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Abstract—The analytic function of complex variable 
including a material parameter is analyzed fully. Typical crack 
model is considered to orthotropic materials. By constructing new 
stress function, the mechanic analysis for crack-tip singular stress 
field is carried out. Type boundary problems of partial equation 
are studied and the formulae for stress fields are derived. It is 
concluded that the stress fields in w-plane of the orthotropic 
material are similar to that of the isotropic material.  
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I. INTRODUCTION 

Fracture mechanics of non-homogeneous materials or 
anisotropic materials has more applications in macroscopically 
heterogeneous materials. Prediction of crack initiation and 
propagation must be based on the fracture mechanics. 
Fiber-reinforced polymer matrix materials are the most typical 
composites and usually modeled as anisotropic materials at the 
macroscopic level [1]. The orthotropic plate may have been the 
base of composites in common use. So this paper focuses on the 
fracture of orthotropic materials. Singular stress fields at crack 
tip are mainly analyzed. 

Linear elastic fracture mechanics (LEFM) has been found to 
be a very useful tool for design purposes and investigated in 
great detail for many engineering materials, whether isotropic 
or anisotropic [2]. The analysis of stresses near the crack tip 
holds an essential part of LEFM. The methods of elasticity are 
used to obtain stresses and displacements in cracked bodies [3]. 
The only viable method to solve stress-field problems in 
anisotropic composites is using complex analytic function 
theory, and the results have been reported [4,5]. But the general 
solution may have some weakness. So it is necessary to make 
up a new solution, and this is the paper purpose.   

II. COMPLEX FUNCTION REPRESENTATION  

It is well known that the basic complex variable z  and its 

conjugate z  are defined as ( 1i ): 

iyxz  , iyxz   

For the convenience of investigation, another complex 
variable w  is also introduced, that is:  

ihyxiYXw  , ihyxiYXw   

and or , xX  , hyY   

Where, the constant h  is real. The derivative relation must 
be as follows:   
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For the crack problem, rectangular and polar coordinates 
are shown in Figure I. The polar coordinate system centered at 
the crack tip may be adequate for local stress analysis. In terms 
of the polar coordinates (in z-plane and w-plane), the complex 
variables can be written as: 




sincos

sincos

iRRaiYXw

irraiyxz 

                (1) 

Thus, there are following relations:  

coscos rR  , sinsin hrR  , 
tantan h  

When 1h  , then rR  ,  . The w-plane is also 
reduced to z-plane.   

 
FIGURE I. SCHEME OF THE COORDINATES IN Z-PLANE AND 

W-PLANE 

Consider an analytic function of complex variable, 
)(w , and it can be expressed as:  
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),(),(ImRe)( yxiQyxPiQPiw    (2) Where, P(x,y) and Q(x,y) are real function. The derivative 
of   with respect to w  is given by  
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Obviously, it is easy to derive the following differential 
equation:   
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Which can be written as follows:   
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Therefore, two functions P and Q are harmonic functions in 
w-plane.  

III. BASIC EQUATIONS AND AIRY STRESS FUNCTION  

The plane stress state of composite sheets is common and 
very importance for the application. It is the key point to solve 
stress-field problems in orthotropic materials. The equilibrium 
equations are (body forces are absent):  
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The compatibility condition of strains must satisfy as 
follows:  
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Suppose the principal elastic directions coincide with the 
coordinate directions, and only consider the linear elastic 

strain-stress relations, then the constitutive equations for the 
orthotropic materials are given as (plane stress state):  
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It is well known that the Airy stress function U=U(x,y) is 
defined by:  
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The equilibrium equations in Eqs (6) can be satisfied. By 
using above relations, the governing equation of the Airy stress 
function, the compatibility equation (7) may be written as: 
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Where xy
xy

x

G

E
B 2  , 

y

x

E

E
C  .  

The Airy stress function U can be expressed by the real 
function, P(x,y) or Q(x,y). Consider an infinite plane with the 
crack along the x-axis shown in Figure I, and consider the 
problem of Mode I loading. The Airy stress function can be 
determined by the form: 

x

Q
yAPAyAAU



 2121 ImRe
     (11) 

The derivatives of U with respect to x or y are given by:  
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On the basis of above equations, and by using Eq. (4) and 
Eq. (5), then Eq. (10) becomes: 
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Thus the solution must be followed by the characteristic 
equations, also reduced to: 

02,0 224  hBCBhh        (14) 

The solution of the characteristic equation (14) is given as:   
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So the positive real root can be obtained, that is:  
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For example, GPaEx 120 , GPaEy 30 , 

GPaGxy 26 , 3.0xy , then giving: 4142.1h . 

And again, GPaEx 30 , GPaEy 120 , 

GPaGxy 26 , 077.0xy , then giving: 7071.0h .  

So, the parameter h can be 1h  also be 1h .  

Substituting the derivative relation Eq. (12) into Eq. (9), the 
stresses can be expressed as:  

yx

Q
yA

x

Q
A

yx

P
A

x

Q
yA

x

P
A

yx

Q
yA

yx

Q
A

y

P
A

xy

y

x





































2

3

22

2

2

2

1

3

3

22

2

1

2

3

2

2

22

2

1 2







        (17) 

Define   )(w . Thus,   )(w . 
Then, some relations are given as:  
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Using above relations, the stresses in Eq. (17) can be written 
as: 
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Evidently, the analytic function   can be as a new usual 
stress function.   

IV. SOLUTION OF STRESSES  

For Mode I crack problem, the plane with a line crack is 
subjected to symmetric loading ~  at infinity along y direction, 
and the stress boundary conditions are:  

0 xyy 
 at 

ax 
 and 0y  (free crack surfaces) (19) 

 ~y , 
0xy

 at 
x

 and 0y         (20) 

In order for the stress function to meet the preceding 
boundary value problem, the complex function can be selected 
as:   
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Substituting the stress function Eq. (21) into Eq. (18), and 
also using the boundary conditions Eqs. (19) and (20), the 
coefficients A1 and A2 can be derived as:  

 ~,~
21 hAA   

The stresses can be determined as follows:  

2/322

22

2/322

2

22

2/322

32

22

2

)(
Re~

)(
Im~Re~

)(
Im~Re~

aw

yha

aw

hya

aw

w

aw

yha

aw

wh

xy

y

x






















     (22) 

The complex variable w  can also be expressed in polar 
coordinates, that is: 

]sin[cos]sin[cos)][exp(  ihriRiRaw   (23) 

At the near-tip ( ar  ), the stresses of the orthotropic 
materials can be obtained (in z-plane):   
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Where: aK I ~ ,  sincos ih . And also 
the stresses can be given as (in w-plane): 
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For the isotropic materials ( 1h ), the stresses can be 
reduced to:  
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Obviously, the stress fields in w-plane for the orthotropic 
material are similar to that of the isotropic material. 
Nevertheless, the stress strength coefficients are not uniform 
( 1h ). 
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