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Abstract—Aiming at the problem that the standard particle 

swarm optimization algorithm has a slow convergence speed and 
easy to fall into the local optimum, the method of region-division 
is introduced to dynamically adjust the inertia weight and 
learning factors of the particle to achieve the balance between 
optimization ability and convergence speed, and adaptive 
mutation operation are used to avoid the population falling into 
the local optimum. The proposed algorithm is applied to the 
target direction finding by a tetrahedral-based ultra-short 
baseline positioning system. Simulation experiments show that 
the proposed algorithm can effectively improve the accuracy of 
direction finding and achieve the purpose of accelerating the 
convergence of PSO algorithm. 

Keywords—particle swarm optimization; ultra-short baseline; 
region-division; adaptive 

I. INTRODUCTION 

The ultra-short baseline (USBL) positioning system is a 
commonly used underwater acoustic positioning system, which 
is attributed to its low price, easy to install and operate and 
having a certain accuracy. The core problem of USBL system 
design is to create a reliable system that can accurately 
determine the position of underwater objects relative to the 
USBL system under real ocean conditions[1-3]. The USBL 
system calculates the distance and bearing angle of the target 
by measuring the Time-of-Arrival (TOA) and Time-
Difference-of-Arrival (TDOA) of the acoustic signal 
propagation. 

The operating conditions of the USBL system may be very 
unsatisfactory. The existence of environmental and system 
noise, multipath effect, refraction of sound rays and other 
factors can significantly reduce the positioning accuracy of 
USBL system, and may cause abnormal operation of the 
system. To overcome these difficulties is the subject of recent 
researches to improve the accuracy and stability of USBL 
system. The latest researches in this field mainly focus on the 
development of modern signal processing methods and the 
design of receiving elements for USBL system[4-7]. One of the 
most promising methods is to place the receiving elements 
more efficiently to resolve the ambiguity of the object position 
and avoid the situation where the target positioning accuracy is 
poor due to the positional relationship between the object and 
the receiving elements of the USBL system. 

A planar array can locate the target in the entire space or in 
a half space bounded by the plane of the array, which can met 
the system requirements in many cases. Chen et al.[8] studied 

the positioning principle of planar arrays and analyzed the 
system error in detail. Min et al.[9] and Xiang et al.[10] 
proposed an 8-element planar array, and effectively solved the 
phase difference ambiguity problem by increasing the number 
of elements. ARKHIPOV M.[11, 12] introduces the design of a 
3-D USBL system receiving array, where the improving 
accuracy and stability is achieved by positioning the target by 
using a complete set of the elemental (three-element) USBL 
arrays. 

The TDOA based Direction-of-Arrival (DOA) estimator 
performs data processing in the time domain. The azimuth 
angle and elevation angle of the target are calculated directly 
from the estimated TDOA and do not need the time-consuming 
2-D search over the array manifold as the beamformer does, 
therefore, TDOA technology is more efficient at calculating 
load[2]. Currently, the Least Squares (LS) algorithm is the 
most important method of DOA estimation based on 
TDOA[13], however, the LS algorithm can achieve the ideal 
performance only when the array is geometrically symmetric. 
The performance of the Maximum Likelihood (ML) based 
method can reach the theoretical bound, but requires more 
stringent conditions. Evolutionary algorithms are swarm-based 
intelligent optimization methods, some of which have been 
studied for DOA estimation and positioning. Zaman et 
al.[14,15] proposed a Genetic Algorithm (GA) hybridized with 
pattern search for the joint amplitude and DOA estimation 
using a special array of L-type shape. Lui et al.[16] used 
Particle Swarm Optimization (PSO) to locate the signal source 
based on TDOA measurement. In [17], the GA and PSO 
algorithm are used to estimate the target direction using TDOA 
measurement on a 3-D acoustic sensor array.  

In order to further improve the positioning accuracy of the 
USBL system, we propose an improved PSO algorithm for 
tetrahedral-based USBL system positioning. In order to 
improve the convergence speed of the standard PSO algorithm 
and solve the premature convergence problem, we proposes the 
following improvements: the population is divided into 
different regions according to the distance between each 
particle to the global optimum. The particles adaptively adjust 
their inertia weights and learning factors by different strategies 
to achieve the balance between optimization ability and 
convergence speed, and the adaptive mutation operation is 
introduced to avoid the population falling into the local 
optimum. Simulation experiments show that the proposed 
algorithm can effectively improve the positioning accuracy and 
stability of USBL system. 
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II. USBL POSITIONING  

Acoustic signal propagates underwater in the form of 
spherical waves, and their curvature will affect the TDOA 
measurement. However, considering that the length of the array 
baseline is much smaller than the distance between the target 
and the USBL system, the arrival wave can usually be 
approximated as a plane wave (PW). Morgado et al.[18] 
studied the positioning problem in the reference coordinate 
system based on PW and spherical interpolation (SI) method, 
with the conclusion that PW technology is more effective and 
less sensitive to sensor noise than SI method. This conclusion 
holds as long as the ratio between the baseline length and the 
slant range of the target is greater than 4%.. 

Therefore, we assume that the operating environment of the 
USBL system is in compliance with far-field conditions. At the 
same time, we also assume that the transducer on the target is 
time synchronized and that the processing delay of the 
transceiver is known or negligible. The average sound speed of 
the acoustic signal in the water is known and the received 
signal is unaffected by multipath effect.  

To simplify the description, we only consider the problem 
of how to determine the position of the underwater target 
relative to the USBL system. The coordinate system shown in 
Figure 1 is established with the center of the USBL system as 
the origin. Suppose there are M receivers, and their coordinates 
are expressed as [ , , ]T

m m m mx y zp , where {1, 2,..., }m M . 
The acoustic signal arrives at the USBL system array with 
azimuth angle  and elevation angle  . Define 3s R  as the 
normalized direction vector point to the direction of the target. 

[cos( )cos( ), sin( ) cos( ), sin( )]T    s               (1) 

 
FIGURE I.  POSITIONING PRINCIPLE OF USBL SYSTEM 

According to the PW approximation, the true value of 
TDOA between a pair of receivers is given by: 
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where mt  is the TOA at the receiver m, and c is the sound 
speed. Collect all possible TDOA values between receiver pairs 
into a single vector: 
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where k is the total number of pairs of M receivers, given 
by ( 1) 2k M M   . 

Let the measured value of TDOA is ,î j , and the vector 

consists of all possible TDOA measurements between receiver 
pairs is expressed as: 

1 2 1,3 ( 1),
ˆ ˆ ˆ ˆ, , , ]M

T
M    ，=[                  (6) 

Thus, we define the following cost function by the 
difference between the measured values of TDOA and their 
true values: 

2
ˆ( , )f                                   (7) 

where 
2
  represents the 2-norm of the vector. The purpose of 

the DOA estimator based on PSO algorithm is to minimize 
( , )f    according to   and   and find its global optimal 

solution. 

III. IMPROVED PSO  

A. standard PSO 

The mathematical description of the standard PSO is that 
there are N particles in a D-dimensional search space (solution 
space), and each particle is regarded as a search individual in 
the search space. Each particle has its own position and 
velocity vector, and the vector size depends on the parameters 
involved in the optimization problem. In each iteration of PSO, 
the particle updates its position by tracking its historical 
optimal solution and the global optimal solution, and updates 
its velocity and position vector by (8) and (9), respectively. 

1
1 1 2 2( ) ( )k k k k k k k k

Id Id rand bestId Id rand best Idω η r η r     v v p x g x  (8) 
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1 1k k k
Id Id Id
  x x v                             (9) 

where, v represents the velocity vector, x represents the 
position vector, and the subscript Id is the particle identifier; 
ω is the inertia weight; and 1η and 2η are the learning factors in 

the range of [0, 4], usually take 1 2 2η η= = ; 1randr and 2randr are 
uniformly distributed random floating point numbers within [0, 
1] that give the particle the ability to move within the search 
space. bestIdp is the optimal position vector that the particle has 

obtained so far, and bestg is the global optimal position vector of 
the entire population. 

B. Improved PSO 

In many improvement of PSO algorithms[19-22], 
accelerating the convergence speed and avoiding falling into 
the local optimal solution are the main research directions. 
Based on the standard PSO algorithm, we introduce region-
division based on the Euclidean distance between particles, and 
divides the population into two parts according to its Euclidean 
distance from the global optimal particle. The particles closer 
to the global optimal particle focus on enhancing its local 
search ability, while the particles farther away from the global 
optimal particle focus on enhancing its global search ability. 
On this basis, we give the improvement strategies as follows.  

1) Region-division based on Euclidean distance  
In the i-th iteration, define ijL as the Euclidean distance 

between j-th particle and the global optimal particle, which can 
be calculated as: 

2

1

( )
D

ij bestk jk
k

L g p


=                     (10) 

where D represents the dimension of the search space, 

bestkg and jkp  represents the component of the global optimal 

particle and the j-th particle in the k-th dimension, respectively. 

All particles are sorted according to the Euclidean distance 
from the global optimal particles. The entire search space is 
divided by a limit limL  (the selection of limL  have to ensure 

that the number of particles satisfying limijL L reaches a 

certain proportion, for example, 40% of the population) into 
two parts: the inner region which contains "good" particles; and 
the outer region which contains "poor" particles. 

2) Adaptive adjustment of inertia weight and learning 
factors 

In (8), k
Idv  represents the flight speed of the particle at 

previous moment, k
bestIdp and k

bestg represent the “self-
experience” and “social experience” of the particle, 
respectively. It can be seen that the flight trajectory of the 
particle is affected by both the inertia weight and the learning 
factors. The inertia weightω controls the effect of the historical 
moment on the current state, which can balance the global 
search ability and local search ability of the particle. Larger 

inertia weight help to enhance global exploitability (larger 
search range), while smaller inertia weight tend to perform 
local searches at the current location. 1η and 2η then determine 
the influences by the individual optimum and the global 
optimum. 

Based on the region division of the search space, we expect 
that the "good" particles have better local search ability, so as 
to achieve better local search within the inner region; at the 
same time, the "poor" particles located in the outer region can 
have better global search ability, in order to find potential better 
regions, so as to avoid the population falling into local optimal 
solution. On this basis, we design a linear strategy to adaptively 
adjust the inertia weight and learning factors of each particle. 
Let i and j denote the i-th iteration of the population and the j-th 
particle, respectively. it represents the i-th iteration, 

maxt represents the total number of iterations. maxL and minL  
represent the maximum and minimum values of the Euclidean 
distance between any particle and the global optimum, 
respectively. The inertia weight and learning factors are 
calculated as follows: 

lim max minmax
min lim

max max lim

min max minmax
min lim

max lim min

( ) ( )
,

( ) ( )
,

iji
ij

ij
iji

ij

L L ω ωt t
ω L L

t L L
ω

L L ω ωt t
ω L L

t L L

  
           

-

-
 (11) 
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  (13) 

In (11), ijω is the inertia weight of the j-th particle in the i-

th iteration, maxω and minω  are the maximum and minimum 

values of the inertia weight, respectively, where maxω = 0.9 and 

minω = 0.4. For the particles in the outer region, the farther it is 
away from the global optimum, the better global exploitation 
ability it has; for the particles in the inner region, the closer it is 
to the global optimum, the better local search ability it has. The 

component max

max

it t

t

-
 ensures that all particles have better 

regional search capabilities in the later stages of the iterations. 
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In (12) and (13), 1ijη and 2ijη represent the learning factors 

of the j-th particle in the i-th iteration, respectively. 

maxη and minη  are the maximum and minimum values of the 

learning factors, respectively, where maxη = 3 and minη = 1. For 
particles in the outer region, the farther it is away from the 
global optimum, the more it is affected by "self-experience" (ie, 
the larger value of 1η ), and the less it is affected by "social 

experience" (ie, the smaller value of 2η ). For particles in the 
inner region, the closer it is to the global optimum, the less it is 
affected by “self-experience” and the more it is affected by 
“social experience”. 

3) Adaptive mutation 
Based on the above improvements, the convergence speed 

and accuracy of the PSO algorithm have been greatly improved, 
but there is still possibility of falling into local optimum and 
unable to jump out. therefore, we propose the adaptive 
mutation operation. 

First, we determine whether the particles are concentrated 
in a very small region, and the criterion is to satisfy one of the 
following two conditions [19]: 

a) bestg has no improvement in successive b iterations, 

the ideal value of b is: 

max

5% 10%
b

t
                            (14) 

b) Define the Euclidean distance between the particle j to 
the global optimal particle is gjL , and the distance function 

between all the particles and the global optimum as: 

1,

1
( )

N

j j g gj

s L
πL 

=                            (15) 

which satisfies:  

( ) a
is L t N D e                          (16) 

where a is a constant between [0,1]. 

The premise of the mutation operation is that the particle 
satisfies the condition of the concentrated minimum region, and 
the mutation probability is decided by its Euclidean distance to 
the global optimum, calculated as follows: 

max

max min

( )ijL L
p d

L L


 


                            (17) 

where, d is a constant between [0, 1] which is used to adjust 
the range of the mutation probability. The smaller the 
Euclidean distance between the particles and the global 
optimum, the greater the probability of mutation. For 

particle ijp , a random number r between [0, 1] is generated, 

and if it is satisfies r p , the particle performs the mutation 

operation. First, a particle ikp in the out region is randomly 
selected, and then perform the mutation operation according to 
the following strategy. 

( )new
ij ij ij ikr   x x x x                      (18) 

where, ijx and ikx are the position vectors of the 

particles ijp and ikp , respectively. new
ijx is the position vector of 

particle ijp after the mutation operation.  

C. Algorithm process 

The USBL positioning algorithm based on improved PSO 
can be summarized as follows: 

Step 1: Enter the known parameters, define the required 
variables and randomly generate a population of N particles, 
randomly initialize the position and velocity of each particle; 

Step 2: Calculate the fitness of each particle, and store the 
historical optimum of each particle and the global optimum, 
respectively; 

Step 3: Calculate the distance between each particle and the 
global optimum according to (10), and divide the population 
into inner and outer regions; 

Step 4: Determine whether the population is concentrated in 
a very small region, if so, perform the mutation operation and 
go to Step 6, otherwise go to Step 5; 

Step 5: For each particle, calculate its inertia weight and 
learning factors according to (11)~(13); 

Step 6: Update the velocity and position of each particle 
according to (8) and (9); 

Step 7: Determine whether the algorithm satisfies the 
stopping criterion. If yes, proceed to the next step, otherwise go 
to Step 2; 

Step 8: Output the global optimum, that is, the azimuth 
angle and elevation angle of the target. 

IV. SIMULATIONS  

The performance of the proposed method was tested by 
simulation experiments. The experimental environment is as 
follows: CPU is Intel Core i7-4710MQ; RAM is DDR3L-8GB; 
operating system version is: Windows 8.1; Matlab version is 
R2014a. 

The parameters of the simulation have the following values: 
the sound speed in the water is set to a constant 1500c m s ; 
the arrangement of the array elements is shown in Figure 1, and 
the distance between each array element and the origin is set to 
0.15m . In each run, the measured value of TDOA is calculated 
by the following equation. 
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, ,ˆ j i
i j i j

R R

c
 


                             (19) 

where ,i j  is the additive white Gaussian noise with mean value 

of 0 and a standard deviation of  . 

When using the improved PSO (iPSO) based algorithm 
proposed in this paper, the search space of the particle is 
limited to 0 180φ   , 0 90θ   , and the position vector 
of the particle is randomly initialized in a uniform distribution 
manner. The range of particle velocity is set to [-2, 2]. The 
number of particles is set to 100 and the maximum number of 
iterations is set to 100. Other parameters are set as a = 0.5, b = 
7, d = 0.7. 

Monte Carlo simulations were performed to evaluate the 
proposed USBL positioning algorithm given different DOA 
values under PW approximation. Assuming that the signal 
reception conditions allow us to measure the time delay 
without error, the measurement accuracy is limited only by the 
signal sampling frequency, so it is assumed that 0.5 sf = , 

where 200sf kHz is the sampled frequency. We assume the 
slant range to the target is 1000R m . During the simulation, 
the azimuth angle changes from 0° to 170°, the elevation angle 
changes from 0° to 80°. The azimuth angle and elevation angle 
are all changing by step of 3°, then we have a total of 1624 
sampling points. For each point, 20 random experiments were 
performed and the azimuth angle and elevation angle are 
calculated using the LS algorithm and the iPSO based 
algorithm, respectively, and the mean and standard deviation of 
positioning error were calculated for the estimation results. The 
experimental results are shown in Figure 2 and Figure 3. It can 
be seen from Figure 2 and Figure 3 that the iPSO based 
positioning algorithm can achieve the purpose of improving the 
positioning accuracy.  
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Figure II. (a) mean of   error 
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Figure II. (b) standard deviation of   error 
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Figure II. (c) mean of   error 
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Figure II. (d) standard deviation of   error 

FIGURE II.  POSITIONING RESULTS OF LS ALGORITHM 
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Figure III. (a) mean of   error 
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Figure III. (b) standard deviation of   error 
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Figure III. (c) mean of   error 
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Figure III. (d) standard deviation of   error 

FIGURE III.  POSITIONING RESULTS OF IPSO ALGORITHM 

Repeat the above simulation to test the effect of noise 
intensity on the two methods by changing the value of  . The 
average values of the DOA estimation error of each algorithm 
under different noise conditions are calculated. The test results 
are shown in Figure 4. It can be seen that the DOA estimation 
error of iPSO based algorithm has lower value at any noise 
conditions, which means that iPSO based method has stronger 
stability against noise influence. 
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FIGURE IV.  DOA ESTIMATION ERROR AT DIFFERENT NOISE 
INTENSITIES 

In order to further analyze the performance between the 
PSO algorithm and the iPSO algorithm,  the target DOA is 
calculated by the PSO algorithm and the iPSO algorithm 
respectively in the above simulation, and the average fitness 
values of these two algorithms are analyzed. The result is 
shown in Figure 5. As can be seen from Figure 5, the iPSO 
algorithm can achieve convergence faster than the PSO 
algorithm. 
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V. CONCLUSION 

In this paper, an improved PSO algorithm based on region-
division is proposed. The algorithm divides all particles into 
two parts and dynamically adjusts the inertia weight and 
learning factors of the particles to achieve the balance between 
optimization ability and convergence speed, and introduces 
adaptive mutation operation to avoid the population falling into 
local optimum. The proposed algorithm is applied to the DOA 
estimation of the target by a tetrahedral-based USBL system. 
Simulation experiments show that the proposed method can 
effectively improve the accuracy and convergence speed of 
direction finding. 
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