drawback that the 
original BB-BC is easily trapped into local optimum solution 
has been conquered by the improved BB-BC. With advantages 
of high precision and insensitivity to measurement noise, the 
improve algorithm is believed to be a useful tool in practical 
structural damage identification. 
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