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Abstract 

In this study we investigate information processing in deep neural network models. We demonstrate that 
unsupervised training of autoencoder models of certain class can result in emergence of compact and structured 
internal representation of the input data space that can be correlated with higher level categories. We propose and 
demonstrate practical possibility to detect and measure this emergent information structure by applying 
unsupervised clustering in the activation space of the focal hidden layer of the model. Based on our findings we 
propose a new approach to training neural network models based on emergent in unsupervised training information 
landscape, that is iterative, driven by the environment, requires minimal supervision and with intriguing similarities 
to learning of biologic systems. We demonstrate its viability with originally developed method of spontaneous 
concept learning that yields good classification results while learning new higher level concepts with very small 
amounts of supervised training data. 

Keywords: artificial intelligence, machine learning, deep learning, unsupervised learning.

1. Introduction 

Over recent years, the domain of biology-motivated 
machine learning has seen very fast, one can even say 
exploding growth. A number of breakthrough advances 
have been made, bringing efficiency and confidence in 
training of machine learning systems and specifically, 
deep neural networks, in several areas of application 
such as image recognition, time series analysis, games 
and others to that of human abilities or even surpassing 
them. 

Citing only a few of many advances in data 
processing, activation, optimization, and other stages of 
designing and training of deep neural networks with 
very large data sets and ranges of classification 
categories, Kingma and Ba [1] developed advanced 
stochastic optimization training with adaptive learning 
rate that allowed to improve both accuracy and training 
time of deep neural networks. He, Zhang et al. [2] 
introduced parametric rectified linear unit activation 

(PReLU) with significantly improved accuracy, leading 
to human-level accuracy in image recognition. 
Introduction of residual learning and stochastic learning 
approaches allowed to train networks with virtually 
unlimited depth. He, Zhang et al. [3] achieved success 
in training deep neural networks of up to a thousand 
layers with significantly improved accuracy in image 
recognition.  Stochastic depth training algorithms 
developed by Huang, Sun et al. [4] now allow to train 
deep neural networks with over 1200 layers, while 
significantly reducing training time and achieving 
outstanding accuracy in image classification.  

Many other significant advances have been made in 
all stages of deep learning from data processing to 
optimization, regularization and training algorithms and 
methods leading to deeper and more complex networks 
that can train in shorter times with massive datasets 
while achieving superior accuracy in classification of 
complex real world data in a wide and rapidly growing 
range of applications in multiple domains. 
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1.1. Related Work 

In an exciting breakthrough in self learning with 
training method based entirely on self-play reinforced 
learning with no human supervision, DeepMind team 
developed AlphaGo Zero Go game player system that 
achieved superior performance among both machine 
players and humans, defeating previous world champion 
defeating version with a score 100-0 while learning 
entirely on its own through self-play with no supervised 
training (refer to Silver, Shrittwieser et al., [5] on 
reinforced self-play learning). Iterative, progressive and 
self-reinforcing unsupervised learning can prove an 
important step toward general learning directly from the 
environment with minimal external supervision. 

Interesting results in unsupervised training with deep 
autoencoder neural networks were reported by Le, 
Ranzato et al., [6]. Training an experimental deep 
neural network in unsupervised mode with a very large 
array of images they observed emergence of concept 
sensitive neurons – those activated by images of certain 
abstract category such as a human or animal face. While 
accuracy of recognition reported in the study, being in 
the fractions of a percent, was not yet at a confident 
level, these results open new possibilities in studying 
spontaneous emergence of concept associated structures 
in the information landscape of deep neural networks.  

Tishby et al. in [7] offered profound insights into 
possible basic principles of information processing in 
deep learning systems.  In the “bottleneck” argument 
proposed by the authors, generalized concepts emerge 
as a result of “squeezing” or statistical grinding of 
information through the layers of the deep learning 
model, filtering out irrelevant details while preserving 
essential higher level structures in the input data that set 
the foundation of generalizing ability of these systems. 
We shall discuss how it can be related to results of this 
study in more detail in the discussion section. 

An in-depth review of essential up-to-date 
developments in biology-motivated machine learning 
with applications of advances and findings in 
neuroscience to machine intelligence can be found in 
Hassabis, Kumaran et al. [8], notably in application to 
general learning and spontaneous learning, continual 
learning models (Cicon-Gan, Hayashi-Takagi and 
others), probabilistic and deep generative learning 
models (Lake et al., Rezende et al.), progressive 
learning and conceptual representation, while essential 
concepts, results, promises and challenges in application 
of deep neural networks in artificial intelligence were 
investigated ain great scope and detail by Y. Bengio [9]. 

While impressive progress has been made in training 
and adapting AI systems and specifically, deep learning 
neural networks to very wide and growing by day array 
of tasks and applications often with outstanding success, 
one cannot help pointing out some areas where 
advances have been slower. First, the achieved success 
is often limited to a specific application, skill or 
problem area, with limited capacity for more general 
and environment motivated self-learning. 

Secondly, the process of training machine 
intelligence systems with fixed categories and massive 
amounts of truth data may not always be efficient or 
practical in a dynamic and fluent information 
environment, where emergence of new concepts and/or 
obsolescence of others would require frequent retraining 
of the learning system; nor is it reminiscent of learning 
processes of biologic systems. As pointed out by 
Hassabis et al., “human cognition is distinguished by its 

capacity to rapidly learn about new concepts from only 

a handful of examples” that is, it tends to be iterative, 
adaptive to the environment and based on trials and 
errors with limited ground truth data, while achieving 
gradually over the training phase high levels of 
confidence in recognition of newly learned concepts, 
including those encountered spontaneously without any 
previous training. 

The motivation for this study is to approach both of 
these challenges from the direction suggested by Le et 

al. and earlier studies that is, by exploring possible link 
between unsupervised training of certain deep neural 
network models and emergence of concept sensitive 
structures in their inner layers. Should such a link be 
established, that is the first question explored in this 
study, could it be used as foundation for a novel 
approaches to training of machine intelligence systems 
that is based on the emergent unsupervised information 
landscape, requires minimal supervision and other 
substantial improvements to traditional training 
methods? 

1.2. Original Contribution 

We examine effective transformation of data during 
unsupervised training with autoencoder model of 
specific design that allows detailed evaluation and 
measurement of structure and composition of 
information in its hidden layers, and demonstrate the 
emergence of a compact and structured representation 
of input data that can be correlated with higher level 
categories. An original approach developed in the study 
is to apply unsupervised proximity clustering in the 
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activation space of the central hidden layer (that we 
refer to as “encoded space”) that allows to observe and 
measure structures and features in the encoded space in 
completely unsupervised mode without any ground truth 
data. In a number of experiments we provide several 
strong arguments that the emergent in unsupervised 
training structure can be associated with higher level 
categories in the input data.  

Based on these findings, we point to possibility of 
using this spontaneously emergent structure in a new 
class of training methods that could be iterative, driven 
by the environment with smaller amounts of supervised 
training data compared to traditional approaches 
(information landscape based learning). We illustrate 
this possibility by developing a landscape based training 
method and apply it to real world data demonstrating 
good learning progress and classification performance 
with minimal supervised training. 

In conclusion, we discuss theoretical principles and 
foundations of unsupervised concept learning and 
present a hypothesis on information processes that lead 
to emergence of structure in the inner information space 
of deep autoencoder models. 

2. The Main Text 

The structure of the paper is as follows: in the following 
Section 3 we describe the model, data and methods used 
in the study. Section 4 contains the results by category 
of analysis, including Spontaneous Concept Learning 
method developed in the study (Section 4.4). Finally, 
Section 5 contains discussion of the results, possible 
applications, and further directions of research. 

3. Instruments and Methods 

The model in this study contains several essential 
components with a deep autoencoder neural network in 
its core. Autoencoder neural networks that were studied 
extensively in applications to unsupervised learning  
were chosen in the study for several reasons: they can 
train in unsupervised mode without any ground truth 
data; earlier studies indicated possibility of spontaneous 
concept sensitivity in certain autoencoder based models; 
they have certain parallels to biologic systems in which 
reproduction of the outside environment is a common 
task of survival;  finally, advances in design and 
optimization of neural networks allow for efficient 
training and execution of experiments. 

The model data and methods used in the study are 
described in detail in the following sections. 

3.1.  Model 

The model is a deep autoencoder neural network with 
three main hidden layers and several advance activation 
and normalization layers in near-symmetrical layout as 
illustrated in Fig.1 and further defined in Table 1 below. 

We use this particular design (nicknamed as 
“dAEN”), with inflated first and last hidden layers and 
strongly compressed central layer because based on 
results of measurements (Section 4.1.1) it appears to 
produce more compact and structured representation of 
input data space in the central layer of the model. For 
complete graph of the model refer to the Appendix. 

 
Fig. 1. dAEN model layout 

 
Depending on the size of hidden layers, dAEN 

models in the study had up to 8,000 parameters as 
described in Table 1. Models were implemented in 
Python with Keras [10] and Tensorflow. 

 
Table 1 Model Parameters 

 

Layer Size Range  Activat
ion Shape Loss 

Input F=22 [0..1]  (,F)  
Inner1,

2 
M= 

10..100 
Any Leaky 

Relu [11]   
(,M)  

Encode
d 

N= 
3..10 

Any Leaky 
Relu 

(,N)  

Out O = F 
= 22 

[0..1] Sig 
moid 

(,F) MSE 

 
Hereinafter, “M-N dAEN model”, e. g. “dAEN 50-

5” will refer to a model with sizes of hidden layers M, 
N, M, respectively, in the order from input to output. 

3.2. Components 

Along with autoencoder model described above, the 
learning system uses a number of other components that 
are described in this section. 
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The autoencoder model is trained in unsupervised 
mode to match the output to the input with Mean 
Squared Error loss function. 
 
    model.train(input=X, output=X, epochs=100,…)  (1) 
 

Trained model performs “encoding transformation” 
from the input data space X to its representation in the 
Encoded layer of the model y as: 
 
                          y = encoder.predict(X), (2) 
 
where encoder is defined as sub-model mapping the 
input to activation of the Encoded layer.   

To classify input samples to higher level categories 
{C}, a classifier method is trained with ground truth 
labeled set (X, L) in encoded space of the model:  

                    classifier.fit(encoder.predict(X), L) (3) 

Together, the encoder and classifier can predict the 
class C of an input sample S by transforming it to the 
encoded space E, then predicting C with classifier 
trained on E. In our model, we use geometry based 
classifier such as k-nearest neighbor. 

          C = classifier.predict(encoder.predict(S)) (4) 

In the unsupervised training phase one can apply 
proximity based clustering method that doesn’t require 
fitting with labeled samples, such as MeanShift [12]. It 
can be fitted on a subset of data in the encoded space of 
the model to learn and visualize its structure as: 

                     structurer.fit(encoder.predict(Y),...), (5) 

where Y is the structuring sample, a significant subset 
of input data. Note that while unsupervised structurer 
cannot predict higher level category of input sample i.e. 
class C as above, it can predict its cluster Cl as one of 
the identified in the structuring phase (Eq. 5) clusters as: 

 Cl = structurer.predict(encoder.predict(S)) (6) 

Classes C and Cl thus signify the distinction 
between the known higher level category of the sample 
in supervised training, “the external knowledge”, and its 
internal concept (“implicit knowledge”) derived in 
unsupervised training of the model and clustering in its 
encoded space. By combining unsupervised clustering 
with deep autoencoder model we’re able to detect and 
identify the structure of information that emerges in the 
hidden layers of the model during training in entirely 

unsupervised mode, before any ground truth samples 
have been applied. 

The complete learning system can then be defined as 
a combination of: 1) dAEN autoencoder model with 

encoder sub-model; 2) concept classifier (or a set 
thereof) and 3) unsupervised structurer that maps the 
encoded space E to a set of clusters identified in 
unsupervised fitting. 

3.3. Data 

To reduce possibility of data specific effects we use two 
different and independent data sets. The data represents 
Internet sessions recorded in two different networks by 
geographic location and source. Each sample represents 
an instance of Internet session such as a voice call, web 
browsing session, instant messaging session, file 
download, etc. Samples are defined by 22 parameters 
derived from basic statistics of data packets. 
 

Table 2 Input Data 
 

Type Q-ty Description 

General 
6 Total duration, total data size (per 

direction), number of packets (per 
direction), data protocol 

Packet 
size 

8 Min, Max, Mean, Standard deviation 
of data packet length, per direction 

Packet 
timing 

8 Min, Max, Mean, Standard deviation 
of data packet inter arrival time, per 
direction 

 
We use two different, independently obtained and 

processed datasets. The first dataset A consists of 
approximately 50,000 samples recorded in NIMS lab of 
Dalhousie University [13]. These samples are labeled 
with three categories and arranged into two different 
non-overlapping sets: A-Train (41,600 samples) used in 
unsupervised training and A-Test (10,000 samples) used 
in accuracy testing. The sets are kept separate with no 
overlapping to ensure that test metrics are measured 
with samples that the model has not seen in 
unsupervised training. 

Table 3 Dataset A, Composition 

Category Samples Representative  Label 

Voice 20,000 GTalk, VoIP “0” 

Web 12,000 HTTP, Web browsing “1” 

Other 20,000 Instant messaging,  
file transfer and other 

“2” 

 

 
___________________________________________________________________________________________________________

4

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 1-12



The second dataset B is produced from live 
recording of Internet data in New Zealand (Waikato 
Internet Traffic Storage, [14]) and is comprised of 
approximately 240,000 unlabeled samples with the 
same input parameters as Set A. This data, being a live 
recording in a core Internet network has much wider 
representation of patterns, with over 4,000 distinct 
applications (for comparison, ImageNet has 
approximately 20,000 categories of images). To 
evaluate classification accuracy a subset of the dataset 
has been labeled for several common Internet 
applications by well-known port number. 

3.4. Training and Classification 

The model is trained with unlabeled data to achieve 
reproduction of input samples in the exit layer of the 
network. The performance of unsupervised training is 
measured by validation accuracy and loss. In the study, 
models achieved the following training results: 
 
Dataset A: validation accuracy 88 – 94%, validation 
loss 0.0015 – 0.004  
Dataset B: validation accuracy 95 – 97%, validation loss 
0.00025 – 0.001  

 
Classification accuracy can be measured with 

labeled data by obtaining prediction as in Eq. (4) that 
can be compared with ground truth. We use accuracy 
metrics as commonly defined:  classification accuracy 
or recall as True Positive samples (class) / Total 
samples (class); and false positive rate as False Positive 
(class) / Total samples (not in class). We also use total 
accuracy measure for all classes defined as Total True 
Positive (all classes) / Total Number of samples.  

It’s worth noting that a priori, there’s no expectation 
of correlation between accuracy in unsupervised 
training vs. classification accuracy with labeled data. 
For clarity they are referred to as “training accuracy” vs. 
“classification accuracy” in the rest of the study. 

3.5. Measurement and Visualization 

Measurement and visualization is performed with a 
sampling subset that is transformed to encoded space 
(Eq. (2)) and visualized by plotting the encoded sample 
in the dimensions of encoded space.  We use random 
sampling with 2 – 10% of the dataset. 

The size of the sample in the encoded dimension is 
measured as (max Xn – min Xn), where Xn is the 
coordinate of the sample in that dimension.  Note that 

identifying and measuring cluster structure thus requires 
no supervised data. 

All results were measured over multiple runs to 
eliminate possibility of statistical fluctuation. 
Classification accuracy results with labeled dataset were 
20 – 100 fold cross validated. Results related to training 
of models, such as shape and structure, classification 
accuracy in training and concept learning were 
measured over minimum 10 training runs. 

3.6. Spontaneous Learning 

Based on results pointing to correlation of the emergent 
information structure in the encoded space with higher 
level categories we attempted to illustrate possibility of 
using this structure in training the system to learn and 
recognize new higher level categories.  

The method is based on developing a set of “concept 
markers” in the encoded space over a series of learning 
iterations that aim to identify clusters and structures 
relevant to higher level category being learned. Concept 
markers are built with small number of truth samples in 
trial and error iterations and artificial or “synthetic” 
markers derived from structures identified with 
clustering following unsupervised training. In each 
learning iteration, the set of concept markers is updated 
based on real world inputs and classifier is retrained 
with the updated set of markers iteratively improving 
prediction performance. 

4. Results 

In this section results are presented by type of analysis. 
We report evaluation and measurement of the emergent 
structure in the encoded space, compare it with other 
unsupervised ML methods, evaluate training and 
classification performance of models and correlation of 
emergent unsupervised structure with higher level 
categories in the input data. In Section 3.4 results are 
presented for spontaneous concept learning method 
developed in the study. 

4.1. Shape and Structure 

We observe that unsupervised training of dAEN model 
results in compact and structured representation of input 
data space. 

4.1.1. Shape and Structure in Encoded Space 

In Table 4, characteristics of the encoded space of 50-5 
and 50-3 dAEN models were measured after 100 epochs 
of unsupervised training. For each run the number of 
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visible features in visualization sample is recorded 
along with number of clusters calculated by structuring 
method (MS), as well as minimum and maximum size 
of the sample. 
 

Table 4 Characteristics of Encoded Space 
 

Model  Train. 

Loss 
Train. 

Acc. 
MS 

clusters 
Visible 

clusters Size 

Set B      

50-5 6 x 10-4 96.8% 17 16 0.015 / 
0.022 

50-3 9 x 10-4 96.2% 16 14 0.019 / 
0.032 

25-3 0.0011 96.2% 13 10 0.019 / 
0.034 

Set A      

50-5 0.001 88% 13 15 0.018 / 
0.054 

50-3 0.0022 93.4% 12 15 0.018 / 
0.04 

 
In visual observation of the encoded sample one can 

identify multiple structures such as clusters, streaks, and 
other distinct regions in encoded space. Clusters 
identified by proximity clustering method mostly agree 
with visual observation. In Fig.2, visualization sample 
from Dataset B is plotted in the encoded space of 50-3 
dAEN model with identified clusters. For illustration, 
samples of one application (Messenger), are shown in 
magenta. 

 
Fig.2 Encoded space with MS clusters 

 
One can compare structure produced by 

unsupervised training of dAEN models with 
transformations by other unsupervised machine learning 
methods. Of those, most commonly used are PCA and 
unsupervised clustering such as K-Means. As 
unsupervised K-Means requires as essential parameter 
the number of expected clusters that wouldn’t be known 

a priori in unlabeled real world data, we see it as less 
applicable in this analysis. 

By applying PCA decomposition to the same 
number of dimensions as encoded space of dAEN 
model on the same visualization sample one can 
compare the results of transformation by dAEN model 
vs. PCA. 

It can be seen that the resulting PCA transformation 
space is quite different from that of dAEN models, with 
more uniform distribution of samples and fewer distinct 
features. Unsupervised clustering detects fewer features 
in PCA transformed sample as well. It can also be seen 
that the size of the sample in the PCA space is by orders 
of magnitude greater than in the dAEN space. 

 
Table 5 Characteristics of PCA Space 

 

PCA MS 
clusters 

Visible 
clusters Size (Min / Max) 

Set B 12 10 1.85 / 2.2 
Set A 10 12 1.75 / 2.0 

 
Another way to compare data transformations by 

dAEN models and PCA is to examine projections of the 
visualization sample in the two dominant dimensions. In 
Fig.3 the same sample from dataset A is transformed by 
dAEN 50-3 model (top) and PCA 3-dimension 
decomposition, bottom.  

Fig.3 Structure in dAEN vs PCA space 

It is our intent to extend structure analysis performed 
in this section to more complex neural network models 
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in the future studies. This would require considerable 
insight and effort in constructing the effective encoded 
data space from large number of intermediate layers, 
including those with sparse activations commonly used 
in such models. 

4.1.2. Shape and Structure in Training 

It is possible to monitor changes in the shape and 
structure of the sample in encoded space as the model 
trains in unsupervised mode by applying Keras callback. 
A simple callback measured and visualized data sample 
after each n-th epoch of unsupervised training. 

In this training run of a 50-3 model over 100 training 
epochs (dataset A), we record the size of visualization 
sample in dimensions of the encoded space and the 
number of visibly identifiable features in the sample as 
training progresses: 
 

Table 6 Size and Structure in Training 
 

Epoch Visible 
clusters Sample Size 

0 5 0.975, 0.560, 0.478 
20 8 0.027, 0.063, 0.031 

40 10 0.024, 0.044, 0.024 

60 12 0.024, 0.042, 0.024 

80 12 0.024, 0.044, 0.024 

100 13 0.0235, 0.042, 0.024 

 
It can be seen that as the sample is compressed to 

less than 10-4 of its initial size, the number of 
identifiable features increases more than twofold.  

In all training runs with both data sets, we have 
observed significant reduction in the volume of the 
measuring sample in the course of training, the effect 
not seen in other unsupervised ML methods such as 
PCA. These results demonstrate that compression and 
structuring effect of unsupervised training of dAEN 
models and possibly, other autoencoder based neural 
network models is a distinct feature of these models. 
Further in the study we will refer to it as “unsupervised 
spontaneous structuring”. 

4.2. Classification 

In the previous section we have observed that 
unsupervised training of dAEN models produces 
compact and structured encoded space, however there 

was no indication of if or how it is correlated with 
higher level categories in the input data. Classification 
experiments presented in this section indicate that such 
correlation may indeed exist.   

In classification experiments we used labeled dataset 
and training process as described in Sections 2.2 and 
2.3. 

4.2.1. Classification Accuracy 

In this table classification accuracy results are 
summarized for dAEN 50-5 model. As accuracy results 
strongly depend on the size of supervised dataset used 
in training of the classifier, several points were 
measured, from 500 (1% of unsupervised training 
dataset) to 100 samples (~ 0.2%).  

For comparison, as in Section 4.1.1, classification 
accuracy was also measured with classifier trained with 
the same training sample transformed by PCA 
decomposition to the same number of dimensions as 
dAEN model (Table 7, last rows). 
 

Table 7 Classification Accuracy 
 

Label 
Samples 

Accuracy 
% 

FPR, 
% 

Total 
Acc., % 

STD, 
Accuracy 

500 99.2 0.9 98.6 0.00011 

300 98.7 3.7 96.5 0.00018 

100 98.1 5.2 95.7 0.00023 

PCA, 
300 

98.5 4.4 96.2 0.00021 

PCA, 
100 

97.8 5.0 94.8 0.00024 

 
While on average dAEN models do not significantly 

outperform PCA based ones, we observed that some 
models achieve outstanding performance when trained 
with very small amounts of training data. For example, 
these 50-5 models demonstrate accuracy results below 
given that they were trained with only 30 labeled 
samples i.e. ~ 0.06% of unsupervised training dataset 
(the accuracy metrics are, respectively:  default category 
accuracy, default category FPR and total accuracy 
across all categories): 
 
dAEN-1-32: 0.97392502, 0.09018429, 0.85562 
dAEN-2-32: 0.9547335, 0.06949415,  0.87671 
 

In the experiments where very small amounts of 
training data were used, dAEN models trained in 
unsupervised mode outperformed all common ML 
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methods in classification accuracy, including decision 
trees, MLP, kNN, SVM and PCA.  

In our view, this can be first indirect indication that 
unsupervised spontaneous structure observed in the 
previous section can be positively correlated with higher 
level categories in the input data. Indeed, if no such 
correlation existed, training dAEN models with any set 
of ground truth data should not have resulted in 
statistically significant improvement compared to 
classification on PCA reduced space. But if such 
correlation indeed exists, the pattern of accuracy results 
would be exactly as observed, with smaller comparative 
accuracy gain on a larger training set smoothing 
granularity of the spontaneous unsupervised structure, 
while a “right” training sample in the structured space 
(that is, with good representation of training samples in 
the structures relevant to the category being learned) 
could produce very good classification accuracy even 
with extremely small training set. 

4.2.2. Classification Accuracy in Training 

As in Section 4.1.2 above, one can monitor 
classification accuracy in training with a callback. A 
callback receives verification sample on which accuracy 
test is performed after each n-th epoch of unsupervised 
training. In this example of 50-5 model, total 
classification accuracy across all classes improved from 
86.5% to 91.2%, i.e. by approximately 5% (here, “lr” is 
learning rate, “accuracy” being total classification 
accuracy for all classes): 
 
epoch:  0 lr:  1.0 accuracy:  0.8652 
epoch:  20 lr:  0.5 accuracy:  0.9084 
epoch:  40 lr:  0.125 accuracy:  0.91 
epoch:  60 lr:  0.0078 accuracy:  0.9136 
epoch:  80 lr:  0.001 accuracy:  0.9124 
epoch:  100 lr:  0.001 accuracy:  0.9124 
 

In all conducted experiments classification accuracy 
increased as a result of unsupervised training in all 
cases, with the mean of 4.6% and the range 2.8 – 7.7%. 
In our view this result can be another indication that 
emergent structure in the encoded space is correlated 
with higher level categories in the input data. If the 
emergent spontaneous unsupervised structure had no 
significant correlation with higher level categories, 
positive correlation between unsupervised training and 
the improvement in classification accuracy would be 
difficult to explain. 

4.3. Categorization in Encoded Space 

Categorization can be defined as a characteristic of the 
encoding transformation whereby samples of same 
higher level categories are likely to be transformed to 
distinct regions in the encoded space of the model. This 
spontaneous clustering by higher level concept can be 
observed in dAEN models directly by visualizing 
samples labeled by application category in encoded 
space.  
In Fig.4 samples of several Internet applications, 
including: DNS requests (green, 500), Escale Newton 
(magenta, 220) and an Internet messenger (500, red) 
from Dataset B are plotted in the encoded space of a 50-
3 model with non-categorized data of other categories 
(bottom plot, 10,000 samples, grey). 

 

Fig.4 Categorized sample in encoded space 

It can be seen that application samples are indeed 
transformed into distinct regions in the encoded space, 
though categorization parameters such as shape, size, 
density etc., may differ across applications. We found 
this effect for all application categories that were 
identifiable and had significant representation in the 
unsupervised training data including: BitTorrent, 
Gnutella file sharing applications, Xbox, Escale and 
Warcraft video games, NTP and DNS network 
applications, NNTP news protocol, several messaging 
applications and others. Same categorization effect was 
observed with labeled samples in Dataset A.  

Categorization behavior of this class of models as 
well as other previously reported results on emergence 
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of spontaneous information structures in deep learning 
systems merit separate in-depth investigation from both 
theoretical and empirical perspectives due to their 
importance for understanding principles of unsupervised 
information processing in deep learning systems as well 
as applications in information landscape based learning, 
of which SCL method developed in this study is one 
example. 

4.4. Spontaneous Learning 

Based on results presented in the previous sections that 
point to association between unsupervised spontaneous 
structure emergent in dAEN models and higher level 
categories we attempted to develop a learning method 
that would harness this unsupervised structure for more 
efficient learning. Specifically, we mean higher 
efficiency in several previously noted areas: 
 
(i) Reduced requirement for ground truth training data 

(ii) Iterative learning over a number of self-supervised 
and self-improving iterations 

(iii) Spontaneity: learning when training data becomes 
available (environment driven) rather than with  
massive supervised data upfront  

(iv) Flexibility: learning new and forgetting obsolete 
concepts without complete retraining of the model. 

 
Spontaneous concept learning method (SCL) is 

based on detecting the unsupervised spontaneous 
structure in the encoded space with unsupervised 
clustering (Eq. 5) and using it, along with small streams 
of ground truth data representing trial and error 
iterations to construct a set of markers in the encoded 
space that would identify the concept-associated regions 
well enough for confident classification. It involves 
several stages: 
 unsupervised learning: spontaneous structure is 

detected by structuring method and “synthetic” 
markers calculated from identified clusters;    

 “awakening”, that registers first labeled samples of 
the new concept allowing to identify clusters in the 
encoded space associated with the concept and build 
first iteration of concept markers from identified 
concept clusters and labeled samples; 

 trial and error iterations: the set of concept markers 
is updated based on results of trials with small 
streams of labeled data and classifier retrained on 
the updated set;  

 reinforcement: check and maintain classification 
performance achieved in the learning phase. 

We used a simple form of the method whereby 
synthetic markers were generated randomly within a 
small sphere around cluster centers and believe that 
refining it may considerably improve learning 
performance of the method. 

Even in this simple form, the results in spontaneous 
learning were encouraging: for example, in learning 
runs with wake-up stream of 10 concept labeled samples 
followed by 10 trial and error iterations with 5 / 5 in-
concept vs. non-concept labeled samples respectively, 
that translates to the total supervised training set of just 
60 samples of the concept category, SCL could 
routinely achieve classification accuracy for the newly 
learned category above 95% and FPR below 5% with 
Dataset A.  But the real challenge was in applying the 
method to live data of Dataset B that has significantly 
wider range of applications categories and data patterns.  

In applying the method to samples from dataset B 
we faced the challenge of balancing markers for in- and 
out of concept clusters. With very small number of 
labeled samples used in SCL, the number of out of 
concept clusters that can be identified with trial samples 
was insufficient for good resolution, resulting in FPR of 
15 – 20% and above. On the other hand, if the number 
of out clusters was not limited (that is, all clusters not 
identified as in-concept were considered to be in the out 
category), with large number of clusters that can be 
found in the live data, the number of out clusters greatly 
outnumbered in-concept ones, creating imbalance 
between in- and out-markers and resulting in better FPR 
but degradation of accuracy.  

A working solution that was found was to limit the 
number of out-clusters to a fixed maximum, essentially, 
a parameter of the method. It allowed to achieve the 
optimal balance of in-concept accuracy and FPR for 
several tested application classes. Though this approach 
is somewhat crude we’re hoping that refining it would 
further improve learning performance of the method. 

In Table 8, spontaneous concept learning was 
applied to samples of several Internet applications, 
followed by verification of classification accuracy with 
larger set of labeled application samples. The main 
parameters of the method are: 1) synt, the number of 
synthetic markers per cluster; 2) rsam, the number of 
ground truth samples of concept (in and out, each) per 
learning iteration; and the number of learning iterations 
(iter). In these tests rsam = 5, synt = 3 .. 10 and the 
number of iterations is 10 .. 15. 
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Table 8 Spontaneous Learning Results 
 

Learning 

run 
Class, 

Dataset 
Learning / 

Total samples 
Accuracy, 

FPR (%) (1) 
A-Voice Voice, A 60 / 12,000 97.2, 6.4 
A-Web Web, A 60 / 12,000 98.6, 4.7 
B-NTP NTP (2) , B 70 / 760 98.8, 6.1 

Newt-B Newton 
(3), B  

70 / 220 92.8, 9.2 

MSM-B MS 
Messenger 

70 / 1200 91.9, 7.8 

XBX-B Xbox, B 70 / 2300 88.7, 9.6 
(1) the mean of 10 learning runs, outliers removed 
(2) Network Time Protocol requests 
(3) Escale children learning and game console 
 

It was encouraging to observe that the method could 
learn an entirely new concept from only a handful of 
ground truth samples (plus the unsupervised 
spontaneous structure in the encoded space) with good 
accuracy, especially given that dataset B is live Internet 
data with very broad variety of patterns – over 200 K 
samples representing over 4000 different application 
sources. In the NTP example, not only the model, being 
trained with just 70 / 60 of concept vs non-concept 
samples was able to classify correctly over 98% of 
concept samples out of ~ 800, but also to resolve non 
concept samples from much larger pool (over 200 K 
samples, over 4000 different applications) with only 6% 
of false positives.  

We also observed that using synthetic markers can 
improve accuracy of classification, in particular, FPR 
resolution. For example, with Newton samples from 
dataset B, the average FPR resolution of the method was 
improved by several percentage points by adding 3 – 5 
synthetic markers per cluster (synt = 3 .. 5) while 
retaining good in-category accuracy. 

Very light requirement for labeled data combined 
with ability to learn spontaneously and iteratively are 
clear strengths of SCL and landscape based learning 
generally that in our view merit further investigation 
and refinement with potential to approach learning 
efficiency of learning of biologic systems. 

4.5. Conclusions 

The results can be summarized as follows: 
(i) Unsupervised training of deep autoencoder models 

studied here results in compact and structured 
representation of the input data space. This 

conclusion can be reached from shape and structure 
analysis with both datasets in Sec. 4.1.1 and 
investigation of structure and compression of data 
in unsupervised training, Section 4.1.2. 

(ii) Some dAEN models can achieve high classification 
accuracy being trained with very small amounts of 
truth data (Sec. 4.2.1) pointing to possible 
correlation between unsupervised spontaneous 
structure and higher level categories in the input 
data. 

(iii) Accuracy in classification is correlated with 
unsupervised training and is improved considerably 
over the course of training supporting the argument 
for correlation between unsupervised spontaneous 
structure and higher level categories (Sec. 4.2.2). 

(iv) Visualization analysis in Section 4.3 directly 
supports the hypothesis that spontaneous structure 
emergent in unsupervised training reflects higher 
level categories in the input data. 

(v) And that a method of spontaneous concept learning 
based on unsupervised spontaneous structure with 
iterative learning process and very light 
requirement for ground truth data is proposed 
achieving good classification performance with real 
world data (Section 4.4). 

5. Discussion 

5.1. Unsupervised Spontaneous Structure 

According to observed results, training of dAEN models 
and possibly, more general class of deep neural network 
models in unsupervised mode can produce compact and 
structured representation of the input data in the 
encoded space that is correlated with general higher 
level categories. This observation led to the following 
hypothesis of “spontaneous categorization”: 
 

Models studied here provide an example of a 

general information processing strategy that allows 

information processing systems to package and store 

data more efficiently by separating general features 

(concepts) and transforming them into separate 

compact regions in the effective information space of 

the model. 
 

This finding can be an argument in support of the 
“bottleneck” principle of deep learning proposed by 
Tishby et al. in [6]. One can conjecture that strong 
information flow through inner layers of the model 
during unsupervised training strips off irrelevant or 
random elements leaving information structure, a sort of 
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“skeleton” of general features or concepts that were 
present in the original data. The idea behind the layout 
of the dAEN models in this study was that by inflating 
the first inner layer, then reducing it at a high ratio to 
the central layer may increase information flow through 
the focal point of the model, and result in a more 
pronounced encoded structure. And we did observe 
indirect evidence of such strong information flows in a 
number of runs where one or more of Relu neurons in 
the encoded layer were “knocked out” during training 
resulting in flat output of the model in the 
corresponding dimension. Hence, spontaneous 
categorization observed in our experiments may indeed 
be related to information flows during training phase. 

In the future studies we shall attempt to provide both 
theoretical and empirical arguments for spontaneous 
emergence of unsupervised structure in deep learning 
models. We believe that it may have important 
implications for designing general purpose, adaptive 
machine learning systems capable of learning new 
concepts directly from the environment. 

5.2. Landscape Based Learning 

Triggered, guided and reinforced by the environment 
spontaneous concept learning is an exciting possibility 
that can bring machine learning closer to learning 
processes of biologic systems. Information landscape 
learning, based on emergent structure in the information 
space of deep autoencoder models, can address several 
long-standing challenges in traditional machine 
learning:    

(i) it points a direction for development of flexible 
general learning methods that are capable of 
learning directly from the environment; 

(ii) it has minimal requirement for ground truth data 
that doesn’t need to be available all at once for 
learning process to begin and proceed; 

(iii) it allows to train models iteratively in a continuous 
trial and error process reminiscent of learning of 
biologic systems; 

(iv) it leads naturally to a flexible and adaptable higher 
level category structure where new features can be 
added (and old ones forgotten) without retraining of 
the system. 

Further investigation may lead to more versatile 
algorithms for construction of effective concept markers 
in the effective encoded space of learning models 
resulting in improved learning performance of 
landscape based methods. 

5.3. Parallels with Biologic Systems 

In the context of the study the parallels with information 
processing strategies of biologic systems are thrilling. 
Self-supervised reproduction of inputs may have 
immediate benefits for a biologic system in correct 
interpretation and response to the changes in the 
environment that can be critical for survival. Is it 
possible that networks similar to autoencoder by 
function if not by architecture developed first as a mean 
to carry information about the environment deeper into 
the system, with learning of more general concepts 
emerging as a by-product of natural development of 
information structure in the inner layers of such 
networks? 

Another essential insight that these findings can 
offer is relatively straightforward explanation for 
forgetting, an important learning function without which 
true general learning may not be feasible. In SCL, 
forgetting a concept means only discarding its classifier 
and markers (for example, in this study, some 100 
points in the encoded information space) and doesn’t 
require retraining of the system, while in traditional 
machine learning it’s quite challenging to forget a part 
of the category space a model was trained with without 
retraining of the model. 

In this approach, information structure learned in 
unsupervised training plays the role of ground 
foundation for subsequent learning by trial and error. 
These findings therefore may provide insights for 
further research in neuroscience and learning of biologic 
systems. 

5.4. Future Work 

It would be both interesting and challenging to attempt 
to apply the results of this study to more complex deep 
learning models and other types of data such as, 
ultimately, visual recognition. A critical and still open 
question in such a program would be how to construct 
the effective information space from multiple layers of a 
deep model with numerous and sparse activation layers. 

The results reported by Le et al. on spontaneously 
emerging concept sensitive neurons may point in this 
direction, however, the accuracy of recognition hints 
that perhaps another, overlay layer or even a secondary 
network would be needed to collect inputs of multiple 
layers and combine them for confident resolution. In our 
models the layout of the encoded space was imposed by 
the architecture of the model itself and the summation 
layer performing structure detection was modeled by 
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simple clustering algorithm. This may not and likely 
would not be the case for deep and sparse neural 
networks requiring further analysis and insights to 
construct effective encoded space where structure 
analysis can be performed. 

Methods and algorithms of spontaneous concept 
learning certainly need further refining. In particular, 
more advanced strategies for construction of effective 
markers in the encoded space can be developed to 
improve learning performance of landscape based 
methods.  

Finally, it would be exciting to explore the parallels 
between general learning of machine and biologic 
systems. Are these similarities only superficial, or 
reflect similar processes and architectures of 
information processing in machine vs biologic 
networks? These questions can be approached from 
both machine learning and neuroscience directions. 
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Appendix A. Model Layout 

Detailed layout diagram of a dAEN 50-3 model 
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