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Abstract: Due to the rapid growth in popularity of electronic cash, electronic voting and location-
based mobile, the design of secure schemes with low-bandwidth and blocking attacks capability is 
an important research issue.  In this paper, we propose an efficient provably secure ID-based blind 
signature with message recovery scheme based on bilinear pairings. In the scheme, the original 
message is not required to be transmitted together with the signature and it can be recovered during 
the signature verification process. Assuming the intractability of the q-Strong Diffie-Hellman 
problem, our scheme is unforgeable under adaptive chosen-message and ID attack. The proof of 
correctness and blindness property analysis of the proposed scheme are presented. The scheme can 
offer advantages in runtime over the schemes available.  

1. Introduction 
Blind signature is interactive signature scheme, which provides anonymity of users to get a 

signature without giving the signer any information about the actual message. ID-based blind 
signature is attractive since one’s public key is simply his/her identity. The first ID-based blind 
signature (IBBS) schemes based on bilinear pairings was proposed by Zhang [1]. Recently, Kumar 
[2] proposed a new blind signature scheme using identity-based technique in 2017. The concept of 
general signatures with message recovery (MRS) was introduced by Nyberg [3].  In this scheme, 
the message is not sent with the signature and it is recovered from the verification process. Tso [4] 
proposed two new ID-based signature schemes with message recovery.  

A blind signature with message recovery is important for many applications which requires the 
smaller bandwidth for signed messages than signatures without message-recovery. In 2005, Han [5] 
first proposed a pairing-based blind signature scheme with message recovery. Later, Hassan [6] and 
James[7] respectively proposed a new identity-based blind signature scheme with message 
recovery(ID-MR-BS) based on bilinear. Recently, Verma[8] presented an efficient ID-MR-BS from 
pairings which achieves bandwidth savings and is suitable for signing short messages in 2018.  

In this paper, we propose an efficient provably secure ID- 
based blind signature with message recovery scheme based on bilinear pairings. Then, we 

discuss the security and efficiency of our schemes. The proposed scheme is unforgeable with the 
assumption that the q-Strong Diffie-Hellman problem (q-SDHP) is hard in the random oracle. The 
scheme needs less computing power as compared with others schemes.  

Some background on bilinear pairings and q-SDHP problem that we use in our proposed scheme 
are introduced in Section 2. In Section 3, we describe our proposed ID-based blind signature 
scheme with message recovery and analyze its security. The comparison of the performance with 
other ID-based blind signature scheme with message recovery is shown in Section 4. Finally, we 
draw our conclusion in section 5. 
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2. Preliminaries 

2.1 Pairings 
Let us consider groups G1, G2 and GT of the same prime order p, where G1 and G2 are additive 

groups, and GT is a multiplicative group. Let P, Q be generators of respectively G1 and G2 . We say 
that (G1, G2 ,GT) are bilinear map groups if there exists a bilinear map 1 2: Te G G G× → satisfying the 
following  properties: 

1) Bilinearity:  1 2( , )P Q G G∀ ∈ × , ,a b Z∀ ∈ , ( , )e aP bQ = ( , )abe P Q  
2) Non-degeneracy: 1S G∀ ∈ , ( , ) 1e S T = , 2T G∈ , if S = Ο . 
3) Computability: 1 2( , )P Q G G∀ ∈ × , ( , )e P Q is efficiently    computable. 
4) There exists an efficient, publicly computable isomorphism 2 1: G Gψ → such that ( )Q Pψ = . 
We can obtain such bilinear map groups with ordinary elliptic curves such as those suggested in 

[9].  

2.2 Intractability Assumption 
The computational assumptions for the security of our schemes were previously formalized by 

Boneh and Boyen [10] and are recalled in the following definition.  
Definition 1([10]): Let us consider bilinear map groups 1 2( , , )TG G G and generators 1P G∈  and 

2Q G∈  
The q-Strong Diffie-Hellman problem (q-SDHP) in the groups 1 2( , )G G  consists in, given a (q + 

2)-tuple 2( , , , , ,P Q Q Qα α   )qQα as input, finding a pair 1( , )c P
c α+

with *
pc Z∈ . 

3. New ID -based Blind Signature with Message Recovery 
Setup: given a security parameter k, the PKG chooses bilinear map groups  (G1, G2 ,GT) of 

prime order p>2k and generators Q∈G2 , 1( )P Q Gψ= ∈ , ( , )g e P Q= .The user may computes 
( , )g e P Q=  beforehand outside of the signing protocol. It then selects a master key *ZR ps∈ , pubQ sQ=  

2GÎ and hash functions * *
1 :{0,1} pH Z®  

1 2

* *
2 : ZT l lH G +® . We can selects l1, l2 as positive integers such 

that l1+l1=|p|, 2 1:{0,1} {0,1}l lF →１ , 1 2
2 :{0,1} {0,1}l lF → The public parameters are 

1 2 1 2 1 2: { , , , , , , , , , , , , }T pubparams G G G P Q g Q e H H F Fψ=  

Extract: Given an identity ID, the private key
1

1
( )ID s H IDS P+= , Note if s+H1(ID)≡0 mod p, then 

abort s and return SETUP to choose  another s. 
Blind signature issuing protocol: Suppose that 2{0,1}lM ∈ is the message to be signed. 
-The signer randomly chooses a number x∈ R Zp

*, computes g x
Tr G= Î , and sends r to the user as 

commitment. 
-(Blinding) The user randomly chooses a, b∈R Zp

* as blinding factors. He computes r’=rαgαb, 
1 2[ ( ) ||U F M F=  1( ( )) ]F M M⊕ , 2[ ( ) ]w H r U′= ⊕ sends 1z a w b−= + to signer. 

-(Signing) The signer sends V to user, where V = (x +z)SID. 
-(Unblinding) The user computes V’ = aV. He outputs signature sig = (w, V’) as the blind 

signature on the message M. 
Blind Signature Verification: Given ID and the signature (w, V’), anyone can verify the 

signature and recover the message as follows: 
Compute 2 2[ ] ( ( , ) )w

IDd w H e V Q g −′= ⊕ ⋅  and
12 ( | |)lm F d=

   2
| |ld⊕ , where IDQ = 1( ) pubH ID Q Q+  

Accept the signature if and only if 
1 1| | ( )l w F m= . 

Advances in Engineering Research, volume 173

102



4. Security Analysis 
The verification of the signature is justified by the following equations: 

1

1

( , )
( , ( ) )

( (( ) ), ( ) ) ( , )

( ( ) , ) ( , )
(( ) , ) ( , )
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ID

w
pub

w
ID pub

w

w

a ab

e V Q g
e V H ID Q Q g

e a x z S H ID Q Q e P Q

e a x z P Q e P Q
e ax w ab P Q e P Q
r g r

−

−

−

−

−

′ ⋅

′= + ⋅
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According to the equation (1), we can get the following equations: 

2 2

2 2

[ ] ( ( , ) )
[ ] ( )

w
IDd w H e V Q g

w H r
U

−′= ⊕ ⋅
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=
                                                (2) 
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Theorem 1. The proposed scheme has the blindness property. 
Proof: For i = 0, 1, let (ri, xi, zi, Vi) be data appearing in the view of the signer during the 

execution of the signature issuing protocol with the user on message Mi, and let (wi, Vi
’) be the 

corresponding message-signature pair. It is sufficient to show that there exists factors (a, b) that 
maps (ri, xi, zi, Vi) to (wj, Vj

’)  for each { }, 0,1i j∈ . The following equations must hold for a, b ∈ R 

Zp
*.  

Vj
’ = a Vi                                                                  (4) 

zi = a -1 wj + b                                                                    (5) 

So we can get 'log
iV ja V=   and 1

i jb z a w−= − . Because (wj,  Vj
’) is a valid signature, we can show 

that a and b satisfy equation ( , ) jw a ab
j ID ie V Q g r g−′ ⋅ = ⋅  .According to equations (4) and (5),  we have: 

'

1

1

1

( )

( )

( , )

( , ( ) )

( ( ) , ( ) )

( ( ) , )

( , ) ( , )
( , )

j

j

j

j

i j j

i

w
j ID

w
i pub

w
i i ID pub

w
i j

ax w ab w

ax ab x ab
i

e V Q g

e aV H ID Q Q g

e a x z S H ID Q Q g

e a x a w b P Q g

e P Q e P Q
e P Q r g

−

−

−

−−

+ + −

+

⋅

= + ⋅

= + + ⋅

= + + ⋅

= ⋅

= =

 

Thus the blinding factors always exist which lead to the same relation defined in the signature 
issuing protocol.  

Lemma 1 ([16]):  If there is a forger 0F  for an adaptively chosen message and identity attack 
having advantage 0ε  against our scheme when running in a time 0t and making 

1hq  queries to 
random oracle h1, then there exists an algorithm 1F  for an adaptively chosen message and given 
identity attack which has advantage 

11 0 (1 1/ ) / hp qε ε≥ −
 
within a running time 1 0t t≤ . Moreover, 1F asks 

the same number key extraction queries, signature queries and H2-queries as 0F does. 
Lemma 2. In the random oracle model, if an algorithm F (t,

1hq ,
2hq , qE, qS, ε)-breaks the 

proposed scheme with probability ε and time t under the adaptive chosen message and given 
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identity attack, with making 
ihq queries to random oracle hi , 

iFq queries to random oracle Fi , 

eq queries to Extract Query and sq  queries to signature issuing protocol. Then there is another (t’, ε’) 
algorithm B which can solve the q-SDHP for 

1hq q=  and 
1E hq q≤ , where 

2
' 120686 /ht q t ε≤ ⋅  and 

1 2
' (1 )(1 ) (1 )S SS S

F F

q qq q q
p q qε ε≥ − − −  

Proof: Suppose that an algorithm F run by an adversary (t, 
1hq , 

2hq , qE, qS, ε) -breaks the 
proposed scheme by the adaptive chosen message and given identity attacks. We can construct an 
algorithm B to solve the q-SDHP through interacting with F.  

Algorithm B takes as input 2( , , , , )qP Q Q Qα α α and aims to find a pair 1( , )c P
c α+

. In the setup 

phase, it builds a generator 1G G∈ , and does the following steps: 

1) It picks *
1 2 1, , , q pw w w Z− ∈ and 

1

1

( ) ( )
q

i
i

f z z w
−

=

= +∏  is expanded  to obtain *
0 1 1, , , q pc c c Z− ∈  so that 

1

1
( )

q
i

i
i

f z c z
−

=

= ∑  

2) 1( ) ( )G H f P Gψ α= = ∈ . The public key 2pubH G∈  is fixed to 
1

1
( )

q
i

pub i
i

H c Qα−
=

= ∑
so that pubH Hα= , 

although B does not know α  

3) For 1 1i q≤ ≤ − , B expands ( ) ( ) /( )i if z f z z w= +  

2

1
0

q
i

i
i

d z
−

−
=

= ∑
 , 

2

1
0

( ) 1( ) ( )
q

i
i i

i i i

fd Q f P P G
w w
αψ α α

α α

−

−
=

= = =
+ +∑

, so 
1( , )i

i

w G
wα +  can be computed from this equation. 

Then, B sent the public key to F. and take the *( , )pubH ID as the input of F. F issues the following 
queries for the identities (ID1, ID2,…,IDq1) and the messages (M1, M2, …, MqS). B simulates 
queries as follows: 

1) ID Hash Query: B constructs hash table L1 to store the answers of ID hash query, and returns 
the same answer for the same query. For any given IDi(1≤ i≤

1Hq ), if IDi = ID* ,B answers w = 

w* . Otherwise, answers w = wl
*
pZ∈ . In both cases B stores (ID, w) in a list L1. 

2) H2 Hash Query: B constructs hash table L2 to store the answers of H2 hash query, returns the 
same answer for the same query. For any given rj’ (1≤ j≤

2hq ), B first checks L2, if an entry <rj
’, 

hj
’> for the query is found, B returns the stored value hj

’; otherwise, B selects *'j R ph Z∈  which is 
different from other elements, and stores tuple <rj

’, hj
’ > in the L2, where hi

’≠hj
’ , (i≠j). B returns the 

value hj
’ to F.  

3) F1 Query: B constructs hash table W1 to store the answers of F1 hash query, and returns the 
same answer for the same query. For any given Mj (1≤ j≤ sq ), B first checks W1 , if an entry < Mj, 
s1j> for the query is found, then B checks W1 and returns the stored value < Mj, s1j>. Otherwise, B 
selects 1

1 {0,1}l
i Rs ∈  which is different from other elements, and stores tuple < Mj, s1j>in the W1.  

4) F2 Query: B constructs hash table W2 to store the answers of F2 hash query, and returns the 
same answer for the same query. For any given Mj (1≤ j≤ sq ), B first checks W2 , if an entry < Mj, 
s2j> for the query is found, then B checks W2 and returns the stored value < Mj, s2j>. Otherwise, B 
selects 1

2 {0,1}l
i Rs ∈  which is different from other elements, and stores tuple < Mj, s2j>in the W1.  

5) Extract Query on *ID ID≠ : For any given IDi(1 ≤ i ≤
1h

q ), B recovers the matching pair (ID, w ) 

from L1. B computes 1 G
wα +

 and returns it. 

6) Issue Query: For any given identity-message pair (IDi, Mi), if IDi=ID* , then B aborts and 
reports failure. Otherwise, B randomly picks 1iV G′∈ , *

i R pt Z∈ and computes ( , )i i IDr e V Q′= ⋅  ( , ) ite G H −  
where 1( )ID pubQ H ID H H= +  . Then B defines the value 2 ( )iH r as hi . and computes 2[ ]i i id t h= ⊕ . B 
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checks hash table L1 for Mi.  If Mi is already defined, then B aborts. Otherwise, B stores tuple < Mi, 
1
| |l it > in the L1. B also checks table L2 for

1
| |l id , if 

1
| |l id  is already defined, then B aborts. Otherwise, 

B stores tuple
1 2
| |, | |l i i ld M d< ⊕ > in the 2L . 

F outputs a pair 1 1,t V ′< >  for the user ID*, and it can pass the verify algorithm. 
F can forge a signature 1 1,t V ′< >  without knowing the private key for ID*, so we can build 'F that 

replays F on input *( , )pubH ID  to obtain forgeries 2 2,t V ′< > , with 1 2h h≠ by applying the forking lemma. 
The simulator B run 'F to obtain 1 1,t V ′< > , 2 2,t V ′< > and recovers the pairs * *( , )ID w  from list L1. If both 
forgeries satisfy the verification equation, we obtain the relations 1* *

1 2( , ) ( , ) = ( , )t
ID IDe V Q e G H e V Q−′ ′  

2( , ) te G H −⋅ ，with *
* *

1( ) ( )pubID
Q H ID H H w Hα= + = + .Then we can get *

1
1 2 1 2(( ) ( ), ) ( , )

ID
e t t V V Q e G H− ′ ′− − =  

and *T =  1
1 2 1 2 *

1( ) ( )t t V V G
w α

− ′ ′− − =
+

. From *T  , B can do following  steps as in [10] to 

extract *
*

1 P
w

σ
α

=
+

: 

1) We can obtain *
1 0 2, , , q pZγ γ γ− − ∈  from *( ) /( )f z z w+  

2
*

1
0

/( )
q

i
i

i
z w zγ γ

−

−
=

= + +∑ . 

2) We can compute 
2

* *
*

01

1 1[ ( )]
q

i
i

i
T Q P

w
σ γ ψ α

γ α

−

=−

= − =
+∑   

In the step of Issue Query, B stops the simulation when   <  
Mi, 

1
| |l it > is in the W1 or 

1 2
| |, | |l i i ld M d< ⊕ > is in the W2. The probability that those events does 

not happen is 
1

(1 )S

F

q
q−  and 

2
(1 )S

F

q
q−  respectively. And we note that  *

1 1, , qw w w −≠   with probability at 

least 1-q/p. For all the qS issue queries, the success probability 'ε of B is
1 2

' (1 )(1 ) (1 )S SS S

F F

q qq q q
p q qε ε≥ − − − . 

According to the forking lemma, the time t’ is 
2

' 120686 /ht q t ε≤ ⋅  
The combination of the above lemmas yields the following theorem 
Theorem 2. In the random oracle model, if an algorithm F (t,

1hq , 
2hq ,

1Fq , 
2Fq , qE, qS, ε)-breaks 

the proposed scheme with probability 
2

10( 1)( ) /s h sq q q pε ≥ + + under the adaptive chosen message and 
identity attack, then there is another (t’, ε’) algorithm B which can solve the q-SDHP for 

1hq q=  and 

1E hq q≤ , where
2 1

' 120686 /h ht q q ε≤ ⋅ and 
1

' (1 )(1 )S S

F

qq q
p qε ≥ − −

 12
(1 )S S

F

q q
hq q ε⋅ −  

5. Efficiency 
In this section, we compare our schemes to other available identity-based blind signature with 

message recovery based on bilinear pairings. In the following, we denote by M a scalar 
multiplication in G1 and G2 , by A a addition in G1 and G2, by Mt the multiplication on Gt, E an 
exponentiation in Gt, HM  the MapToPoint function, Inv a modular inversion operations, and by P a 
computation of the pairing. 

Table 1. Calculations of Five ID-MR-BS Schemes 
Scheme our scheme Verma[11] James[10] Hassan[9] Han [8] 

Extract 1M+ 1Inv 2M+ 1Inv 1M 1M+1 HM 1M+1 HM 

Issue 3E+1Mt  
+1Inv  

1P+4M 
+1Inv+1A 

1P+6M 
+1Inv+3A 1P+2M+1A 2P+6M+2E 

+4A 

Verify 1P+1Mt+1E 
+1M+1A 

2P+1E+1A 
+1Mt 2P+1M 2P+1E+1Mt 

+1 HM 3P+E +2Mt 

Total 
1P+2Mt 
+4E+2M 
+2Inv+1A 

3P+6M 
+1E+1A 
+2Inv+1Mt 

2P+7M 
+1Inv+3A 

3P+3M 
 +1E+1Mt 
+2HM+1A 

5P+7M 
+3E+2Mt 
+1HM+4A 

According to Cao [12], we can get the time needed to execute related mathematical operations. 
To achieve 1024-bit RSA level security for pairing-based cryptosystem, we assume the Tate pairing 
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defined over super-singular elliptic curve on a finite field qF , where |q| = 512 bits. Same security 
level for ECC based scheme, we have to use secure elliptic curve on a finite field pF , where |p| = 
160 bits. To compute the computation cost, we consider the time of computing M  is 2.21MT ms= , 
the  time of computing Mt is 2.32

tMT ms= , the time of computing E is 5.31ET ms=  , the time of 
computing HM is 3.04

MHT ms= , the time of computing Inv is 
nvIT =  3.34ms , the time of computing P is 

20.04PT ms= . And remaining operations such as modular multiplications, modular addition, simple 
hash functions H, F1, F2 and elliptic, point addition are so efficient that no need to consider (for 
example, the time of computing modular multiplications is only 0.23ms ).  

Table 2. Efficiency comparison of Five ID-MR-BS Schemes 
Scheme Our scheme Verma[11] James[10] Hassan[9] Han [8] 
Extract 5.55ms 7.76 ms 2.21 ms 5.25 ms 5.25 ms 
Issue 21.59 ms 32.22 ms 36.64 ms 24.46 ms 63.96 ms 

Verify 29.88 ms 47.71 ms 42.29 ms 50.75 ms 70.07 ms 
Total 57.02 ms 87.69 ms 81.14 ms 80.46 ms 139.28 ms 

6. Conclusions  
In this paper, we propose a new efficient ID-based blind signature scheme with message 

recovery based on bilinear parings and prove them as secure as the q-SDHP problem in the random 
oracle model. The Blindness property of our scheme provides the anonymity of the user and 
message recovery property provides to work with low band width applications. This scheme 
improves the efficiency of extracting secret key, issuing and verifying of ID-based blind signature 
scheme with message recovery.  
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