Efficient Provably Secure ID-based Blind Signature with Message Recovery

Wei Cui ${ }^{1, *}$, Qian Jia ${ }^{2}$
${ }^{1}$ Information Center of Ministry of Science and Technology, Beijing, 100862, China
${ }^{2}$ Center of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
dacui635@163.com*

Keywords: ID-based Blind Signature; Message Recovery; Provably Secure

Abstract

Due to the rapid growth in popularity of electronic cash, electronic voting and locationbased mobile, the design of secure schemes with low-bandwidth and blocking attacks capability is an important research issue. In this paper, we propose an efficient provably secure ID-based blind signature with message recovery scheme based on bilinear pairings. In the scheme, the original message is not required to be transmitted together with the signature and it can be recovered during the signature verification process. Assuming the intractability of the q-Strong Diffie-Hellman problem, our scheme is unforgeable under adaptive chosen-message and ID attack. The proof of correctness and blindness property analysis of the proposed scheme are presented. The scheme can offer advantages in runtime over the schemes available.

1. Introduction

Blind signature is interactive signature scheme, which provides anonymity of users to get a signature without giving the signer any information about the actual message. ID-based blind signature is attractive since one's public key is simply his/her identity. The first ID-based blind signature (IBBS) schemes based on bilinear pairings was proposed by Zhang [1]. Recently, Kumar [2] proposed a new blind signature scheme using identity-based technique in 2017. The concept of general signatures with message recovery (MRS) was introduced by Nyberg [3]. In this scheme, the message is not sent with the signature and it is recovered from the verification process. Tso [4] proposed two new ID-based signature schemes with message recovery.

A blind signature with message recovery is important for many applications which requires the smaller bandwidth for signed messages than signatures without message-recovery. In 2005, Han [5] first proposed a pairing-based blind signature scheme with message recovery. Later, Hassan [6] and James[7] respectively proposed a new identity-based blind signature scheme with message recovery(ID-MR-BS) based on bilinear. Recently, Verma[8] presented an efficient ID-MR-BS from pairings which achieves bandwidth savings and is suitable for signing short messages in 2018.

In this paper, we propose an efficient provably secure ID-
based blind signature with message recovery scheme based on bilinear pairings. Then, we discuss the security and efficiency of our schemes. The proposed scheme is unforgeable with the assumption that the q-Strong Diffie-Hellman problem (q-SDHP) is hard in the random oracle. The scheme needs less computing power as compared with others schemes.

Some background on bilinear pairings and q-SDHP problem that we use in our proposed scheme are introduced in Section 2. In Section 3, we describe our proposed ID-based blind signature scheme with message recovery and analyze its security. The comparison of the performance with other ID-based blind signature scheme with message recovery is shown in Section 4. Finally, we draw our conclusion in section 5 .

2. Preliminaries

2.1 Pairings

Let us consider groups G_{1}, G_{2} and G_{T} of the same prime order p, where G_{1} and G_{2} are additive groups, and G_{T} is a multiplicative group. Let P, Q be generators of respectively G_{1} and G_{2}. We say that (G_{1}, G_{2}, G_{T}) are bilinear map groups if there exists a bilinear map e: $G_{1} \times G_{2} \rightarrow G_{T}$ satisfying the following properties:

1) Bilinearity: $\forall(P, Q) \in G_{1} \times G_{2}, \forall a, b \in Z, e(a P, b Q)=e(P, Q)^{a b}$
2) Non-degeneracy: $\forall S \in G_{1}, e(S, T)=1, T \in G_{2}$, if $S=0$.
3) Computability: $\forall(P, Q) \in G_{1} \times G_{2}, e(P, Q)$ is efficiently computable.
4) There exists an efficient, publicly computable isomorphism ${ }^{\psi}: G_{2} \rightarrow G_{1}$ such that $\psi(Q)=P$.

We can obtain such bilinear map groups with ordinary elliptic curves such as those suggested in [9].

2.2 Intractability Assumption

The computational assumptions for the security of our schemes were previously formalized by Boneh and Boyen [10] and are recalled in the following definition.

Definition 1([10]): Let us consider bilinear map groups (G_{1}, G_{2}, G_{T}) and generators $P \in G_{1}$ and $Q \in G_{2}$

The \boldsymbol{q}-Strong Diffie-Hellman problem (q-SDHP) in the groups $\left(G_{1}, G_{2}\right.$) consists in, given a ($q+$ 2)-tuple $\left(P, Q, \alpha Q, \alpha^{2} Q, \cdots, \alpha^{q} Q\right)$ as input, finding a pair $\left(c, \frac{1}{c+\alpha} P\right)$ with $c \in Z_{p}^{*}$.

3. New ID -based Blind Signature with Message Recovery

Setup: given a security parameter k, the PKG chooses bilinear map groups (G_{1}, G_{2}, G_{T}) of prime order $p>2^{k}$ and generators $\mathrm{Q} \in G_{2}, P=\psi(Q) \in G_{1}, g=e(P, Q)$. The user may computes $g=e(P, Q)$ beforehand outside of the signing protocol. It then selects a master key $s \in_{R} Z_{p}^{*}, Q_{p u b}=s Q$ $\in G_{2}$ and hash functions $H_{1}:\{0,1\}^{*} \rightarrow Z_{p}^{*} H_{2}: G_{T}^{*} \rightarrow \mathrm{Z}_{l_{1}++_{2}}^{*}$. We can selects l_{1}, l_{2} as positive integers such that $l_{1}+l_{1}=|p|, F_{1}:\{0,1\}^{l^{2}} \rightarrow\{0,1\}^{h^{h}}, F_{2}:\{0,1\}^{h} \rightarrow\{0,1\}^{l^{2}}$ The public parameters are

$$
\text { params }:=\left\{G_{1}, G_{2}, G_{T}, P, Q, g, Q_{p u b}, e, \psi, H_{1}, H_{2}, F_{1}, F_{2}\right\}
$$

Extract: Given an identity ID, the private key $S_{I D}=\frac{1}{s+H_{1}(D)} P$, Note if $\mathrm{s}+\mathrm{H}_{1}(\mathrm{ID}) \equiv 0 \mathrm{mod} \mathrm{p}$, then abort s and return SETUP to choose another s.

Blind signature issuing protocol: Suppose that $M \in\{0,1\}^{2}$ is the message to be signed.
-The signer randomly chooses a number $x \in{ }_{R} Z_{p}{ }^{*}$, computes $r=\mathrm{g}^{\mathrm{x}} \in G_{T}$, and sends r to the user as commitment.
-(Blinding) The user randomly chooses $a, b \in_{R} Z_{p}{ }^{*}$ as blinding factors. He computes $r^{\prime}=r^{\alpha} g^{a b}$, $U=\left[F_{1}(M) \| F_{2}\left(F_{1}(M)\right) \oplus M\right], w=\left[H_{2}\left(r^{\prime}\right) \oplus U\right]$ sends $z=a^{-1} w+b$ to signer.
-(Signing) The signer sends V to user, where $V=(x+z) S_{I D}$.
-(Unblinding) The user computes $V^{\prime}=a V$. He outputs signature $\operatorname{sig}=\left(w, V^{\prime}\right)$ as the blind signature on the message M.

Blind Signature Verification: Given ID and the signature (w, V^{\prime}), anyone can verify the signature and recover the message as follows:

$$
\text { Compute } d=[w]_{2} \oplus H_{2}\left(e\left(V^{\prime}, Q_{I D}\right) \cdot g^{-w}\right) \text { and } m=F_{2}\left(_{l_{1}}|d|\right) \quad \oplus|d|_{L_{2}} \text {, where } Q_{I D}=H_{1}(I D) Q+Q_{p u b}
$$

Accept the signature if and only if ${ }_{4}|w|=F_{1}(m)$.

4. Security Analysis

The verification of the signature is justified by the following equations:

$$
\begin{align*}
& e\left(V^{\prime}, Q_{I D}\right) \cdot g^{-w} \\
& =e\left(V^{\prime}, H_{1}(I D) Q+Q_{p u b}\right) \cdot g^{-w} \\
& =e\left(a\left((x+z) S_{I D}\right), H_{1}(I D) Q+Q_{p u b}\right) \cdot e(P, Q)^{-w} \tag{1}\\
& =e(a(x+z) P, Q) \cdot e(P, Q)^{-w} \\
& =e((a x+w+a b) P, Q) \cdot e(P, Q)^{-w} \\
& =r^{a} \cdot g^{a b}=r^{\prime}
\end{align*}
$$

According to the equation (1), we can get the following equations:

$$
\begin{align*}
d & =[w]_{2} \oplus H_{2}\left(e\left(V^{\prime}, Q_{I D}\right) \cdot g^{-w}\right) \\
& =[w]_{2} \oplus H_{2}\left(r^{\prime}\right) \tag{2}\\
& =U \\
m= & F_{2}\left(l_{1}|d|\right) \oplus|d|_{l_{2}} \\
= & F_{2}\left(l_{1}|U|\right) \oplus|U|_{l_{2}} \tag{3}\\
= & F_{2}\left(F_{1}(M)\right) \oplus F_{2}\left(F_{1}(M) \oplus M\right. \\
= & M
\end{align*}
$$

Theorem 1. The proposed scheme has the blindness property.
Proof: For $i=0,1$, let $\left(r_{i}, x_{\mathrm{i}}, z_{i}, V_{i}\right)$ be data appearing in the view of the signer during the execution of the signature issuing protocol with the user on message M_{i}, and let (w_{i}, V_{i}) be the corresponding message-signature pair. It is sufficient to show that there exists factors (a, b) that maps ($r_{i}, x_{i}, z_{i}, V_{i}$) to (w_{j}, V_{j}^{\prime}) for each $i, j \in\{0,1\}$. The following equations must hold for $a, b \in \in_{R}$ $Z_{p}{ }^{*}$.

$$
\begin{array}{r}
V_{j}^{\prime}=a V_{i} \\
z_{i}=a^{-1} w_{j}+b \tag{5}
\end{array}
$$

So we can get $a=\log _{V_{i}} V_{j}^{\prime}$ and $b=z_{i}-a^{-1} w_{j}$. Because (w_{j}, V_{j}^{\prime}) is a valid signature, we can show that a and b satisfy equation $e\left(V_{j}^{\prime}, Q_{I D}\right) \cdot g^{-w_{j}}=r_{i}^{a} \cdot g^{a b}$.According to equations (4) and (5), we have:

$$
\begin{aligned}
& e\left(V_{j}^{\prime}, Q_{I D}\right) \cdot g^{-w_{j}} \\
& =e\left(a V_{i}, H_{1}(I D) Q+Q_{p u b}\right) \cdot g^{-w_{j}} \\
& =e\left(a\left(x_{i}+z_{i}\right) S_{I D}, H_{1}(I D) Q+Q_{p u b}\right) \cdot g^{-w_{j}} \\
& =e\left(a\left(x_{i}+a^{-1} w_{j}+b\right) P, Q\right) \cdot g^{-w_{j}} \\
& =e(P, Q)^{\left(a x_{i}+w_{j}+a b\right)} \cdot e(P, Q)^{-w_{j}} \\
& =e(P, Q)^{\left(a_{i}+a b\right)}=r_{i}^{x} g^{a b}
\end{aligned}
$$

Thus the blinding factors always exist which lead to the same relation defined in the signature issuing protocol.

Lemma 1 ([16]): If there is a forger F_{0} for an adaptively chosen message and identity attack having advantage ε_{0} against our scheme when running in a time t_{0} and making $q_{h_{1}}$ queries to random oracle h_{1}, then there exists an algorithm F_{1} for an adaptively chosen message and given identity attack which has advantage $\varepsilon_{1} \geq \varepsilon_{0}(1-1 / p) / q_{h_{1}}$ within a running time $t_{1} \leq t_{0}$. Moreover, F_{1} asks the same number key extraction queries, signature queries and H_{2}-queries as F_{0} does.

Lemma 2. In the random oracle model, if an algorithm $F\left(t, q_{h_{1}}, q_{h_{2}}, q_{E}, q_{S}, \varepsilon\right)$-breaks the proposed scheme with probability ε and time t under the adaptive chosen message and given
identity attack, with making $q_{h_{1}}$ queries to random oracle $h_{\mathrm{i}}, q_{F_{i}}$ queries to random oracle F_{i}, q_{e} queries to Extract Query and q_{s} queries to signature issuing protocol. Then there is another ($t^{\prime}, \varepsilon^{\prime}$) algorithm B which can solve the $q-S D H P$ for $q=q_{k_{1}}$ and $q_{E} \leq q_{k_{1}}$, where $t^{\prime} \leq 120686 q_{k_{2}} \cdot t / \varepsilon$ and $\varepsilon^{\prime} \geq\left(1-\frac{q}{p}\right)\left(1-\frac{q_{s}}{q_{r_{r}}}\right)^{q_{s}}\left(1-\frac{q_{s}}{q_{r_{2}}}\right)^{q_{s}} \varepsilon$

Proof: Suppose that an algorithm F run by an adversary ($t, q_{h_{1}}, q_{h_{2}}, q_{E}, q_{S}, \varepsilon$) -breaks the proposed scheme by the adaptive chosen message and given identity attacks. We can construct an algorithm B to solve the q-SDHP through interacting with F.

Algorithm B takes as input ($P, \alpha Q, \alpha^{2} Q, \cdots, \alpha^{q} Q$) and aims to find a pair $\left(c, \frac{1}{c+\alpha} P\right)$. In the setup phase, it builds a generator $G \in G_{1}$, and does the following steps:

1) It picks $w_{1}, w_{2}, \cdots, w_{q-1} \in Z_{p}^{*}$ and $f(z)=\prod_{i=1}^{q-1}\left(z+w_{i}\right)$ is expanded to obtain $c_{0}, c_{1}, \cdots, c_{q-1} \in Z_{p}^{*}$ so that

$$
f(z)=\sum_{i=1}^{q-1} c_{i} z^{i}
$$

2) $G=\psi(H)=f(\alpha) P \in G_{1}$. The public key $H_{p u b} \in G_{2}$ is fixed to ${ }^{H_{p u b}=\sum_{i=1}^{q} c_{i-1}\left(\alpha^{i} Q\right)}$ so that $H_{p u b}=\alpha H$, although B does not know ${ }^{\alpha}$
3) For $1 \leq i \leq q-1 \quad$ B expands $\quad f_{i}(z)=f(z) /\left(z+w_{i}\right) \quad=\sum_{i=0}^{q-2} d_{i-1} z^{i}$, $\sum_{i=0}^{q-2} d_{i-1} \psi\left(\alpha^{i} Q\right)=f_{i}(\alpha) P=\frac{f(\alpha)}{\alpha+w_{i}} P=\frac{1}{\alpha+w_{i}} G$, so $\quad\left(w_{i}, \frac{1}{\alpha+w_{i}} G\right)$ can be computed from this equation.
Then, B sent the public key to F. and take the $\left(H_{p u b}, I D^{*}\right)$ as the input of F. F issues the following queries for the identities $\left(I D_{1}, I D_{2}, \ldots, I D_{q 1}\right)$ and the messages $\left(M_{1}, M_{2}, \ldots, M_{q S}\right) . B$ simulates queries as follows:
4) ID Hash Query: B constructs hash table L_{1} to store the answers of ID hash query, and returns the same answer for the same query. For any given $I D_{i}\left(1 \leq i \leq q_{H_{1}}\right)$, if $I D_{i}=I D^{*}, B$ answers $w=$ w^{*}. Otherwise, answers $w=w_{1} \in Z_{p}^{*}$. In both cases B stores (ID, w) in a list L_{1}.
5) \mathbf{H}_{2} Hash Query: B constructs hash table L_{2} to store the answers of H_{2} hash query, returns the same answer for the same query. For any given $r_{j}{ }^{\prime}\left(1 \leq j \leq q_{h_{2}}\right), B$ first checks L_{2}, if an entry $<\mathrm{r}_{j}{ }^{\prime}$, $h_{j}{ }^{\prime}>$ for the query is found, B returns the stored value $h_{j}{ }^{\prime}$; otherwise, B selects $h_{j}{ }^{\prime} \epsilon_{R} Z_{p}^{*}$ which is different from other elements, and stores tuple $\left\langle\mathrm{r}_{j}{ }^{\prime}, h_{j}{ }^{\prime}>\right.$ in the L_{2}, where $h_{i}{ }^{\prime} \neq h_{j}{ }^{\prime},(i \neq j) . B$ returns the value h_{j}^{\prime} to F.
6) \boldsymbol{F}_{1} Query: B constructs hash table W_{1} to store the answers of F_{1} hash query, and returns the same answer for the same query. For any given $M_{j}\left(1 \leq j \leq q_{s}\right)$, B first checks W_{1}, if an entry $<M_{j}$, $s_{1 j}>$ for the query is found, then B checks W_{1} and returns the stored value $<M_{j}, s_{1 j}>$. Otherwise, B selects $s_{1 i} \in_{R}\{0,1\}^{h}$ which is different from other elements, and stores tuple $<M_{j}, s_{1 j}>$ in the W_{1}.
7) \boldsymbol{F}_{2} Query: B constructs hash table W_{2} to store the answers of F_{2} hash query, and returns the same answer for the same query. For any given $M_{j}\left(1 \leq j \leq q_{s}\right)$, B first checks W_{2}, if an entry $<M_{j}$, $s_{2 j}>$ for the query is found, then B checks W_{2} and returns the stored value $<M_{j}, s_{2 j}>$. Otherwise, B selects $s_{2 i} \in_{R}\{0,1\}^{l^{l}}$ which is different from other elements, and stores tuple $<M_{j}, s_{2 j}>$ in the W_{1}.
8) Extract Query on $I D \neq I D^{*}$: For any given $I D_{i}\left(1 \leq i \leq q_{m_{1}}\right)$, B recovers the matching pair (ID, w) from L_{1}. B computes $\frac{1}{\alpha+w} G$ and returns it.
9) Issue Query: For any given identity-message pair $\left(I D_{i}, M_{i}\right)$, if $I D_{i}=I D^{*}$, then B aborts and reports failure. Otherwise, B randomly picks $V_{i}^{\prime} \in G_{1}, t_{i} \in_{R} Z_{p}^{*}$ and computes $r_{i}=e\left(V_{i}^{\prime}, Q_{D D}\right) \cdot e(G, H)^{-t_{i}}$ where $Q_{I D}=H_{1}(I D) H+H_{p u b}$. Then B defines the value $H_{2}\left(r_{i}\right)$ as h_{i}. and computes $d_{i}=\left[t_{i}\right]_{2} \oplus h_{i}$. B
checks hash table L_{1} for $M_{i \text {. }}$ If M_{i} is already defined, then B aborts. Otherwise, B stores tuple $<M_{i}$, ${ }_{l_{1}}\left|t_{i}\right|>$ in the L_{1}. B also checks table L_{2} for ${ }_{h_{1}}\left|d_{i}\right|$, if ${ }_{l_{1}}\left|d_{i}\right|$ is already defined, then B aborts. Otherwise, B stores tuple $<_{l}\left|d_{i}\right|, M_{i} \oplus|d|_{l_{2}}>$ in the L_{2}.
F outputs a pair $<t_{1}, V_{1}^{\prime}>$ for the user $I D^{*}$, and it can pass the verify algorithm.
F can forge a signature $\left\langle t_{1}, V_{1}^{\prime}\right\rangle$ without knowing the private key for $I D^{*}$, so we can build F^{\prime} that replays F on input ($H_{p u b}, I D^{*}$) to obtain forgeries $\left\langle t_{2}, V_{2}^{\prime}\right\rangle$, with $h_{1} \neq h_{2}$ by applying the forking lemma. The simulator B run F^{\prime} to obtain $\left\langle t_{1}, V_{1}^{\prime}\right\rangle,\left\langle t_{2}, V_{2}^{\prime}\right\rangle$ and recovers the pairs ($I D^{*}, w^{*}$) from list L_{1}. If both forgeries satisfy the verification equation, we obtain the relations $e\left(V_{1}^{\prime}, Q_{D D}^{*}\right) e(G, H)^{-t_{t}}=e\left(V_{2}^{\prime}, Q_{D D}^{*}\right)$ $\cdot e(G, H)^{-t_{2}}$, with $Q_{I D^{*}}=H_{1}\left(I D^{*}\right) H+H_{p u b}=\left(w^{*}+\alpha\right) H$.Then we can get $e\left(\left(t_{1}-t_{2}\right)^{-1}\left(V_{1}^{\prime}-V_{2}^{\prime}\right), Q_{I D^{*}}\right)=e(G, H)$ and $T^{*}=\left(t_{1}-t_{2}\right)^{-1}\left(V_{1}^{\prime}-V_{2}^{\prime}\right)=\frac{1}{w^{*}+\alpha} G$. From T^{*}, B can do following steps as in [10] to extract $\sigma^{*}=\frac{1}{w^{*}+\alpha} P$:
10) We can obtain $\gamma_{-1}, \gamma_{0}, \cdots, \gamma_{q-2} \in Z_{p}^{*}$ from $f(z) /\left(z+w^{*}\right)$

$$
=\gamma_{-1} /\left(z+w^{*}\right)+\sum_{i=0}^{q-2} \gamma_{i} i^{i} .
$$

2) We can compute $\sigma^{*}=\frac{1}{\gamma_{-1}}\left[T^{*}-\sum_{i=0}^{q-2} \gamma_{i} \psi\left(\alpha^{i} Q\right)\right]=\frac{1}{w^{*}+\alpha} P$

In the step of Issue Query, B stops the simulation when $<$
$M_{i},{ }_{l_{1}}\left|t_{i}\right|>$ is in the W_{1} or $<_{l_{1}}\left|d_{i}\right|, M_{i} \oplus|d|_{l_{2}}>$ is in the W_{2}. The probability that those events does not happen is $\left(1-\frac{q_{5}}{q_{T_{1}}}\right)$ and $\left(1-\frac{q_{s}}{q_{F_{2}}}\right)$ respectively. And we note that $w^{*} \neq w_{1}, \cdots, w_{q-1}$ with probability at least $1-q / p$. For all the q_{S} issue queries, the success probability ε^{\prime} of B is $\varepsilon^{\prime} \geq\left(1-\frac{q}{p}\right)\left(1-\frac{q_{s}}{q_{5}}\right)^{q_{s}}\left(1-\frac{q_{s}}{q_{z_{5}}}\right)^{q_{s}} \varepsilon$. According to the forking lemma, the time t^{\prime} is $t^{\prime} \leq 120686 q_{k_{2}} \cdot t / \varepsilon$

The combination of the above lemmas yields the following theorem
Theorem 2. In the random oracle model, if an algorithm $F\left(t, q_{h_{1}}, q_{k_{2}}, q_{F_{1}}, q_{F_{2}}, q_{E}, q_{S}, \varepsilon\right)$-breaks the proposed scheme with probability $\varepsilon \geq 10\left(q_{s}+1\right)\left(q_{k_{2}}+q_{s}\right) / p$ under the adaptive chosen message and identity attack, then there is another ($t^{\prime}, \varepsilon^{\prime}$) algorithm B which can solve the q-SDHP for $q=q_{k_{1}}$ and $q_{E} \leq q_{h_{1}}$, where $t^{\prime} \leq 120686 q_{k_{2}} \cdot q_{h_{1}} / \varepsilon$ and $\varepsilon^{\prime} \geq\left(1-\frac{q}{p}\right)\left(1-\frac{q_{S}}{q_{k_{1}}}\right)^{q_{S}} \cdot\left(1-\frac{q_{S}}{q_{F_{2}}}\right)^{q_{s}} q_{h_{1}} \varepsilon$

5. Efficiency

In this section, we compare our schemes to other available identity-based blind signature with message recovery based on bilinear pairings. In the following, we denote by M a scalar multiplication in G_{1} and G_{2}, by A a addition in G_{1} and G_{2}, by M_{t} the multiplication on G_{t}, E an exponentiation in G_{t}, H_{M} the MapToPoint function, $I_{n v}$ a modular inversion operations, and by P a computation of the pairing.

Table 1. Calculations of Five ID-MR-BS Schemes

Scheme	our scheme	Verma[11]	James[10]	Hassan[9]	Han [8]
Extract	$1 \mathrm{M}+1 \mathrm{I}_{\mathrm{nv}}$	$2 \mathrm{M}+1 \mathrm{I}_{\mathrm{nv}}$	1M	$1 \mathrm{M}+1 \mathrm{H}_{\mathrm{M}}$	$1 \mathrm{M}+1 \mathrm{H}_{\mathrm{M}}$
Issue	$\begin{aligned} & 3 \mathrm{E}+1 \mathrm{Mt} \\ & +1 \mathrm{I}_{\mathrm{nv}} \end{aligned}$	$\begin{aligned} & 1 \mathrm{P}+4 \mathrm{M} \\ & +1 \mathrm{I}_{\mathrm{nv}}+1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 1 \mathrm{P}+6 \mathrm{M} \\ & +1 \mathrm{I}_{\mathrm{nv}}+3 \mathrm{~A} \end{aligned}$	$1 \mathrm{P}+2 \mathrm{M}+1 \mathrm{~A}$	$\begin{aligned} & 2 \mathrm{P}+6 \mathrm{M}+2 \mathrm{E} \\ & +4 \mathrm{~A} \end{aligned}$
Verify	$\begin{aligned} & 1 \mathrm{P}+1 \mathrm{Mt}+1 \mathrm{E} \\ & +1 \mathrm{M}+1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2 \mathrm{P}+1 \mathrm{E}+1 \mathrm{~A} \\ & +1 \mathrm{Mt} \end{aligned}$	2P+1M	$\begin{aligned} & 2 \mathrm{P}+1 \mathrm{E}+1 \mathrm{Mt} \\ & +1 \mathrm{H}_{\mathrm{M}} \end{aligned}$	$3 \mathrm{P}+\mathrm{E}+2 \mathrm{Mt}$
Total	$\begin{aligned} & 1 \mathrm{P}+2 \mathrm{Mt} \\ & +4 \mathrm{E}+2 \mathrm{M} \\ & +2 \mathrm{I}_{\mathrm{nv}}+1 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \mathrm{P}+6 \mathrm{M} \\ & +1 \mathrm{E}+1 \mathrm{~A} \\ & +2 \mathrm{I}_{\mathrm{nv}}+1 \mathrm{Mt} \end{aligned}$	$\begin{aligned} & 2 \mathrm{P}+7 \mathrm{M} \\ & +1 \mathrm{I}_{\mathrm{nv}}+3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3 \mathrm{P}+3 \mathrm{M} \\ & +1 \mathrm{E}+1 \mathrm{Mt} \\ & +2 \mathrm{H}_{\mathrm{M}}+1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 5 \mathrm{P}+7 \mathrm{M} \\ & +3 \mathrm{E}+2 \mathrm{Mt} \\ & +1 \mathrm{H}_{\mathrm{M}}+4 \mathrm{~A} \\ & \hline \end{aligned}$

According to Cao [12], we can get the time needed to execute related mathematical operations. To achieve 1024-bit RSA level security for pairing-based cryptosystem, we assume the Tate pairing
defined over super-singular elliptic curve on a finite field F_{q}, where $|q|=512$ bits. Same security level for ECC based scheme, we have to use secure elliptic curve on a finite field F_{p}, where $|p|=$ 160 bits. To compute the computation cost, we consider the time of computing M is $T_{M}=2.21 \mathrm{~ms}$, the time of computing M_{t} is $T_{M_{t}}=2.32 \mathrm{~ms}$, the time of computing E is $T_{\mathrm{E}}=5.31 \mathrm{~ms}$, the time of computing H_{M} is $T_{H_{M}}=3.04 \mathrm{~ms}$, the time of computing I_{nv} is $T_{I_{m}}=3.34 \mathrm{~ms}$, the time of computing P is $T_{P}=20.04 \mathrm{~ms}$. And hash functions H, F_{1}, F_{2} and elliptic, point addition are so efficient that no need to consider (for example, the time of computing modular multiplications is only 0.23 ms).

Table 2. Efficiency comparison of Five ID-MR-BS Schemes

Scheme	Our scheme	Verma[11]	James[10]	Hassan[9]	Han [8]
Extract	5.55 ms	7.76 ms	2.21 ms	5.25 ms	5.25 ms
Issue	21.59 ms	32.22 ms	36.64 ms	24.46 ms	63.96 ms
Verify	29.88 ms	47.71 ms	42.29 ms	50.75 ms	70.07 ms
Total	57.02 ms	87.69 ms	81.14 ms	80.46 ms	139.28 ms

6. Conclusions

In this paper, we propose a new efficient ID-based blind signature scheme with message recovery based on bilinear parings and prove them as secure as the q-SDHP problem in the random oracle model. The Blindness property of our scheme provides the anonymity of the user and message recovery property provides to work with low band width applications. This scheme improves the efficiency of extracting secret key, issuing and verifying of ID-based blind signature scheme with message recovery.

References

[1] F. Zhang, and K. Kim, "ID-based blind signature and ring signature from pairings," Advances in Cryptology Asiacrpt 2002, Springer-Verlag, Nov. 2002, pp.533-547.
[2] M. Kumar, C.P. Katti, and P. C. Saxena, "A New Blind Signature Scheme Using IdentityBased Technique," International Journal of control Theory and applicationa vol. 10, Number 15, pp.115-124, 2017.
[3] K. Nyberg, Rainer A. Rueppel, "A new signature scheme based on the DSA giving message recovery," Proceedings of ACM Conference on Computer and Communications Security, ACM Press, 1993, pp.58-61.
[4] R. Tso, C. Gu, T. Okamoto, and E. Okamoto, "Efficient ID-Based Digital Signatures with Message Recovery," International Conference on Cryptology and Network Security, SpringerVerlag, 2007, pp. 47-59.
[5] S. Han, and E. Chang, "A Pairing-Based Blind Signature Scheme with Message Recovery," International Journal of Information Technology. Singapore, vol. 2, Number 4, pp.187-192, 2005.
[6] E. Hassan, and A. Yasmine, "A New Blind Identity- Based Signature Scheme with Message Recovery," The Online Journal of Electronics and Electrical Engineering. vol.2, Number 15, pp.200-205, Jan. 2008.
[7] S. James, T. Gowri, G.V. R. Babu and P. V. Reddy, "Identity-Based Blind Signature Scheme with Message Recovery," International Journal of Electrical and Computer Engineering. San Bernardino Vol. 7, No. 5, Oct. 2017.
[8] G. K. Verma and B. B. Singh, "Efficient identity-based blind message recovery signature scheme from pairings," IET Information Security. Hertford, Vol. 12, Iss. 2, pp.150-156, Mar. 2018.
[9] [12] P. S. L. M. Barreto and M. Naehrig, "Pairing-friendly elliptic curves of prime order", Selected Areas in Cryptography, Springer-Verlag, 2005, pp. 319-331.
[10] D. Boneh, and X. Boyen, "Short signatures without random oracles", International Conference on the Theory and Applications of Cryptographic Techniques, Springer-Verlag, 2004, pp . 56-73.
[11] J. C. Cha and J. H. Cheon, "An identity-based signature from gap Diffie-Hellman Groups", International workshop on public key cryptography, Springer-Verlag, 2003, pp. 18-30.
[12] X. Cao, W. Kou and X. Du, "A pairing-free identity-based authenticated key agreement protocol with minimal message exchanges," Information Sciences. New York, vol. 180, pp. 2895-2903, August 2010.

