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Abstract: The skeleton plays an important role in sex determination in forensic anthropology. The 
skull bone is considered as the second best after the pelvic bone in sex determination due to its 
better retention of morphological features. Different populations have varying skeletal 
characteristics, making population specific analysis for sex determination essential. However, most 
previous studies have used the traditional discriminant function method, which is highly dependent 
on the population, and does not consider the uncertainty in the process of sex identification. In view 
of the above problems, this paper proposes a method of sex identification based on fuzzy decision 
tree. The proposed method is to improve the uncertainty, by constructing the fuzzy function of 
statistical information based on the cranial measurement item, as the basis of the fuzzy decision 
process, the classification factor is determined at the end of the training process, and a fuzzy 
decision binary tree is established. The experimental results show that the proposed method is 
effective and can provide reference for the practical application of gender discrimination. 

1. Introduction 
The skeleton plays an important role in sex determination in the field of forensic anthropology. 

Though, entire skeleton is essential for accurate results, it is rarely available completely and in good 
condition. Therefore, it is important to apply appropriate methods for gender determination from 
skeletal remnants [1,2]. Previous studies [3-6] indicate that pelvis is the most reliable indicator of 
sex assessment, and skull is the second one. However, not all forensic cases provide a complete 
skeleton due to breakage or postmortem destruction, while the skull can be well preserved in most 
cases since it is composed of hard tissue. So the skull is the most commonly used skeleton part in 
forensic anthropological analysis. Morphology discriminant method and measurement discriminant 
method are the two main techniques employed by forensic anthropolgists for sex determination [7]. 
The earliest studies using morphological assessment were reported in [8-10]. The morphological 
method is greatly influenced by the observer and needs a certain degree of professional experience. 
At present, the method of sex discrimination based on skull is still mainly used in measurement 
discrimination method [11-15]. Compared with the morphological discriminant method, the 
measurement discrimination method is more objective, but the accuracy rate is not enough, because 
there is a overlap between the male value and the female value in many measurement indexes, 
which makes the uncertainty in the sex identification process. 

In order to solve the uncertainty in the process of skull sex identification, we apply the fuzzy 
method to gender identification, and propose a method of skull sex identification based on fuzzy 
decision tree. Combining the decisional impact of more measurements for sex determination 
through the construction of a Fuzzy Decision Tree with Fuzzy Sets taylored for each measurement 
based on the statistical distribution of measurement values from the raw data set on each sex class. 

The distribution of skull measurements from can be used to devise fuzzy functions in order to 
model the measurement’s appartenance to either the male or female class and such an approach will 
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take better advantage of the uncertain values than a classical crisp model. Since a Fuzzy Set is used 
to describe the membership degree of an instance to a given class and a very popular Fuzzy Set 
model follows a Gaussian curve to model such membership, Fuzzy Sets can be efortlessly generated 
for each skull measurement when provided with the mean and standard deviation values for either 
the male and female classes. 

This article is arranged as follows: the second section is about the materials and the methods; the 
third part is about the discussion; the last part is conclusion. 

2. Materials and Methods 
2.1 Materials 

It is carried out on a database of 267 whole skull CT scans (153 females and 114 males) on 
voluntary persons that mostly come from Uighur ethnic group in North of China, age 18-88 years 
for females and 20-84 years for males. The images of each subject are restored in DICOM format 
with a size of approximately 512 × 512 × 250. Each 3D skull surface is extracted from the CT 
images and represented as a triangle mesh including about 220,000 vertices. All the skulls are 
substantially complete; that is, each skull contains all the bones from calvarias to jaw and has the 
full mouth of teeth. In this paper, all skull samples are unified and normalized using reference paper 
[16].  

2.2 Fuzzy Decision Tree Methods 
2.2.1 Fuzzy Set Construction 

Sex determination is better conducted within a given population and therefore a data set for this 
problem will contain only information characterizing the members of that population. The vaster the 
data set, the better chances of exploiting the patterns inside it for sex determination. Fuzzy 
Functions for sex class (male or female) membership evaluation can be constructed based either on 
the statistical study of each of the attributes in the data set that usually reveals a normal trend of the 
data and provides values for the mean and standard deviation for each sex. In the vast majority of 
data sets providing skull measurement information on archaeological or forensic data, the male and 
female classes are characterized by Gaussian shaped normal membership functions that can be 
parameterized entirely using the mean and standard deviation values. On the other hand, when 
working on a population that was previously published, the Fuzzy Functions may be constructed 
based on the statistical values for mean and standard deviation published in the literature for that 
population.  

2.2.2 Fuzzy ID3 Approach for Skull Sex Determination 
Previous studies [17] have applied decision trees to bone sex identification and achieved good 

results. However, due to the uncertainty of some measurement values of the skeleton, there will be 
misjudgement. If a wrong categorical crisp decision was to be replaced with a decision based on 
fuzzy sets that copes better with uncertainty the impact of a choice on the problematic measurement 
will not be as drastic with respect to the overall final classification. With this idea in mind, the 
proposed Fuzzy ID3 approach was elaborated always taking into account the requirements of the 
Skull Sex Determination problem. Conceptually,the proposed decision tree variant follows the 
classical ID3 algorithm but transforms the operations used in construction so that they are based on 
the fuzzy membership values for each sex class. The steps of the algorithm are as follows. 
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ID3(Example,Target,Attributes)

The Root node that creates the tree
If Examples are all positive, return label =+  single-node tree Root
If Examples are all negative, return label =+  single-node tree Root
If Attributes is empty, then return the single-node Root, the most common 
Target_attribute value in label=Examples
Otherwise start

Root's decision attribute  A
For each possible value of A, 

The best attributes of the ability to classify examples in A Attributes

iv
Add a new branch to test A=     under Root
Let                     be a subset of Examples that satisfies A attribute value 
If                     is empty

iv

ivplesExam iv

ivplesExam
Add a leaf node to the new branch, the most common 
Target_attribute value in the label=Examples of the node
Otherwise, add a subtree ID3 under the new 
branch(                  ,Target_attribute,Attributes-{A})

ivplesExam

End
Return Root  

The proposed method follows the classical process used for classical decision trees. The main 
differences occur only when aspects of fuzziness and uncertainty are met. The algorithm is 
recursive. Like in the case of classic decision trees, the root node starts by having all the instances 
in the data set whose fuzzy membership function is initialized to 1 and the attribute set contains all 
the measurements in the initial data set.  

For each measurement in the attribute set the fuzzy information gain is computed and the 
measurement yielding the best information gain is selected for the splitting of the data set 
characterizing the current node into the children data sets. Since there are two fuzzy functions to 
split on, each node will have two children, one for each sex class, thus leading to a binary fuzzy 
decision tree. 

3. Result 
3.1 The result of the measurement term for build fuzzy set 

The sex of the adult preserved skull was initially determined by standard morphological traits. A 
total of 16 craniometric parameters were included in the study. All craniometric parameters are 
measured automatically by computer software. The parameters studied were orbital breadth 
(dacryon-ectoconchion), interorbital breadth (dacryon-dacryon), upper facial height 
(nasion-prosthion), Protruding of eyebrow, frontal chord (nasion-bregma), inter-mastoid width, 
nasal breadth (alare-alare), frontal arc (nasion-bregma), occipital protruding angle, mandibular 
angle width, mandibular height, maximum cranial length (glabella-opisthocranion), maximum 
cranial breadth (euryon-euryon), basion-bregma height (basion-bregma), cranial base length 
(basion-nasion), maximum cranial circumference. 

All the measurements were taken to the nearest millimeter and were converted to centimeter and 
the range of angles is [0,180]. In order to reduce the measurement error, all skulls are measured 
three times, and then averaged as the final measurement data. The result of the measurement is 
shown in Table 1. 
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Table 1 The mean and standard deviation of the measurement term 

index parameters male female 
Mean SD Mean SD 

1X  Orbital breadth 98.7 3.1 95.2 3.5 
2X  Inter-orbital breadth 24.9 2.69 23.8 2.1 
3X  Upper facial height 106.3 5.1 103.8 4.6 
4X  Protruding of eyebrow 32.3 8.9 29.4 5.6 
5X  Frontal chord 113.5 4.9 110.1 5.6 
6X  Inter-mastoid width 110.9 5.9 107.9 4.9 
7X  Nasal breadth 29.9 2.7 29.4 8.9 
8X  Frontal arc 26.5 2.1 25.7 1.7 
9X  Occipital protruding angle 167.0 11.1 177.8 3.1 

10X  Mandibular angle width 102.3 6.4 97.7 5.8 
11X  Mandibular height 45.7 3.9 43.6 3.3 
12X  Maximum cranial length 178.1 7.4 168.6 5.7 
13X  Maximum cranial breadth 138.7 6.3 136.4 5.5 
14X  Basion-bregMa height 13.4 3.6 12.9 2.9 
15X  Cranial base length 9.6 2.6 9.2 3.1 
16X  Maximum cranial circumference 52.3 4.4 50.2 4.1 

Notes: The unit of measurement for distance is mm; the angle range is [0,180]. 
The mean and standard deviation of each measurement are given in the table. These values are 

used to construct a male fuzzy set and a female fuzzy set for each measurement item. The fuzzy 
decision tree used for gender identification is a binary tree. 

3.2 Results of sex identification 
The 267 skulls of Xinjiang Uygur in China collected by the Institute of Visualization Technology 

of Northwest University were used as experimental subjects, 70% of which were used as training 
samples, and the remaining samples were used as test samples, and verified by using a 
leave-one-cross validation strategy. 

Based on the measurement results of the 3.1 section, the fuzzy decision tree is constructed by 
using the method in this paper and the method in the literature [17], and then the discriminant 
function is established by the method of literature [18]. Three classification models are tested 
respectively to compare their performance. The results are shown in Table 2. 

Table 2 Results of sex identification 

 This paper 
method 

Literature 
[18] method 

Literature 
[19] method 

Measurement 
term 89.4% 87.6% 86.3% 

In order to verify the universality of the method, we have also verified on two public datasets: 
the Coimbra Identified Skeletons Collection (University of Coimbra, Portugal), composed of 
Portuguese individuals deceased during the first half of the twentieth century [19, 20], and the Thai 
Skeletal Collection hosted by the Department of Anatomy of the University of Chiang-Mai 
(Thailand), composed of Thai individuals deceased at the end of the twentieth century [21]. The 
method of this paper, the method of document [17] and the method of document [18] are applied to 
two datasets respectively. The results of sex identification are shown in Table 3. 
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Table 3 Results of sex identification for different data sets 

 This paper 
method 

Literature [18] 
method 

Literature [19] 
method 

Coimbra Skulls 
Collection 88.7% 86.5% 85.8% 

Thai Skulls  
Collection 89.0% 88.3% 86.2% 

4. Discussion 
On the Chinese Uygur data set, the accuracy rate of the fuzzy decision tree proposed in this 

paper is 89.4%, and the classification performance is better than the other two methods. The method 
proposed in this paper is also optimal when validates on two public data sets. The results show that: 
the fuzzy decision tree approach adapt better to classifying the uncertain cases by not committing to 
only one of two branches at each split point in the decision tree but by selecting each option to 
different extents and drawing the discriminatory conclusion at the end as it was present in the 
previous sections. 

The sex determination process was tackled in various forms in the literature, most of the 
approaches treating the matter in a traditional mathematical manner rather than providing 
computational solutions. While usually performant, such methods tend to overfit with respect to the 
data set they were constructed on, a case that the fuzzy decision tree approach tries to avoid. 
Although the three methods are based on cranial measurements, the other two methods [17,18], do 
not consider the overlap and uncertainty, and this method is specially considered, so their data sets 
are the same as the measurement items, but the results are different. 

Other researchers have also used the decision tree method to skull sex determination [22,23]. The 
data sets are different from us and can't be compared accurately, but if we only pay attention to the 
accuracy we get, our method based on fuzzy decision tree is better than their method. 

In view of the sex identification problem of skull, this paper presents an effective solution, 
especially the problem of gender identification with uncertainty. In recent years, some computer 
vision and deep learning methods have been applied to bone sex research [24-27]. Therefore, the 
next step is to combine traditional methods with these methods, or to improve traditional methods 
with a new idea. 

5. Conclusion 
Fuzzy Decision Trees prove to be good sex classifiers when skull measurements are given, 

provided accurate fuzzy membership functions can be provided for each of the sex classes. The 
drawbacks of such an approach occur when the distributions of the sex classes are very close 
together and thus the uncertain area that enables the fuzzy decision process is reduced. Also, the 
classifier is efficient only when provided with sufficient, preferably balanced, training data. Even if 
in its current status the fuzzy decision tree approach achieves significant accuracy rates in practice 
on real archaeological and forensic data sets. 

We are currently collecting a larger sample to establish a gender discriminant model based on the 
fuzzy decision tree, which will be used in the practical application of the unknown bone sex 
assessment in forensic cases. Also, we hope our study can contribute to further population data 
studies, or even to a craniometric meta-analysis on other ethnic groups. 
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