
Germinal Center Optimization Algorithm

Carlos Villaseñor 1*, Nancy Arana-Daniel 1*, Alma Y. Alanis 1,
Carlos López-Franco 1, Esteban A. Hernandez-Vargas 2

1 Departamento de Computación, Universidad de Guadalajara,
Blvd. Marcelino Garca Barragn 1421, 44430,

Guadalajara, Jalisco, México
2 Frankfurt Institute for Advance Studies

Ruth-Moufang-Strae 1, 60438,
Frankfurt am Main, Germany

* Correspondence: cavp@outlook.com, nancyaranad@gmail.com

Abstract

Artificial immune systems are metaheuristic algorithms that mimic the adaptive capabilities of the im-
mune system of vertebrates. Since the 1990s, they have become one of the main branches of computer
intelligence. However, there are still many competitive processes in the biological phenomena that can
bring new advances for many applications. The Germinal Center reaction is one of these competitive
processes that had not been fully modeled until now, and that was the inspiration to design the novel
optimization algorithm that we present in this work. Our proposal implements a competitive-based non-
uniform distribution to select particles to be mutated, which can be interpreted as an implementation
of temporal leadership in population-based metaheuristics. We model the dark-zone and light-zone of
the Germinal Center and their competitive processes like clonal expansion, T-cell binding and life sig-
nal decay. We also propose the combination of this selection method with the use of one Differential
Evolution-based strategy to substitute the somatic hypermutation process. To show the performance, we
include a benchmark with the comparison of our approach versus some of the state-of-the-art bio-inspired
optimization algorithms. We show that the proposal has a statistically significant improvement over the
other algorithms for low dimensionality problems.

Keywords: Germinal Center, Artificial Immune Systems, Evolutionary Optimization

1. Introduction

Optimization plays a big roll in nowadays scien-
tific research and industrial developments, but for
many of these applications is difficult to formalize
a mathematical model to optimize, for this reason,
metaheuristic algorithms have become a suitable so-
lution. Metaheuristic optimization algorithms offer
good solutions in affordable time for complex prob-
lems. A big branch of these algorithms is the so-

called bio-inspired algorithms, and they are compu-
tational metaphors of biological phenomena that ex-
press great capabilities of adaptation.

An essential type of bio-inspired technique is the
one based on the adaptive response of vertebrates
immune system,1 which is the base for designing the
Artificial Immune System (AIS) algorithms.2 As we
will show in section 2, AIS algorithms have become
a very active research field, with many successful
algorithms which solve optimization, combinatorial

 Received 7 December, 2017

Accepted 3 August, 2018

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

13

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 13-27

and machine learning problems.
In the biological phenomena of adaptive immune

response, we can find the Germinal Center Reac-
tion. The Germinal Centers (GCs) are compartments
within secondary lymphoid organs with two histo-
logically distinctive zones: the light zone and the
dark zone.3

As it is mentioned in Ref. 3, GCs are sites where
B lymphocytes (B-cells) have clonal expansion, so-
matic hypermutation, and affinity-based selection.
These processes result in the production of high-
affinity antibodies.

GC presents non-deterministic competitive pro-
cesses that offer a good metaphor for an artificial
immune system algorithm. These features were
first noticed in Ref. 4, where the authors proposed
a novel algorithm called GC-AIS (Germinal Cen-
ter Artificial Immune System), to solve the set-cover
problem obtaining a good result. After that, they
present a solution for the population explosion in the
work detailed in Ref. 5.

In GC-AIS, the authors use the communication
between GC as a parallelization property, although
every GC mutates its candidate solutions with stan-
dard bit mutation in parallel. This approach is useful
not only for the combinatorial problem but also for
optimization and even for multi-modal optimization
as well.

Nevertheless, the property mentioned above is
just one of the many features of GCs. We be-
lieve that the recent research in GC, published in
Refs. 6, 7, 8, 9, 10 recent researches imply that
the affinity maturation problem is guided strongly
by the affinity-based selection in the light zone and
the clonal and mutation processes in the dark zone.
Then, the dynamic of the light and dark zone is an
important process in the Germinal Center operation
that has to be implemented to take full advantage of
all the functions of this process as we show in next
sections.

In this paper, we present a novel optimization al-
gorithm based on the recent research in GCs. This
algorithm is a metaheuristic to model a competitive-
based non-uniform distribution for candidate solu-
tions selection.

The distribution is modeled following the GC re-

action and offers a way to include temporal lead-
ership for selecting particles in population-based
metaheuristics. We apply this concept in a hybrid
Differential Evolution algorithm, and we show sta-
tistically that we can get better or equal results in
different optimization problems.

This paper is organized as follows, in section 2,
we offer a short review of the Artificial Immune Sys-
tems fundamentals and main algorithms. In section
3, we describe the Differential Evolution and Parti-
cle Swarm Optimization algorithms. Next, in sec-
tion 4 we discuss the Germinal Center Reaction. In
section 5, we present the novel algorithm, in section
6, the experiments, and results are shown. Finally in
section 7, we offer our conclusions.

2. Artificial Immune Systems

The vertebrate immune system can recognize, de-
stroy and remember almost an unlimited number
of Antigens (Ag) (foreign non-self objects in the
body).11 These capabilities make the immune sys-
tem a source of inspiration for many intelligent al-
gorithms denominated Artificial Immune Systems
(AIS).

There are two kinds of adaptive response in the
natural immune system,1 the humoral immunity and
the cellular immunity. The first one is formed by
molecules present in blood and mucous secretions
that have the name of Antibodies (Ab). The Ab is
produced when a Lymphocyte B differentiates into a
plasmatic cell. The Ab recognizes the Ag, neutral-
izes it and marks it for destruction. The effective-
ness of the Ab to bound to an Ag is called affinty.
The affinity of the Ab is changed in clonal prolifer-
ation and mutation of the B-cells through a process
called Somatic Hypermutation.

The humoral immune response protects the body
from Ag in blood but is not capable of detect-
ing Ag inside cells, for example, the viruses and
phagocytosed microbes. In this case, the body uses
the cellular immunity, based on lymphocytes T (T-
cells). There are two kinds of T cells, on the one
hand, the cytotoxic T-cell, that directly destroys in-
fected cells and the helper T-cell that activates in-
fected macrophages to kill inner microbes among

14

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 13-27

other functions. Summarising, in the adaptive re-
sponse we have extracellular protection with the hu-
moral immunity (produced by B-cells) and intracel-
lular protection with cellular immunity (thanks to T-
cells). For a more in-depth introduction to immunity
review Ref. 1.

Many AIS algorithms are based on different parts
of the processes expressed above. In Fig. 1, we
present a taxonomy of the principal AIS algorithms
families based on Refs. 2 and 11. These algorithms
have gained popularity, and they have many success-
ful applications like computer security, optimiza-
tion, data mining and anomaly detection.2

����������

	

��

����

�

�
���������
��

��������
�

����
�

��
���

�
�����

�
�
�����

������

�
�
�����

	

��

�
������

Fig. 1. Principal techniques in AIS

Negative Selection Algorithm (NSA) is based
on the self/nonself immunological paradigm model,
where the ongoing selection of cells is performed
just like it has been observed in the preparation
of naive T-cells, which mature with the positive
and negative selection. Clonal Selection Algorithms
(CLONALG) are inspired by clonal selection theory,
which is based on the proliferation of B and T-cells,
that mutate with somatic hypermutation and differ-
entiate in plasmatic cells or memory B-cell with dif-
ferent lifespan. Artificial Immune Networks (AIN)
are based on the work of Jerne12, where he explains

that immune cells interact not only with Ag, but also
with the previous Ab, and this could trigger clonal
selection. Dendritic Cell Algorithms (DCA) are a
family of algorithms based in Danger Theory pro-
posed by Matzinger13, that suggest that the adaptive
immune system reacts to danger signals and den-
dritic cells are part of the innate immune system
that responds to some specific danger signals. Many
other algorithms have been proposed based on Dan-
ger theory.13

3. Metaheuristic Algorithms

In this section, we briefly explain five successful
evolutionary algorithms. Evolutionary optimiza-
tion algorithms14 are metaheuristic algorithms based
on evolutionary competence, and they have been
proven to be a good solution for multivariate prob-
lems.

3.1. Differential Evolution

Differential Evolution15 (DE) is a successful opti-
mization algorithm for multivariate functions. DE
is a population-based metaheuristic. Then, the al-
gorithm propose a population of N Candidate Solu-
tions, also known as particles. Each particle com-
pete with the others to get the best evaluation of
the objective function. The particles are initialized
randomly in the search space, then for each parti-
cle pi in the population a mutant p′i is calculated
with (1), where {pr1 , pr2 , pr3} are three different
particles chosen using a uniform discrete distribu-
tion r1,r2,r3 ∼U [1,N], and F as a mutation factor
F ∈ [0,2].

mi = pr1 +F(pr2− pr3) (1)

A random recombination is done with (2) for ev-
ery dimension j ∈ {1, · · · ,D} of the problem, where
r ∼U [0,1], is a continuously uniform random num-
ber, CR is the Cross-Ratio.

ui(j) =
{

mi(j) if r 6 CR
pi(j) if r > CR

(2)

Finally, the mutant is selected only if it has a bet-
ter performance in the objective function f (·) using

15

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 13-27

(3). Where the mutant that outperforms the actual
particle, takes the place of the particle.

pi =

{
ui if f (ui)< f (pi)
pi otherwise

(3)

DE is memory efficient because only the best so-
lution is kept, and in time, because it performs only
a few basic operations. This particular implementa-
tion is denoted DE/rand/1, for the random selection
for the mutation process.

3.2. Particle Swarm Optimization

Particle Swarm Optimization16 (PSO) is based on
collective intelligence, where every particle com-
petes among others but is also influenced by the
performance of other particles. There are two in-
fluences in the particle dynamics, first we are influ-
enced by the leader pl (the particle with the best so-
lution) and in the second instance by the best past
positions of the particle p∗i . Let pi = [x1,x2, · · · ,xD]
be a particle of a population with N particles. For
every particle pi we calculate a velocity vi with (4),
where the initial velocity is vi = 0T , r1,r2 ∼U [0,1]
are random numbers, c1 is the social constant (how
much the particle is influenced by the leader), c2 is
the cognitive constant (how much the particle is in-
fluenced by itself) and w is an inertial constant.

vi← wvi + c1r1(pl− pi)+ c2r2(p∗i − pi) (4)

We add this velocity to the correspondent parti-
cle position with (5)

pi← pi + vi (5)

Finally, we have to keep track of the best solution
then we can calculate the leader index l with

l =
{

i if f (pi)< f (pl)
l otherwise

(6)

3.3. Gravitational Search Algorithm

Gravitational Search Algorithm17 (GSA) is based on
the Newtonian gravitational theory and movement
laws, where the gravitational force is an analogy of

the attraction of the best particles. The main differ-
ence between GSA and PSO is that in GSA every
particle influences the other particles, and particles
with better fitness have a greater attraction. For ev-
ery particle we calculate a fitness mi with (7). Then,
the fitness is normalized in (8) to get Mi.

mi =
f (xi)−max f (xk)

min f (xk)−max f (xk)
(7)

Mi =
mi

∑
N
i=1

(8)

We calculate the force that a particle k apply to
the i-th particle with (9), where G is the gravitational
constant. Using the second law of Newton, we cal-
culate an acceleration in (10), where r ∼U [0,1]. Fi-
nally, using ai we calculate the velocity and position
of each particle in (11-12), where r ∼U [0,1].

Fik =
GMiMk

||xk− xi||+ ε
(xk− xi) (9)

ai =
1

Mi

N

∑
k=1,k 6=i

rkFik (10)

vi = rvi +ai (11)

xi = xi + vi (12)

To ensure the convergence of GSA, the Gravity
constant G has to decrease every iteration, for this
we use an exponential decay in (13), where α is the
decay parameter, t is a discrete time counter, and tmax
is the maximum number of iterations.

G = G0e
−αt
tmax (13)

The basic idea behind GSA is that the perfor-
mance of each particle Mi is a force of attraction
in the particles interaction. GSA is computationally
more expensive than DE or PSO, because it models
a fully connected topology of interactions, although
there are already variations that fix this problem, we
use this version because it is an example of a fully
connected topology.

16

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 13-27

3.4. Genetic Algorithm

The Genetic Algorithm18 (GA) is one of the earli-
est and most used evolutionary algorithms. The GA
models the phenotype inheritances through and eli-
tist pairing and random mutations. GA initializes a
random population of phenotypes that iterate three
different processes listed below.

Selection: We calculate a fitness for each phe-
notype with (14), where f (·) is the objective func-
tion. Then, we pair them using Roulette Selection.14

With this selection the phenotypes with the best per-
formance tend to mate.

f iti =
f (xi)

∑
N
k=1 f (xk)

(14)

Crossover: For each pair of phenotypes, we
merge their information using blending technique in
(15), where β is the blending factor, C1 and C2 are
the produced children, x1 and x2 are the phenotype
parents. Later, we substitute the parents with the
children.

C1 = βx1+(1−β)x2 C2 = (1−β)x1+βx2 (15)

Mutation: We perform random mutation in the
phenotypes population, we calculate s∼U [1,N] and
w∼U [1,d] and mutate with (16).

xdse(dwe)∼U [xmindwe,xmaxdwe] (16)

GA proposes a performance-based paring to in-
heriting the information and ensure explorations
through a mutation process.

3.5. Artificial Bee Colony

Artificial Bee Colony19 (ABC) is an evolutionary al-
gorithm based on the different behaviors of bees.
ABC simulates the search of optimal food source
with three different behaviors listed below.

Forager bees: Every forager bee is associated
to ax specific location,14 and moves around by ran-
domly selecting another forager bee, this process is
similar to DE/rand/1 algorithm.

Onlooker bees: The Onlooker bees change its
position using Roulette Selection of the forager
bees, this process is like GA algorithm.

Scout bees: When a forager bee stagnates we re-
set it with a scout bee. The scout bee looks randomly
in the search space until it finds a better position for
the forager bee.

We can see the ABC algorithm as a way to merge
DE and GA.

3.6. Leadership in Evolutionary Optimization

A critical factor in Evolutionary Optimization is the
balance between exploration and exploitation. Ex-
ploration refers to the ability of a particle to search
in a wide neighborhood; this is important to avoid
local minima, but the particle can move away from
the global minimum. On the other hand, exploitation
refers to the ability to approach infinitesimally to the
minimum; this is important to get a better solution,
but the particle can get stuck in a local minimum.
Leadership is a way to select other particles based on
some feature to generate new candidate solutions.

On the right hand, PSO calculates all new candi-
date solutions with the best particle, this high lead-
ership benefits the exploitation of the search space
but limits explorations. On the left hand, DE in
its variation DE/rand/1 uniformly selects three parti-
cles to generate a new candidate. This variation has
no leadership, this property benefits explorations but
limits exploitation.

In GSA a particle influence in other particles
depends on its performance, but the algorithm is
slower than PSO and DE because it calculates for
a pair of particles. GA offers another solution, us-
ing Roulette selection14 based on particles fitness,
and we pair the particles to procreate new solutions.
Although, the way GA mutates and generates new
solutions has not the best exploration. Finally, ABC
uses two swarms with different typologies and dif-
ferent behaviors. In the forager bees we found a
leaderless exploration (like in DE/rand/1), and in the
onlooker bees, we have a performance-based selec-
tion like in GA.

In the next section, we present biological phe-
nomenon called Germinal Center Reaction. Based
on this phenomenon, we propose a new algorithm

17

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 13-27

that could merge different leaderships based on a
competitive scheme. The algorithm simulates the
B-cells that compete to get the best Abs. The mul-
tiplicity distribution of the B-cells is a non-uniform
distribution that changes through time adapting the
leadership and producing delayed leadership as we
show in the next sections.

4. Germinal Center reaction

As we already established, the immune system can
respond to foreign substances Ag by producing Ab
that bind to Ag with extremely high affinity. This
unexpected high affinity is the result of a phe-
nomenon called Affinity Maturation (AM). The AM
takes place in structures known as GCs, that were
first described in 1884 by Walther Flemming20 as
distinct microanatomical regions in secondary lym-
phoid organs.

Recent research3 indicated that the GCs are sites
for B-cell clonal expansion, somatic hypermutation
(SHM), and affinity-based selection. This process
is called GC reaction and is the principal respon-
sible for AM.3 The GC is divided into two zones,
the Dark Zone (DZ), where clonal expansion and so-
matic hypermutation take place and the Light Zone
(LZ), where competition for Ag internalization and
Helper T-cell binding takes place.

In Fig. 2, we show a GC reaction diagram. In
the rest of this section, we will explain briefly the
GC reaction, in order to set a suitable computational
analogy.

4.1. GC formation

GCs develop after the activation of B-cells in the
secondary lymphoid nodes, the B-cells migrate into
the follicular system where they begin monoclonal
expansion in the environment of follicular dendritic
cells (FDC).9 The activated B-cells differ from the
surrounding naive B-cell (inactive) in many ways.
The naive cells rarely divide, but GC B-cells are
among the fastest dividing mammalian cells with a
cell-cycle time at 6-12 hours.3 GC FDCs act like an
Ag reservoir that supports AM. Also, FDC play an
important role in GC polarization in LZ/DZ.3

4.2. Clonal expansion and Somatic
hypermutation

Inside the GC in the DZ, activated B-cells start pro-
liferating. In this process, mutation takes place,
some of these mutations affect the affinity of the Ab.
In Fig 3, we present an Ab scheme, the Ab is divided
into two zones, the constant region, and the variable
region, there are also two kinds of chains, the heavy
chain, and the light chain. The variable region plays
a big roll in Ag binding, and for this reason, it is
important to define the affinity Ab-Ag. The adapta-
tion in AM in GC means to change the variable re-
gion to get higher affinity. The process that changes
this region is called somatic hypermutation (SHM)
as mentioned in Refs. 21, 22 and 23.

Constant region
Light chains (LC)

Variable region

Heavy chains (HC)

Fig. 3. Antibody. The anybodies are shaped proteins pro-
duced by plasmatic B-cells and their function is to neutral-
ize Ag. The variable zone mutates through SHM leading to
high diversity

A theory that explains how SHM is capable of
producing high specialized Ab is called VDJ renom-
ination theory. This theory solved a puzzle for im-
munologists for many decades and supported the
idea of high diversity Ab. For the constant part, there
is another process called Class Switch Recombina-
tion (CSR), this process changes the B cell produc-
tion of Immunoglobulin (Ig) Isotope from one to an-
other.

4.3. Antigen Internalization

After the proliferation in the DZ, the centrocytes (B-
cell with a cleaved nucleus) have initiated apoptosis,

18

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 13-27

A

B

Plasmatic B-cell

Fig. 2. Germinal Center reaction. The GC forms in the
presence of Ag and is divided in two zones. In the Dark
zone, the B-cell proliferate through clonal expansion and
SMH. In the Light zone the B-cells compete for Ag, and
helper T-cell binding.

and they have a finite lifetime.9 They need to be res-
cued from apoptosis by the interaction with Ag and
T-helper cells. Then, B cells migrate to the LZ and
compete for antigen in FDC.

4.4. Helper T-cell binding

After antigen internalization, the B-cell needs to
present Ag to a T-helper cell to get a life signal. An
important fact is that this two-step process of find-
ing Ag and finding a T-helper cell, constitutes an
affinity-based selection process, because the B-cell
could not internalize Ag with low affinity then, the
B cells with the best affinity can get the life signal
from the T-helper cell. These two competitive steps
reward B-cells with the best affinity with more lives,
and they are very similar to a Darwinian Selection
process.

The model proposed in Ref. 6, presents two prob-
abilities, first the probability of a B cell internalizing
Ag, and the probability of a B-cell succeeding in re-
ceiving T-cell help. These probabilities work with a
measure of the affinity binding based on each pep-

tide (part of the antigen recognized by the B-cell).
For a better understanding of the T-helper cell, the
reader can review Ref. 24.

4.5. B-cell recycling or output

The Ag internalization and T-helper cell binding are
competitive processes that happen both inside and
outside GC, the main difference between them is
what happens with the B cell after T-helper cell bind-
ing. We have three paths the B-cell can follow.

The first one is re-entry to the DZ and prolifer-
ates again. In this path, is the principal path, because
it allows getting better affinity through generations
and competition, and it is also the reason why we
get high-affinity antibodies from the GC reaction.

The second one is to get out of the GC and differ-
entiate in a plasmatic cell. In this path, will liberate
antibodies in the blood helping the humoral immune
response.

The third and final path is to get out of the GC
and become a memory B-cell. Memory B-cells have
a long lifespan and work like Ag-specific antibod-

19

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 13-27

ies reservoir. They can even get into new GCs and
compete again.

5. Germinal Center Optimization algorithm

In this section, we will present our proposal of an
AIS algorithm based on GC that we call Germinal
Center Optimization (GCO) algorithm. First, let us
set in the next list the competitive features that make
GCs a suitable framework for an AIS algorithm:

1. SHM and clonal expansion (sec. 4.2): En-
sure antibodies diversity which allows a good
coverage (and exploration) of the solution
search area.

2. Ag internalization and T-help cell binding
(sec. 4.3 and 4.4): Affinity-based selection
which ensures a selection of the best-fitted
particles to be mutated.

3. Re-entry in DZ (sec. 4.5): Iterative affinity
improvement, which ensures a high precision
in the obtained solution.

4. Memory B-cell (sec. 4.5): Communication
with others GCs and long-term memory of the
solution.

An essential part of the GC philosophy is that
a B-cell that has better affinity can extend its lifes-
pan. Therefore it could proliferate and mutate with
higher probability; consequently, this also incre-
ments the likelihood for the T-helper cell binding
process. When we develop a bio-inspired algorithm,
it is crucial to design a useful abstraction, to get a
low computational and memory cost. In Table 1, we
present the computational metaphor between a GC
and an optimization problem. The Antigen could be
related to the objective function f : Rn→Rn that we
want to optimize. The Ab and B-cells represent the
candidates solutions Bi ∈ Rn and the affinity is the
objective function evaluation, f (Bi). Finally, the T-
help cell binding is an increment of the life-signal of
the B-cell.

Table 1. Computational metaphor

Germinal Center Optimization problem

Antigen Objective function
Antibody and B-cell Candidate solution

Affinity Objective function evaluation
T-help cell binding Incrementation of life-signal

The primary task of the proposal is to dynami-
cally model a non-uniform probability distribution
based on B-cells multiplicity (clones of the B-cell),
and the Life signal (probability of B-cell to dupli-
cate or die). In comparison with Refs. 4 and 5, our
proposal implements the DZ and LZ like processes
in the optimization algorithm, as we show in Fig. 4.

5.1. GCO scheme

In Fig. 4, we show the algorithm flowchart, and in
the Alg. 2 and 1, we offer complete pseudocode of
the proposed algorithm. In this section, we describe
the GCO scheme.

First, we initialize a population of B-cells with
cardinality N, every B-cell Bi stores a candidate so-
lution of dimension d that is initialized randomly in
the search space. We also set a cell counter in ev-
ery B-cell to one. Every Bi has a life-signal L that is
initially set to 70; this initial number means that ini-
tially, the cell has 70% chances to duplicate and 30%
to die. The L changes through time, and depends on
the B-cell performance.

After initialization, we start every iteration of the
algorithm with the Dark-zone process. First, for ev-
ery Bi we calculate a random number rl ∼U [0,100]
and compare it to the life signal of Bi, that way we
decide to duplicate or kill the B-cell. Duplicate the
B-cell, means to add one to the cells counter of the
B-cell and the GC. Kill the B-cell, means to rest one
to the cells counter, this process emulates clonal ex-
pansion (sec. 4.2). Then, the life signal L controls a
simulated population of the Germinal Center.

20

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 13-27

Start

Iterations
finished?

Initialize GC

For each
B-cell

Random destiny

End

Duplicate

Mutate using B-cells
population
distribution

Death

Calculate fitness

For each
B-cell

Age B-cells

Apply Reward

Yes

Yes

Yes

No

No

No

Fig. 4. GCO algorithm flowchart

We continue with a mutation process very simi-
lar to the DE mutation. The idea is to emulate so-
matic hypermutation, described in section 4.2, with
the way DE mutate cells, this is computationally ef-
ficient, because biologically most of the mutations
do not affect the affinity3. To store all mutations
(candidate solutions) and to random evaluate them is

memory expensive and it causes slow convergence,
as we have experimented in early versions of this
proposal.

The principal difference with DE mutation is that
DE uses a uniform distribution to select the particles
for mutation, this process denies the idea of leader-
ship. This has shown to be useful in the PSO al-
gorithm. Instead, we model a discrete non-uniform
distribution C (cell population distribution), where
the B-cell with more copies is more likely to influ-
ence the mutant.

The distribution C implements an adaptive lead-
ership with delay, based on the B-cell performance.
After mutation, we start the Light-zone process,
where an aging process is emulated with the L de-
cay. Then, we calculate the B-cell fitness, using the
same formula as in GSA17, this allows rewarding the
B-cells with different Life-signals with the idea that
the best B-cell does not age.

Algorithm 1: GCO algorithm

Initialize B-cells (Bi)
foreach k ∈ {1, · · · , Iterations} do

/* Dark-zone process */

foreach i ∈ {1, · · · ,N} do
if rl ∼U [0,100]< L of Bi then

Add one to Bi cells counter
else

if Cells in Bi > 1 then
Rest one to Bi cells counter

end
end
Mutate (Bi)

end
/* Light-zone process */

foreach i ∈ {1, · · · ,N} do
Rest 10 units to L of Bi

fiti =
f (Bi)−max f (Bk)

min f (Bk)−max f (Bk)
∈ [0,1]

Add 10∗fiti to L of Bi

end
end

21

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 13-27

Algorithm 2: Mutate function

Function Mutate(Bi)

Calculate distribution C
Calculate r1,r2,r3 ∼ C
foreach j ∈ {1, · · · ,d} do

if r ∼U [0,1]<CR then
M(j)←
Br1(j)+F ∗ (Br2(j)−Br3(j))

else
M(j)← Bi(j)

end
end
Calculate f (M)
if f (M)< f (Bi) then

Bi←M
Add 10 to L of Bi

if f (M)< best then
best← f (M)
best index← i

end
end

6. Experiments and Results

To show our proposal capabilities, we offer the
following experimentation benchmark and non-
parametric statistical proof. We present 18 test func-
tions in the next subsection with their respective
Search Space (SS) bounds. The functions f1 to
f7 are convex and soft functions, from f8 to f12
are functions with many local minima. f13 is a
plate-shaped function and f14 and f15 have a valley-
shaped form. Moreover, the others are miscella-
neous functions. The variable d is the dimension.

We ran 30 test for every function and every algo-
rithm in low dimension (two dimensions) and high
dimension (30 dimensions). These tests were carried
out in a Xeon CPU E31225 with 3.10 GHz and 8 Gb
of RAM. For all the algorithms in the low dimension
test, we used 500 iterations with 40 particles, and for
the high dimension test, we used 1000 iterations and
40 particles.

6.1. Benchmark functions

• Sphere with SS [−5.12,5.12]d

f1 =
d

∑
i=1

x2
i (17)

• Sum of Squares with SS [−5.12,5.12]d

f2 =
d

∑
i=1

ix2
i (18)

• Rotated Hyperellipsoid with SS [−65.53,65.53]d

f3 =
d

∑
i=1

i

∑
j=1

x2
j (19)

• Perm 0, d, β with SS [−d,d]d

f4 =
d

∑
i=1

(
d

∑
j=1

(j+10)
(

xi
j−

1
ji

))
(20)

• Sum of different powers with SS [−1,1]d

f5 =
d

∑
i=1
|xi|i+1 (21)

• Trid with SS [−d2,d2]d

f6 =
d

∑
i=1

(xi−1)2−
d

∑
i=2

xixi−1 (22)

• Bochachevsky with SS [−15,15]d

f7 =
d

∑
i=1

(
x2

i +2x2
i+1−0.3cos(3πxi) (23)

−0.4cos(4πxi+1)+0.7)

• Ackley with SS [−32.76,32.76]d

f8 =−20(2π)

(
−0.2
√

1
d ∑

d
i=1 x2

i

)
(24)

−2π(
1
d ∑

d
i=1 cos(2πxi)) +20+2π

• Griewank with SS [−600,600]d

f9 =
d

∑
i=1

x2
i

4000
−

d

∏
i=1

cos
xi√

i
+1 (25)

22

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 13-27

• Levy with SS [−10,10]d

f10 = sin2(πw1)+
d−1

∑
i=1

(wi−1)2 (26)[
1+10sin2(πwi +1)

]
+

(wd−1)2 [1+10sin2(2πwd)
]

• Rastrigin with SS [−5.12,5.12]d

f11 = 10n+
d

∑
i=1

[
x2

i −10cos(2πxi)
]

(27)

• Schwefel with SS[−500,500]d

f12 = 4189829d−
d

∑
i=1

sin
(√
|x|
)

(28)

• Zakharov with SS [−5,10]d

f13 =
d

∑
i=1

x2
i +

(
d

∑
i=1

0.5ixi

)2

+

(
d

∑
i=1

0.5ixi

)4

(29)
• Dixon-Price with SS [−10,10]d

f14 = (x1 +1)2 +
d

∑
i=2

i(2x2
i − xi−1)

2 (30)

• Rosenbrock with SS [−5,10]d

f15 =
d−1

∑
i=1

[100(xi+1− x2
i)

2 +(xi−1)2] (31)

• Michalewicz with SS [0,π]d

f16 =−
xi

∑
i=1

sin20
(

ix2
i

π

)
(32)

• Perm d, β with SS [−d,d]d

f17 =
d

∑
i=1

(
d

∑
j=1

(ji +0.5)
(

x j

j

i
−1
))2

(33)

• Styblinski-Tang with SS [−5,5]d

f18 =
1
2

d

∑
i=1

(x4
i −16x2

i +5xi) (34)

For the GCO and DE algorithms we used CR =
0.7 and F = 1.25, for PSO c1 = c2 = 1.49618 and
w = 0.729844. For GSA, the parameters are set with
G0 = 100 and α = 20, for GA we used a mutation
rate of 20%, and finally, for ABC we used Pf = N/2
and L = Nn/2.

6.2. Low dimension tests

In Table 2, we show the results of low dimension
tests. Every element in the table is the form µ ±σ ,
where µ is the mean value achieved by the algo-
rithms in 30 tests, and σ is the standard deviation.
Note that in most cases the GCO algorithm over-
comes the other algorithms. In the other cases the
GCO still has a good performance. We are also able
to see that the standard deviation of GCO tends to be
smaller in most of the benchmark functions.

In Table 3, the run-time of the low dimension
tests is shown. GCO is slower than DE and PSO, this
is due to the linear complexity of evaluating the non-
uniform probability distribution. Note that GCO is
faster than GSA, GA and ABC. PSO is the fastest
algorithm in the tests. Finally, we claim that GCO is
a good option for low dimension problems.

6.3. High dimension tests

In Table 4, we show the results for high dimension
tests. GCO does not get better results than GA,
GSA, and ABC in high dimension problems, but it
has more similar performance than DE and PSO. It
is important to note, that the algorithms that did not
perform well in low dimension, in high dimensions
they perform better. The opposite happens to GCO,
DE, and PSO, they perform well in low dimension,
but not in high dimension tests.

In Table 5 we show their run-time for high di-
mension test. The ”-” symbols denote that the al-
gorithm did not converge to a solution. Note that
PSO is still the fastest algorithm, while the other al-
gorithms are close in run-time.

23

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 13-27

Table 2. Low dimension results (Mean ± Standard deviation)

f GCO DE PSO GSA GA ABC

f1 1.53e-55 ± 4.58e-55 3.43e-52 ± 1.41e-51 2.82e-21 ± 1.53e-20 3.08e-18 ± 3.42e-18 3.27e-02 ± 5.68e-03 5.01e-55 ± 2.61e-54

f2 1.29e-53 ± 7.06e-53 4.95e-53 ± 1.19e-52 3.48e-23 ± 1.80e-22 2.61e-18 ± 2.81e-18 1.99e-02 ± 2.93e-03 5.76e-54 ± 2.63e-53
f3 1.89e-53 ± 5.77e-53 1.17e-50 ± 2.86e-50 1.60e-22 ± 7.70e-22 2.74e-18 ± 2.40e-18 1.33e-04 ± 3.23e-05 9.44e-51 ± 5.15e-50

f4 3.18e-22 ± 1.62e-21 1.35e-24 ± 7.39e-24 5.14e-24 ± 1.25e-23 3.08e-03 ± 1.18e-02 3.92e-04 ± 1.62e-04 4.38e-03 ± 4.78e-03

f5 2.41e-66 ± 1.04e-65 3.70e-63 ± 1.71e-62 4.87e-27 ± 2.67e-26 1.29e-02 ± 1.48e-02 4.89e-01 ± 6.12e-02 1.32e-46 ± 5.02e-46

f6 -2.00e+00 ± 0.00e+00 -2.00e+00 ± 0.00e+00 -2.00e+00 ± 0.00e+00 -2.00e+00 ± 1.97e-05 - -2.00e+00 ± 0.00e+00
f7 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00 2.47e-03 ± 4.82e-04 0.00e+00 ± 0.00e+00
f8 4.44e-16 ± 2.00e-31 4.44e-16 ± 2.00e-31 2.20e-12 ± 6.10e-12 3.73e-09 ± 1.77e-09 4.38e-02 ± 3.28e-04 5.62e-16 ± 6.48e-16
f9 2.21e-03 ± 3.44e-03 4.93e-04 ± 1.87e-03 2.60e-03 ± 3.52e-03 6.35e-02 ± 5.96e-02 9.74e-03 ± 2.15e-03 4.47e-05 ± 2.10e-04
f10 1.92e-26 ± 8.75e-42 1.92e-26 ± 8.75e-42 3.57e-24 ± 1.85e-23 7.54e-19 ± 1.15e-18 2.24e-03 ± 6.32e-04 1.98e-26 ± 3.65e-27

f11 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00 1.39e-01 ± 2.01e-01 1.78e-02 ± 2.23e-03 2.36e-16 ± 1.29e-15

f12 1.33e+01 ± 3.44e+01 1.35e+00 ± 7.40e+00 5.13e+01 ± 6.73e+01 1.49e+02 ± 1.04e+02 8.07e-04 ± 6.61e-05 -

f13 6.91e-51 ± 1.73e-50 6.03e-48 ± 2.08e-47 4.21e-25 ± 1.64e-24 2.65e-18 ± 2.92e-18 7.18e-05 ± 3.34e-05 2.30e-33 ± 1.26e-32

f14 3.86e-32 ± 4.26e-33 6.60e-28 ± 3.57e-27 1.00e-21 ± 4.50e-21 1.89e-17 ± 3.01e-17 2.01e-05 ± 1.01e-05 2.80e-06 ± 3.79e-06

f15 1.44e-26 ± 7.25e-26 4.94e-24 ± 1.68e-23 2.71e-15 ± 1.23e-14 5.08e-02 ± 5.99e-02 8.81e-04 ± 5.09e-04 1.37e-02 ± 2.22e-02

f16 -1.80e+00 ± 6.77e-16 -1.80e+00 ± 6.77e-16 -1.72e+00 ± 2.44e-01 -1.16e+00 ± 2.58e-01 - -1.80e+00 ± 6.77e-16
f17 7.10e-03 ± 3.89e-02 0.00e+00 ± 0.00e+00 9.41e-24 ± 3.45e-23 9.40e-05 ± 1.54e-04 1.67e-02 ± 1.24e-03 4.27e-04 ± 5.74e-04

f18 -7.83e+01 ± 2.89e-14 -7.83e+01 ± 2.89e-14 -7.83e+01 ± 2.89e-14 -7.83e+01 ± 2.89e-14 - -7.83e+01 ± 2.89e-14

6.4. Wilcoxon Rank-Sum test

To compare the algorithms, we used the Wilcoxon
Rank-Sum test, which is a non-parametric test (no
normal distribution is supposed). The Wilcoxon
test proposes a Null hypothesis H0 : The mean for

two set of samples is the same. If the means are
equal, this implies that the two process are statisti-
cally equivalent.

Wilcoxon test calculates the sign of all differ-
ences between samples, and it assigns a rank to each
difference. Multiplying the rank by the sign, we find

Table 3. Low dimension mean time (seconds)

f GCO DE PSO GSA GA ABC

f1 1.0200e-02 7.6667e-03 3.1333e-03 8.7433e-02 8.7433e-02 8.7433e-02

f2 1.0000e-02 7.6667e-03 2.9000e-03 8.8200e-02 8.8200e-02 8.8200e-02

f3 9.8667e-03 7.8333e-03 2.8000e-03 8.8167e-02 8.8167e-02 8.8167e-02

f4 1.1033e-02 9.3333e-03 4.6000e-03 8.9300e-02 8.9300e-02 8.9300e-02

f5 9.5667e-03 8.0000e-03 3.0667e-03 1.1170e-01 1.1170e-01 1.1170e-01

f6 1.1533e-02 9.6667e-03 5.4667e-03 9.0033e-02 9.0033e-02 9.0033e-02

f7 9.6000e-03 7.5667e-03 3.4000e-03 8.8667e-02 8.8667e-02 8.8667e-02

f8 1.0467e-02 8.5667e-03 4.1333e-03 8.8633e-02 8.8633e-02 8.8633e-02

f9 1.0333e-02 8.2667e-03 4.0000e-03 8.8500e-02 8.8500e-02 8.8500e-02

f10 1.4300e-02 1.2467e-02 7.8667e-03 9.2067e-02 9.2067e-02 9.2067e-02

f11 9.6333e-03 7.8333e-03 3.2667e-03 8.8700e-02 8.8700e-02 8.8700e-02

f12 1.0200e-02 8.3333e-03 4.0667e-03 9.2400e-02 9.2400e-02 9.2400e-02

f13 1.1600e-02 9.7667e-03 5.1000e-03 9.1133e-02 9.1133e-02 9.1133e-02

f14 1.1467e-02 9.6667e-03 5.0333e-03 9.0900e-02 9.0900e-02 9.0900e-02

f15 1.1733e-02 9.6667e-03 5.0333e-03 9.2033e-02 9.2033e-02 9.2033e-02

f16 1.3167e-02 1.1400e-02 6.5667e-03 8.9433e-02 8.9433e-02 8.9433e-02

f17 1.1300e-02 9.4000e-03 4.7333e-03 8.9000e-02 8.9000e-02 8.9000e-02

f18 1.1067e-02 9.3667e-03 4.9000e-03 9.0900e-02 9.0900e-02 9.0900e-02

24

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 13-27

Table 4. High dimension results (Mean ± Standard deviation)

f GCO DE PSO GSA GA ABC

f1 4.01e+01 ± 1.37e+01 1.46e+02 ± 1.30e+01 4.37e+00 ± 9.95e+00 7.48e-16 ± 3.35e-16 5.74e-03 ± 5.72e-04 7.14e-08 ± 1.09e-07

f2 5.01e+02 ± 1.52e+02 1.53e+03 ± 1.64e+02 9.52e+01 ± 1.30e+02 6.98e-06 ± 2.47e-05 3.43e-04 ± 5.08e-05 9.16e-07 ± 1.10e-06

f3 8.29e+04 ± 2.76e+04 2.56e+05 ± 2.88e+04 2.58e+04 ± 2.74e+04 9.35e-03 ± 5.12e-02 2.17e-06 ± 2.22e-07 2.58e-04 ± 5.20e-04

f4 1.61e+90 ± 6.18e+90 3.36e+91 ± 2.24e+91 5.02e+30 ± 2.75e+31 7.06e+25 ± 3.84e+26 2.27e-92 ± 1.59e-92 3.91e+02 ± 2.72e+02

f5 2.80e-01 ± 3.22e-01 1.90e+00 ± 5.51e-01 2.11e-17 ± 9.55e-17 1.44e-08 ± 2.67e-08 2.86e-01 ± 1.06e-01 1.44e-12 ± 3.68e-12

f6 6.67e+05 ± 3.55e+05 6.80e+05 ± 3.77e+05 3.09e+05 ± 2.86e+05 1.14e+05 ± 3.66e+04 - 1.12e+04 ± 5.31e+03
f7 1.21e+03 ± 5.03e+02 3.56e+03 ± 4.14e+02 1.14e+02 ± 2.19e+02 2.82e-01 ± 5.04e-01 2.07e-04 ± 7.24e-05 3.27e-05 ± 3.11e-05

f8 1.92e+01 ± 8.51e-01 2.07e+01 ± 9.38e-02 1.77e+00 ± 4.35e+00 1.74e-08 ± 3.77e-09 4.16e-02 ± 1.38e-02 1.80e-02 ± 7.59e-03

f9 1.34e+02 ± 5.13e+01 5.06e+02 ± 5.79e+01 1.21e+01 ± 3.11e+01 6.23e+00 ± 2.49e+00 1.54e-03 ± 5.37e-04 3.13e-04 ± 4.15e-04
f10 8.56e+02 ± 3.18e+02 1.70e+03 ± 1.19e+02 2.19e+02 ± 9.08e+01 1.52e-01 ± 4.68e-01 3.11e-04 ± 1.05e-04 4.91e-06 ± 6.61e-06
f11 2.37e+02 ± 4.69e+01 3.76e+02 ± 1.77e+01 1.22e+02 ± 3.51e+01 2.28e+01 ± 4.39e+00 1.72e-03 ± 5.76e-04 4.73e-02 ± 4.58e-02

f12 3.28e+03 ± 3.49e+02 4.63e+03 ± 3.15e+02 3.80e+03 ± 7.62e+02 9.89e+03 ± 4.91e+02 6.34e-05 ± 2.11e-05 -2.15e+06 ± 1.94e+06

f13 6.08e+02 ± 6.57e+01 7.05e+02 ± 6.14e+01 5.02e+02 ± 2.31e+02 1.48e+02 ± 4.19e+01 1.37e-12 ± 6.01e-13 3.21e+02 ± 4.67e+01

f14 2.98e+05 ± 1.38e+05 1.26e+06 ± 2.56e+05 8.51e+03 ± 3.50e+04 8.31e-01 ± 2.89e-01 3.49e-07 ± 1.27e-07 1.54e+00 ± 4.77e-01

f15 1.96e+03 ± 6.57e+02 5.44e+03 ± 5.90e+02 1.03e+02 ± 2.38e+02 3.10e+01 ± 1.79e+01 9.47e-05 ± 3.42e-05 2.84e+01 ± 4.91e+00

f16 -1.70e+01 ± 1.71e+00 -1.08e+01 ± 6.54e-01 -1.96e+01 ± 1.90e+00 -2.02e+01 ± 1.32e+00 - -2.79e+01 ± 3.20e-01
f17 6.09e+85 ± 8.63e+85 5.02e+87 ± 4.25e+87 9.00e+80 ± 2.10e+81 8.11e+85 ± 1.09e+86 8.91e-90 ± 2.95e-90 3.13e+83 ± 8.63e+83

f18 -6.47e+02 ± 1.14e+02 -3.18e+02 ± 6.76e+01 -1.03e+03 ± 3.72e+01 -7.97e+02 ± 5.24e+01 - -1.17e+03 ± 2.77e-01

a mapping to a normal distribution. In this distribu-
tion, we measure the sparsity. If the Null hypothesis
is accepted, the two processes are statistically equal,
and in case of rejection, the two methods are signif-
icantly different.

In Table 6, we present the two tiled Wilcoxon

tests of GCO and the other algorithms for all the
functions on the benchmark with the p-values, cal-
culated with (35), where k is the number of the ar-
rangement of signs. The tests that reject the null hy-
pothesis are denoted in bold letters. Based on Ta-
ble 6, we can say that GCO is statistically different

Table 5. High dimension mean time (seconds)

f GCO DE PSO GSA GA ABC

f1 8.0300e-02 7.6767e-02 4.4067e-02 5.8220e-01 9.9364e-02 8.2733e-02

f2 8.1867e-02 7.6600e-02 4.5000e-02 5.8243e-01 1.0118e-01 8.3700e-02

f3 8.9500e-02 8.5200e-02 5.3900e-02 5.9170e-01 1.1000e-01 9.1600e-02

f4 1.8294e+00 1.8356e+00 1.7860e+00 2.3136e+00 1.7911e+00 1.8050e+00

f5 9.0400e-02 8.3567e-02 4.9767e-02 5.8833e-01 9.9000e-02 7.9700e-02

f6 1.3840e-01 1.3487e-01 1.0347e-01 6.3973e-01 9.9000e-02 1.3380e-01

f7 1.2903e-01 1.2517e-01 7.4567e-02 6.0120e-01 1.3382e-01 1.0910e-01

f8 1.0740e-01 1.0080e-01 6.2967e-02 5.9373e-01 1.1091e-01 9.7033e-02

f9 1.2347e-01 1.1903e-01 8.1000e-02 6.2167e-01 1.2045e-01 1.1720e-01

f10 1.4553e-01 1.3870e-01 1.0407e-01 6.4247e-01 1.5673e-01 1.4017e-01

f11 1.0450e-01 9.9000e-02 6.2000e-02 6.0013e-01 1.0945e-01 9.1233e-02

f12 1.1493e-01 1.0963e-01 8.5000e-02 6.1250e-01 1.1591e-01 1.1093e-01

f13 9.1100e-02 8.4033e-02 5.6267e-02 5.8867e-01 9.8545e-02 7.3733e-02

f14 1.4660e-01 1.3750e-01 1.0430e-01 6.4217e-01 1.3655e-01 1.4060e-01

f15 2.0573e-01 2.0210e-01 1.6440e-01 7.0447e-01 1.8227e-01 1.9483e-01

f16 1.9483e-01 1.8317e-01 1.6037e-01 7.0757e-01 1.8227e-01 1.9777e-01

f17 1.8314e+00 1.8441e+00 1.7777e+00 2.3071e+00 1.5835e+00 1.8095e+00

f18 1.4827e-01 1.4227e-01 1.0213e-01 6.4737e-01 1.5835e+00 1.4020e-01

25

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 13-27

Table 6. p-values of the Wilcoxon Rank-Sum test for low di-
mension. (Bold letters indicates the null hypothesis rejection,
NaN stands for Not a Number and means that the test did not
converge)

f GCO vs DE GCO vs PSO GCO vs GSA GCO vs GA GCO vs ABC

f1 2.4386e-09 3.0199e-11 3.0199e-11 3.0199e-11 5.6073e-05
f2 1.8500e-08 3.0199e-11 3.0199e-11 3.0199e-11 1.5638e-02
f3 8.9934e-11 3.0199e-11 3.0199e-11 3.0199e-11 1.2732e-02
f4 3.0588e-02 4.1230e-08 1.9533e-11 1.9533e-11 1.9533e-11
f5 4.9980e-09 3.0199e-11 3.0199e-11 3.0199e-11 4.9752e-11
f6 NaN NaN 1.2118e-12 1.6853e-14 NaN

f7 NaN NaN NaN 1.2118e-12 NaN

f8 NaN 5.8337e-09 1.2118e-12 1.2118e-12 3.3371e-01

f9 3.1559e-02 1.0325e-01 2.1595e-10 4.0723e-10 6.6546e-03
f10 NaN 1.9432e-09 1.2118e-12 1.2118e-12 1.6080e-01

f11 NaN NaN 8.8658e-07 1.2118e-12 3.3371e-01

f12 4.5264e-02 2.7667e-02 7.7237e-10 3.8190e-05 6.4789e-12
f13 2.0152e-08 3.0199e-11 3.0199e-11 3.0199e-11 3.0199e-11
f14 2.3198e-01 1.9742e-11 4.0806e-12 4.0806e-12 4.0806e-12
f15 8.8862e-10 3.0180e-11 3.0180e-11 3.0180e-11 3.0180e-11
f16 NaN 8.1404e-02 1.2118e-12 1.6853e-14 NaN

f17 3.3371e-01 1.1483e-03 4.5618e-11 4.5618e-11 4.5618e-11
f18 NaN NaN 1.2118e-12 1.6853e-14 NaN

from DE, PSO, GSA, GA, and ABC for low dimen-
sion problems.

p-value = k
(

1
2

)n

(35)

7. Conclusion

The Germinal Center reaction is a mechanism to get
high-affinity maturation to protect the body. This
high affinity is achieved with multiple competitive
processes. In the present paper, we have proposed
a novel multivariate optimization technique based
on the Germinal Centers. In comparison with the
already proposed GC-AIS,4 which model multiple
Germinal Centers, we implement for the first time
an algorithm based on the Dark and Light zones
and their competitive processes. The Germinal Cen-
ter optimization algorithm, mimics the Dark-zone
process like the clonal expansion with a multiplic-
ity attribute, and Somatic hypermutation through a
performance-based selection in a mutation process

similar to Differential Evolution. In the Light-zone,
the B-cells get a life signal proportional to their fit-
ness in the same way as in GSA, and this is an anal-
ogy of the T-helper cell binding process.

The particle selection in mutation uses the
Roulette Selection but with the multiplicity dis-
tribution of the B-cell. This distribution changes
over time, allowing an adaptive leadership process.
On the other hand, the multiplicity distribution is
formed by the random method that depends on the
life signal. This feature will enable a delay effect in
the leadership of a B-cell that decays through gen-
erations. When a B-cell mutates and gets a better
affinity the new cell substitute the older and renew-
ing the life signal, this allows it to lose leadership.
In our results, the GCO algorithm outperforms the
other algorithms in most of the presented test func-
tion in low dimension, an in the high dimension we
have the same performance like in DE and PSO. We
consider this novel technique is a good competitor to
the modern evolutionary algorithms and we recom-
mend to use it when you do not have prior informa-

26

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 13-27

tion of the objective function because its adaptive
leadership will allow for a better average case per-
formance.

Acknowledgements

The authors thank the support of CONACYT
México, through Projects CB256769 and CB258068
(Project supported by Fondo Sectorial de Investi-
gación para la Educación). This work was also
supported by the DAAD (Deutscher Akademis-
cher Austauschdienst) and the Alfons und Gertrud
Kassel-Stiftung.

References

1. Abul K Abbas, Andrew HH Lichtman, and Shiv Pillai.
Cellular and molecular immunology. Elsevier Health
Sciences, 2014.

2. Dipankar Dasgupta, Senhua Yu, and Fernando Nino.
Recent advances in artificial immune systems: mod-
els and applications. Applied Soft Computing,
11(2):1574–1587, 2011.

3. Gabriel D Victora and Michel C Nussenzweig. Ger-
minal centers. Annual review of immunology, 30:429–
457, 2012.

4. Ayush Joshi, Jonathan E Rowe, and Christine Zarges.
An immune-inspired algorithm for the set cover prob-
lem. In International Conference on Parallel Problem
Solving from Nature, pages 243–251. Springer, 2014.

5. Ayush Joshi, Jonathan E Rowe, and Christine Zarges.
Improving the performance of the germinal center
artificial immune system using epsilon-dominance:
A multi-objective knapsack problem case study. In
European Conference on Evolutionary Computa-
tion in Combinatorial Optimization, pages 114–125.
Springer, 2015.

6. Shenshen Wang, Jordi Mata-Fink, Barry Kriegsman,
Melissa Hanson, Darrell J Irvine, Herman N Eisen,
Dennis R Burton, K Dane Wittrup, Mehran Kardar,
and Arup K Chakraborty. Manipulating the selection
forces during affinity maturation to generate cross-
reactive hiv antibodies. Cell, 160(4):785–797, 2015.

7. Yang Zhang, Michael Meyer-Hermann, Laura A
George, Marc Thilo Figge, Mahmood Khan, Mar-
garet Goodall, Stephen P Young, Adam Reynolds,
Francesco Falciani, Ari Waisman, et al. Germinal cen-
ter b cells govern their own fate via antibody feedback.
The Journal of experimental medicine, 210(3):457–
464, 2013.

8. Michael Meyer-Hermann, Elodie Mohr, Nadége Pel-
letier, Yang Zhang, Gabriel D Victora, and Kai-
Michael Toellner. A theory of germinal center b cell

selection, division, and exit. Cell reports, 2(1):162–
174, 2012.

9. Michael Meyer-Hermann. A mathematical model for
the germinal center morphology and affinity matura-
tion. Journal of theoretical Biology, 216(3):273–300,
2002.

10. Yu Adachi, Taishi Onodera, Yuki Yamada, Rina Daio,
Makoto Tsuiji, Takeshi Inoue, Kazuo Kobayashi, To-
mohiro Kurosaki, Manabu Ato, and Yoshimasa Taka-
hashi. Distinct germinal center selection at local
sites shapes memory b cell response to viral escape.
The Journal of experimental medicine, 212(10):1709–
1723, 2015.

11. Anthony Brabazon, Michael ONeill, and Seán Mc-
Garraghy. Artificial immune systems. In Natu-
ral Computing Algorithms, pages 301–332. Springer,
2015.

12. Niels K Jerne. Towards a network theory of the im-
mune system. In Annales d’immunologie, volume
125, pages 373–389, 1974.

13. Polly Matzinger. The danger model: a renewed sense
of self. Science, 296(5566):301–305, 2002.

14. Dan Simon. Evolutionary optimization algorithms.
John Wiley & Sons, 2013.

15. Swagatam Das and Ponnuthurai Nagaratnam Sugan-
than. Differential evolution: A survey of the state-of-
the-art. IEEE transactions on evolutionary computa-
tion, 15(1):4–31, 2011.

16. Maurice Clerc. Particle swarm optimization, vol-
ume 93. John Wiley & Sons, 2010.

17. Esmat Rashedi, Hossein Nezamabadi-Pour, and Saeid
Saryazdi. Gsa: a gravitational search algorithm. In-
formation sciences, 179(13):2232–2248, 2009.

18. Mitsuo Gen and Runwei Cheng. Genetic algorithms
and engineering optimization, volume 7. John Wiley
& Sons, 2000.

19. Dervis Karaboga and Bahriye Basturk. A powerful
and efficient algorithm for numerical function opti-
mization: artificial bee colony (abc) algorithm. Jour-
nal of global optimization, 39(3):459–471, 2007.

20. Pa Nieuwenhuis and D Opstelten. Functional anatomy
of germinal centers. American journal of anatomy,
170(3):421–435, 1984.

21. Eric Meffre, Nadia Catalan, Françoise Seltz, Alain
Fischer, Michel C Nussenzweig, and Anne Durandy.
Somatic hypermutation shapes the antibody repertoire
of memory b cells in humans. The Journal of experi-
mental medicine, 194(3):375–378, 2001.

22. Michael S Neuberger and César Milstein. Somatic
hypermutation. Current opinion in immunology,
7(2):248–254, 1995.

23. Javier M Di Noia and Michael S Neuberger. Molec-
ular mechanisms of antibody somatic hypermutation.
Annu. Rev. Biochem., 76:1–22, 2007.

24. Shane Crotty. Follicular helper cd4 t cells (tfh). An-
nual review of immunology, 29:621–663, 2011.

27

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 13-27

