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Abstract

To support successful quality managements of open source software (OSS) projects, this paper proposes
to measure the balance of developers’ contributions to a source file as an entropy. Through an analysis of
data collected from 10 popular OSS projects, the following trends are reported: a source file is more fault-
prone as the developers’ contributions to the file are more imbalanced (lower entropy), and the proposed
metric can be useful for predicting fault-prone programs.
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1. Introduction

Open source software (OSS) products have become
popular in the information technology-based busi-
ness scene. Many commercial products or services
are (partially) developed, maintained or operated by
using OSS products such as Linux, Apache HTTP
server, PostgreSQL, Firefox, Eclipse, OpenStack,
etc. According to a survey on OSS products which
was reported in June 20171, 60% of the survey re-

spondents said their organizations’ use of OSS prod-
ucts increased in 2016. Another recent survey2 re-
ported that 96% of application software products
leverage some of OSS-based components. That is
to say, OSS products play important roles in the suc-
cessful development, maintenance and operation of
many software products or services nowadays.

In general, an OSS product evolves through
source code modifications aiming at function en-
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hancements and/or fault fixes. Although code modi-
fications are essential for the software evolution and
upgrade, they have also risks of introducing new
faults3. As OSS products become more popular, the
importance of their successful quality managements
gets higher. In order to support a successful quality
management of OSS products, there have been stud-
ies focusing on software repositories which store a
lot of data in regard to the software development
and maintenance—these studies are referred to as
the mining software repositories (MSR)4. In MSR
studies, there have been many useful methods and
empirical reports: data of fault fixes in the past are
utilized to predict faulty programs5,6; Co-change re-
lationships among source files are analyzed and ap-
plied to a successful maintenance support7,8; Com-
mits to code repositories (code changes) are ana-
lyzed to evaluate the impacts of those changes on
the future changes9,10, and those commits are exam-
ined to assess the risk that their changes introduce
new faults11,12, etc.

While the source code and their changes are re-
markable research materials for the MSR studies,
the human aspects—e.g., “who created the source
file,” “who made the code change,” “how devel-
opers collaborate in the OSS project,” etc.—have
also become noteworthy points of view in recent
years13,14,15,16,17,18,19. By analyzing code reposito-
ries, we can see the development history of each
source file. There would be a diversity in the de-
velopment and maintenance of a source file from a
viewpoint of the developer’s contribution to it: for
example, one source file was created by a devel-
oper and it has been maintained by only the same
original developer, but another file may have been
maintained by two or more developers other than
the original developer, etc. Since a success of an
OSS project highly depends on the productive con-
tributions by developers, it is worthy enough to un-
derstand developers’ contributions and the collabo-
rations among different developers in more depth to-
ward a better quality management of OSS project.

In this paper, we collect data of developers’ con-
tributions to source files by mining their code repos-
itories, where a developer’s contribution to a source
file is defined to be the total lines of code in which

the developer has been involved throughout all ver-
sions of the source file—from the initial version to
the current one. Although the previous work13,14,15

also measured a developer’s contribution as the lines
of code touched by the developer, the measurement
was made at only the current version of the source
file. On the other hand, our metric of developer’s
contribution takes into account not only the current
version but also all older versions. Here we briefly
explain the reason why we introduce another point
of view (see Section 2 for the details): Suppose a
developer d1 newly wrote some source lines. After
that, all of these lines were touched (some tokens in
the lines were modified) by another developer d2. In
such a case, the contributions to those source lines
look to be made by only d2 if we measure it by fo-
cusing only on the current version of the code; In
other words, the contributions by d1 were regarded
to be totally overridden by d2 if we observe only the
latest source lines. Although developer d2 modified
those lines, it may not be reasonable to totally omit
developer d1’s contribution. Hence, we propose to
measure a developer’s contribution by focusing not
only the current version of source file but also all
older versions in this paper.

In general, there can be a lot of variations in
the balance of contributions to a source file—for
example, (1) “single” case where the contribution
is made by only a certain developer, (2) “well-
balanced” case where the contribution is approxi-
mately equally made by two or more developers,
(3) “highly-imbalanced” case where the contribu-
tion is made by two or more developers but it is a
monopoly of one of the developers, etc. To evalu-
ate the balance of contributions to a source file in
a quantitative manner, we propose to apply the no-
tion of entropy20 to the measurement of the contribu-
tion balance. Then, we categorize source files in ac-
cordance with their types of contributions (entropy
values), and compare the fault-proneness of source
files among the categories in order to see which cat-
egory is more fault-prone and required more careful
reviews.

The key contributions of this paper are as fol-
lows.

1) We measure a developer’s contribution to a
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source file development and maintenance while
taking into account not only the current version
of the source file but also the all older versions.
Then, we propose an entropy-based metric to
evaluate the balance of developers’ contributions
to a source file.

2) We conduct a data analysis on the development
history of many source files from 10 popular OSS
projects, and report the following findings:

(i) Source files developed and maintained by a
single developer are likely to be less fault-
prone than other source files.

(ii) The fault-proneness of source file tends
to get much higher when it shifts from a
single-developer maintenance to a highly-
imbalanced multi-developer maintenance.

(iii) The proposed entropy-based metric can
be a useful explanatory variable together
with the lines of code (LOC) in a fault-
prone prediction model using the random
forest21.

The remainder of this paper is organized as fol-
lows. Section 2 describes the measurement of de-
velopers’ contributions to a source file and our pro-
posal of an entropy-based metric for measuring the
balance of contributions among developers. Then,
the section presents our research questions. Section
3 reports our data analysis and gives discussions of
the results. Section 4 briefly describes the related
work. Finally, Section 5 presents our conclusion and
future work.

2. Developer’s Contribution and
Entropy-Based Metric

In this section, we describe a developer’s contribu-
tion to a source file development and maintenance,
and propose an entropy-based metric for evaluating
the balance of contributions among developers in or-
der to quantitatively characterize the structure of the
developers’ contributions. Then, we set up our re-
search questions to clarify the aim of our data anal-
ysis.

2.1. Contribution to Source File Development
and Maintenance

A source code repository of a software project stores
the source files and their change history. From the
repository, we can easily obtain the following in-
formation: “when and who created a source file,”
“when and who changed the source file,” “which
parts of the source file were changed,” etc. For in-
stance, Fig. 1 presents a part of commit log from the
repository of an OSS project‡. The log is obtained by
running git log command with -p option.

From Fig. 1, we see that “XXX YYYY” committed
InnerHitBuilder.java at 11:59:59 (+0200) on
July 16, 2018. The commit is identified by the hash
fa59bb10999b20d487ff12a890ee8cfa0f414826.
Through the commit, two lines in this file were
changed: the heads of changed lines were denoted
by symbols “-” or “+,” and a “-” line and a “+” line
show the contents before and after the code change,
respectively.

.....

commit fa59bb10999b20d487ff12a890ee8cfa0f414826

Author: XXX YYYY <xxx@example.org>

Date: Mon Jul 16 11:59:59 2018 +0200

Fix BWC check after backport

Relates #31808

diff --git a/server/..../InnerHitBuilder.java

b/server/..../InnerHitBuilder.java

index 6bdc55d..8b2db37 100644

--- a/server/..../InnerHitBuilder.java

+++ b/server/..../InnerHitBuilder.java

@@ -199,7 +199,7 @@ public final class InnerHitBuilder implements

Writeable, ToXContentObject {
boolean hasChildren = in.readBoolean();

assert hasChildren == false;

}
- if (in.getVersion().onOrAfter(Version.V 7 0 0 alpha1)) {
+ if (in.getVersion().onOrAfter(Version.V 6 4 0)) {

this.innerCollapseBuilder

= in.readOptionalWriteable(CollapseBuilder::new);

}
}

@@ -247,7 +247,7 @@ public final class InnerHitBuilder implements

Writeable, ToXContentObject {
}

}
out.writeOptionalWriteable(highlightBuilder);

- if (out.getVersion().onOrAfter(Version.V 7 0 0 alpha1)) {
+ if (out.getVersion().onOrAfter(Version.V 6 4 0)) {

out.writeOptionalWriteable(innerCollapseBuilder);

}
}

.....

Fig. 1. An example of a repository log (the author’s name
and address are masked by dummy ones, and the file pathes
are partially omitted).

‡ That is available from https://github.com/elastic/elasticsearch.git.
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.....

afe99fcd ..../InnerHitBuilder.java (XXX YYYY 2016-06-21 11:27:27 +0200 193) highlightBuilder = in.readOptionalWriteable(HighlightBuilder::new);

5da8ce83 ..../InnerHitBuilder.java (AAA BBBB 2017-05-26 18:36:32 -0400 194) if (in.getVersion().before(Version.V 5 5 0)) {
9087803c ..../InnerHitBuilder.java (XXX YYYY 2017-05-23 13:06:22 +0200 195) /**

9087803c ..../InnerHitBuilder.java (XXX YYYY 2017-05-23 13:06:22 +0200 196) * this is needed for BWC with nodes pre 5.5

9087803c ..../InnerHitBuilder.java (XXX YYYY 2017-05-23 13:06:22 +0200 197) */

9087803c ..../InnerHitBuilder.java (XXX YYYY 2017-05-23 13:06:22 +0200 198) in.readNamedWriteable(QueryBuilder.class);

9087803c ..../InnerHitBuilder.java (XXX YYYY 2017-05-23 13:06:22 +0200 199) boolean hasChildren = in.readBoolean();

9087803c ..../InnerHitBuilder.java (XXX YYYY 2017-05-23 13:06:22 +0200 200) assert hasChildren == false;

afe99fcd ..../InnerHitBuilder.java (XXX YYYY 2016-06-21 11:27:27 +0200 201) }
fa59bb10 ..../InnerHitBuilder.java (XXX YYYY 2018-07-16 11:59:59 +0200 202) if (in.getVersion().onOrAfter(Version.V 6 4 0)) {
80492cac ..../InnerHitBuilder.java (CCC DDDD 2018-07-13 11:40:03 -0400 203) this.innerCollapseBuilder = in.readOptionalWriteable(CollapseBui...

80492cac ..../InnerHitBuilder.java (CCC DDDD 2018-07-13 11:40:03 -0400 204) }
afe99fcd ..../InnerHitBuilder.java (XXX YYYY 2016-06-21 11:27:27 +0200 205) }
.....

Fig. 2. An example of a line author investigation (the au-
thors’ names are masked by dummy ones, and the file paths
are partially omitted).

By analyzing these data, we can observe the
contributions of developers (authors in the example
shown in Fig. 1) to the development and mainte-
nance of the source file. For example, given a source
file, we can investigate “who have been involved in
its development and maintenance” and “how many
source lines of code have been added, deleted or
changed by each of the developers.” They form a
history of contributions by developers to a source
file. Different source files have different histories
of developers’ contributions. While one source file
may have been developed and maintained by only a
certain developer, another source file may have been
done by many different developers. Moreover, for
the latter kind of source file, there would be many
variations in the structure for cooperation among
developers. For example, suppose two developers
d1 and d2 have contributed to a set of source files.
While one source file may have been dominantly
maintained by d1 and the contribution by d2 is a lit-
tle, another source file may have been evenly main-
tained by both d1 and d2. Our research interest is to
analyze how such differences of contributions affect
the code quality, especially, the fault-proneness of
source files.

Notice that we focus only on the change history
stored in the code repository in order to see a de-
veloper’s contribution; there are also other types of
contributions such as the code reviews, tests and dis-
cussions. Although it is ideal to take into account all
kinds of contributions, it is hard to collect all of such
data from any OSS project. Since the code reposi-
tory is commonly available at any OSS project, we

will limit our focus of “contribution” to the code
changes in this paper. That is to say, we measure
a developer’s contribution by counting the lines of
code which the developer has been involved in.

From the code repository, we can also easily in-
vestigate who is the author of each line: Fig. 2 shows
an example output of git blame command. Each
line in the figure consists of the hash (short version),
the file path, the author name, the commit date, the
line number and the line contents, respectively. The
commit hash and date correspond to the last change
on the line. That is to say, by checking the data, we
can see who made each line of the current version of
the source file. For example, there are three differ-
ent developers in the figure, and “XXX YYYY,” “AAA
BBBB” and “CCC DDDD” are authors of ten lines, one
line and two lines, respectively. A straightforward
way of measuring these developers’ contributions is
to use the above lines of code on which they play the
authors. Indeed, some previous work13,14,15 adopted
such a measure and conducted various studies.

However, the above measurement has a lack
of consideration in regard to the history of code
changes. To explain the missing point, let us con-
sider a simple example shown in Fig. 3. This ex-
ample represents the updates of a source file, where
there are five versions of the file and the updates are
made by three developers d1, d2 and d3; their update
events are given in Table 1. In the figure, the hatched
parts signify the lines whose final author is d2, i.e.,
d2 is the developer who last touched these lines. At
the current version (version 5), d2 becomes the final
author of all lines of this source file. Although three
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Fig. 3. An example of source file updates (the parts finally
made by d2 are hatched).

Table 1. Code change history shown in Fig. 3.

Ver. Who Event
1 d1 created the source file (added 100 lines)
2 d1 deleted 10 lines, and

modified 15 lines (deleted 15 & added 15)
3 d2 modified 20 lines (deleted 20 & added 20),

modified 18 lines (deleted 18 & added 18),
and deleted 5 lines

4 d3 deleted 30 lines (deleted 10 ×3)
5 d2 modified 15 lines (deleted 10 & added 15)

developers d1, d2 and d3 have contributed to the de-
velopment and maintenance of this source file, this
file looks a product made by only d2 if we measure
the developer’s contribution by counting the lines of
touched code at the current version. In other words,
the contributions by d1 and d3 are not taken into ac-
count in the measurement.

Hence, we propose to use the “cumulative” lines
of code changed by each developer in the contribu-
tion measurement. There are two key reasons why
we focus on the cumulative changed lines rather than
the current lines. One reason is that we consider a
deletion of source code to be a contribution as well.
Even if a developer just deleted some source code
from a source file at a commit, it is one of essen-
tial modifications to build the current version of the
source file. Thus, we should not avoid considering a
code deletion in order to evaluate a developer’s con-
tribution. Another reason is that there can be two
different developers before and after a code modifi-
cation. Suppose developer di modified a source code
which was originally written by different developer

d j. Although the modification is a di’s contribution,
it may be based on the original code and that is a
d j’s contribution. Thus, it would be reasonable to
take into account not only di but also d j for evaluat-
ing their contributions.

We formally define the developer’s contribution.

Definition 1 (Developer’s Contribution)
Given a source file f , and a developer d has

an experience with a code change of f . We define
c( f ,d) be the contribution of d to f , which is the to-
tal number of source lines added to or deleted from
f by d until the current version§.

To see the difference of the contribution mea-
surements between the proposed metric and the pre-
vious one—the cumulative lines of touched code
through all versions vs. the lines of touched code at
the current version—, Table 2 presents both of them
in the above example shown in Fig. 3 and Table 1.

While d3 made code deletions when the update
to version 4, his/her contribution is not expressed
by the previous metric and it continues to be zero
for all versions. On the other hand, the proposed
metric counts the contribution (see Table 2). Since
the proposed metric cumulatively counts the lines
of touched code, the difference between two met-
ric values gets larger as more upgrades are made. At
the current version (version 5), although the previ-
ous metric shows that d2 is the only developer who
contributed to the file, the proposed metric evaluates
that the file has been developed and maintained by
mainly d1 and d2, and a contribution by d3 is also
not null. This example shows an importance of our
viewpoint and our motivation in this paper.

Table 2. A comparison of developers’ contributions measured
by the proposed metric and the previous one.

proposed metric previous metric
Ver. d1 d2 d3 d1 d2 d3

1 100 0 0 100 0 0
2 140 0 0 90 0 0
3 140 81 0 47 38 0
4 140 81 30 19 36 0
5 140 126 30 0 60 0

§ One line modification is regarded as one line addition after one line deletion. Thus, the contribution is expressed as two lines of
changed code.
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2.2. Contribution Entropy

We have just defined a developer’s contribution to a
source file as the cumulative number of source code
lines which the developer has added to or deleted
from the file. When n (⩾ 2) developers have con-
tributed to a source file, there are a lot of variations
in the balance of contributions among n developers.
For example, one of the developers may have dom-
inantly contributed to the source file and the contri-
butions by the remaining n− 1 developers may be
really small. For another example, all of n develop-
ers may have approximately equally contributed to
the source file. The difference of these two example
cases may cause a remarkable difference in the qual-
ity of source files. Now we propose to evaluate the
balance of developers’ contributions by introducing
a metric using the notion of entropy.

The notion of entropy is well-known as a mea-
sure of information randomness in the information
theory20. When there are n possible events and the i-
th event occurs with probability pi (for i = 1, . . . ,n),
the entropy H is computed by

H =
n

∑
i=1

pi log2
1
pi

. (1)

In this equation, log2(1/pi) represents the informa-
tion content which can be intuitively interpreted as
a degree of “surprisal” in regard to the occurrence
of the i-th event. Thus, an occurrence of an event
having a lower probability produces a larger sur-
prisal. The entropy (H) can be regarded as the
expected value (mean) of the surprisal. If the oc-
currences of possible events are biased to a certain
event (the probabilities are highly imbalanced), we
can expect that the biased event would occur. On
the other hand, if the occurrences of possible events
are equally expected for the all ones (the probabili-
ties are perfectly balanced), we cannot predict which
event would occur and the expected value (mean) of
the surprisal is large. To illustrate the differences of
entropies, we take four examples (i)–(iv) shown in
Fig.4, where there are three possible events¶.

Fig. 4. Examples of balanced and imbalanced distributions
of p1, p2 and p3.

For each example of (i)–(iv), the entropy (H) is
computed as follows.

(i) H = 3×
(

1
3

log2 3
)
= log2 3 ≃ 1.58 .

(ii) H = 0.5× log2
1

0.5
+0.4× log2

1
0.4

+0.1×

log2
1

0.1
≃ 1.36 .

(iii) H = 0.98× log2
1

0.98
+ 0.01× log2

1
0.01

+

0.01× log2
1

0.01
≃ 0.16 .

(iv) H = 1× log2
1
1

= 0 .

The entropy gets higher as the probabilities are
more balanced. That is to say, we can use the en-
tropy as a measure of balance among things. The
examples (i) and (iv) are the maximum case and the
minimum case, respectively.

Next, we apply the notion of entropy to a mea-
surement of developers’ contribution balance. By
regarding the rate of a developer’s contribution to
all developers’ contributions as the probability in the
entropy equation, we can evaluate a balance of con-
tributions among developers. We will call it “contri-
bution entropy” and formally define as follows.

Definition 2 (Contribution Entropy)
Given a source file f , and suppose that n devel-

opers di (for i= 1, . . . ,n) have experiences with code
changes of f . Let c( f ,di) be the contribution of di
to f . Then, the following pi( f ) is a measure of the

¶ In the example (iv), there is only one possible event because p2 = p3 = 0.
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relative contribution to f by di (for i = 1, . . . ,n):

pi( f ) =
c( f ,di)

n

∑
i=1

c( f ,di)

. (2)

We define the contribution entropy of f as:

H( f )=


0 (n = 1),
1

log2 n

n

∑
i=1

pi( f ) log2
1

pi( f )
(n > 1) .

(3)
Constant log2 n in the denominator is used for nor-
malizing the range of H( f ) to [0,1]. When n = 1,
we specially define as H( f ) = 0 because log2 n = 0.

This metric focuses on the source lines which
have been changed by each developer, and quantifies
the balance of these changed lines among develop-
ers as an “entropy.” When f has been developed and
maintained by a single developer, it means n = 1 so
we have H( f ) = 0. When f has been developed and
maintained by two or more developers, H( f ) varies
from 0 to 1 in accordance with the balance of pi( f )
among n developers. If all pi( f )’s are equal, i.e., all
developers’ contributions to f are truly equal, we get
H( f )= 1. As the contributions get more imbalanced
among developers, H( f ) becomes lower. That is to
say, as the contribution structure of f gets closer to a
certain developer’s monopoly, H( f ) becomes closer
to 0.

As a previous study, Taylor et al.13 proposed the
“author entropy.” They focused on “who is the au-
thor of each source line” in a source file, and the
author entropy evaluates the balance of source lines
among authors (developers). While the author en-
tropy is an attractive measure of developers’ contri-
butions to a source file, there is a lack of considera-
tion in regard to the code change history—it focuses
only on the current version of the source file—as
we already explained with using examples shown in
Fig. 3 and Tables 1, 2.

In the example case shown in Table 1, we have
c( f ,d1) = 140, c( f ,d2) = 126 and c( f ,d3) = 30 just
after version 5. From Eqs.(2) and (3), we get

p1( f ) =
140

140+126+30
≃ 0.473,

p2( f ) =
126

140+126+30
≃ 0.426,

and

p3( f ) =
30

140+126+30
≃ 0.101,

then

H( f ) =
1

log2 3

{
p1( f ) log2

1
p1( f )

+

p2( f ) log2
1

p2( f )
+

p3( f ) log2
1

p3( f )

}
≃ 0.864.

While all lines of f just after version 5 look to be
ones made by only d2 (see Fig. 3), d1 has more con-
tributions than d2 if we focus on not only the current
state but also the change history of f ; if we focused
only on the current state (version 5) of f , the con-
tribution is considered to be a monopoly of d2 and
H( f ) becomes zero.

2.3. Research Questions

In this section, we have introduced metrics for mea-
suring the developer’s contribution and for evaluat-
ing the balance of contributions among developers.
By using these metrics, we can quantitatively ob-
serve a structure of contributions and cooperations
among developers in the development and mainte-
nance of a source file. Here, we have the following
simple question in regard to the relationship between
the observed structure of developers’ contributions
and the source file quality: “what type of contribu-
tion structure is the riskiest in terms of the code qual-
ity?” If we can see that a certain type of structure—
characterized by a certain value range of contribu-
tion entropy—is risky, we can properly alert risky
source files, which need more careful code reviews,
during the maintenance activities, and it would be a
help for an efficient and successful quality manage-
ment.

Since the notion of code quality covers a broad
range of topics, we will focus on the fault-proneness
of source files in analogy with a lot of previous MSR
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studies. That is to say, a risky source file means a
fault-prone source file in this paper.

To make the aim of our study in this paper clear,
we set up our research questions (RQs) as follows.
For the sake of convenience, we will call a source
file which has been developed and maintained by
two or more developers as a “multi-developer file,”
and a source file which has been done by a single
developer as a “single-developer file,” respectively.
Similarly, we call the former-styled maintenance as
the “multi-developer maintenance,” and the latter
one as the “single-developer maintenance,” respec-
tively.

RQ1: Is there a difference in the fault-proneness
between multi-developer files and single-
developer files?

RQ2: When a source file is a multi-developer file,
can the balance of the developers’ contribu-
tions be useful for predicting the fault-prone
source files?

We explain the reasons why we set the above
questions.

RQ1 is a fundamental question if the difference
of developers’ contributions to source files is related
to the fault-proneness. Needless to say, a source
file can be classified into two categories: 1) multi-
developer files, and 2) single-developer files. An in-
volvement of more developers to the maintenance
of a source file might be better to enhance the code
quality because the code would be reviewed by more
people. However, there might also be an opposite ef-
fect: such an involvement might cause unnecessary
confusion in the coding. Shortly, RQ1 is our sim-
ple question: “which is better” in terms of the fault-
proneness, multi-developer maintenance or single-
developer maintenance?

Next, RQ2 is a further question on the rela-
tionship of developers’ contributions with the fault-
proneness of source files. As mentioned above, there
would be various structures for cooperation in the
maintenance of multi-developer files, i.e., there are

variations in the balance of developers’ contribu-
tions. The aim of RQ2 is to clarify if the balance
of developers’ contributions can be a useful metric
for predicting fault-prone source files.

3. Data Analysis

On our RQs mentioned in Section 2.3, we conducted
a data analysis using popular OSS projects. In this
section, we report and discuss the results.

We investigated 10 popular OSS projects shown
in Table 3: The data collection was performed at the
end of November 2017. In order to ensure the gen-
erality and usefulness of our results as high as possi-
ble, we selected them: they all ranked in top 10 Java
projects in terms of “stars” at the GitHub. Moreover,
their domains are not biased toward a certain one.

Table 3. Investigated OSS projects.
# of Source # of

Project Files Commits Domain
Butter Knife 125 279 Library for Android
Elasticsearch 5,527 16,671 Search engine
Glide 609 1,382 Library for Android
Guava 3,131 4,054 Library for Java
Java Design Design patterns1,011 885Patterns implemented in Java
Kotlin 5,090 21,406 Programming language
MPAndroidChart 235 1,216 Library for Android
OkHttp 291 1,344 HTTP+HTTP/2 client
Retrofit 210 535 HTTP client

Reactive extensionsRxJava 1,497 731 for JVM
total 17,726 48,503

3.1. Procedure

We conducted our data collection and analysis in the
following procedure.

1) Make a copy of the repository from the GitHub
by using git clone command∥.

2) Get the development history of each source file
from the repository.

For each source file included in the current
version, we investigate its development history

∥ The repository URLs are https://github.com/{akeWharton/butterknife, elastic/elasticsearch, bumptech/glide,

google/guava, iluwatar/java-design-patterns, JetBrains/kotlin, PhilJay/MPAndroidChart, square/okhttp,

square/retrofit, ReactiveX/RxJava}.git.
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(change logs) by using git log command. In
the investigation, we trace the renaming opera-
tions to the file as well.

3) Extract data items required for our analysis.

By analyzing the commit logs that we got at step
2), we extract the following items for each com-
mit of each source file: (a) commit hash, (b)
whether it is aimed at fixing a fault or not, (c)
author’s name, (d) author’s e-mail address, and
(e) changed source lines.

The item (b) is decided if the corresponding com-
mit message contains a fault-fix-related keyword
or not22.

4) Organize the data collected at step 3).

Since there are source files which were renamed
through commits, we assign unique file IDs to
source files in order to identify them.

There may be an author who uses two or more
different names or e-mail addresses on the repos-
itory. We integrated the duplicated author data by
the following set of rules—it is a simpler version
of the algorithm proposed by Bird et al.23: (1) if
two authors have different addresses but the same
name, then we regard them as the same author;
(2) if two authors have the same address but dif-
ferent names, then we regard them as the same
author.

5) Analyze the collected data on RQs.

For RQ1:

(i) For each source file f , decide whether f is
a single-developer file or a multi-developer
file at the end of the observation period (see
Fig. 5), and check if a fault fix is occurred
at f during the examination period or not.
Here, the observation period signifies the
days in which we check the development
and maintenance of the source file, and the

Fig. 5. Observation period and examination period.

examination period corresponds to the days
in which we decide the file is faulty or not.
Since a new source file may be immature
and require some fixes, we empirically set
the observation period as one year from the
day that f was newly created, and the ex-
amination period as three months from the
end of the observation period, respectively.

(ii) Randomly select the same numbers of
source files from each project, and build
out dataset for the analysis. As shown
in Table 3, the numbers of source files
vary widely among the investigated OSS
projects. If we use all of them in our anal-
ysis, the results would be highly influenced
by the large-scaled projects’ trends. To mit-
igate such a bias, we decided to randomly
select the same number of source files from
each of the projects. In consideration of the
minimum-sized project (Butter Knife), we
select 100 source files from each project.
Since there are 10 projects, our dataset con-
sists of 1000 source files.

(iii) Classify the set of source files into two sub-
sets: the set of single-developer files and
that of multi-developer ones. Then, com-
pare their rates of faulty source files (the
fault rates: FRs). A higher FR value means
a higher fault-proneness of source files in
the corresponding subset.

For RQ2:

(i) For each source file f included in our
dataset (built in the step RQ1(ii)), compute
its contribution entropy, H( f ), at the end of
the observation period (see Fig. 5). Then,
we check if a fault fix is occurred at f dur-
ing the examination period or not.

(ii) Classify the set of source files into five
subsets according to their contribution en-
tropy: C0, C1, C2, C3 and C4. C0 is the set
of source files such that H( f ) = 0, i.e., the
set of single-developer files. The remain-
ing source files are categorized into C1 –
C4 corresponding to equally divided ranges
of H( f ): C1, C2, C3 and C4 correspond to
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Table 4. Source file categories by their contribution en-
troipes.

Category Contribution Entropy
C0 f ( f ) = 0
C1 0 < H( f )⩽ 1/4
C2 1/4 < H( f )⩽ 2/4
C3 2/4 < H( f )⩽ 3/4
C4 3/4 < H( f )⩽ 1

0<H( f )⩽ 1/4, 1/4<H( f )⩽ 2/4, 2/4<
H( f ) ⩽ 3/4 and 3/4 < H( f ) ⩽ 1, respec-
tively (Table 4).
After that, compare FRs among C0 – C4.

3.2. Results for RQ1

On RQ1, we compared the set of single-developer
source files and that of multi-developer ones in terms
of the fault-proneness. Table 5 and Fig. 6 show the
results.

As a result, the multi-developer files are about
two times more likely to be faulty than the single-
developer one: 16.2% vs. 7.1%, and their differ-
ence was statistically significant at a 1% significance
level∗∗.
Table 5. Comparison of single-developer source files and multi-
developer ones.

File type FR
( # of faulty files

# of source files

)
multi-developer 16.2% (105/650)
single-developer 7.1% (25/350)

total 13.0% (130/1000)

16.2%

7.1%

0.00

0.05

0.10

0.15
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Fig. 6. Comparison of the fault-proneness: multi-developer

source files vs. single-developer ones.

3.3. Discussions for RQ1

In order to examine a difference in the fault-
proneness between multi-developer files and single-
developer files, we compared the fault-proneness
(fault rate: FR) of the multi-developer source files
with that of the single-developer ones. Then, we got
the result showing that a multi-developer file tends
to be more fault-prone than a single-developer one,
and the FR of multi-developer files is about two
times higher than that of single-developer ones—
16.2% vs. 7.1%. In general, it is not easy to properly
update a program written by other people. Hence,
such a difficulty may cause the above striking differ-
ence between the two types of source file.

Here, we have a concern that the program size
might be a confounding factor in our results. Since
a larger program is more likely to be faulty in many
cases, we cannot omit the impact of the program
size. Thus, we perform the above FR comparison
for the dataset stratified by the program size as well:
we categorize source files by their program size, and
compare the FRs between multi-developer files and
single-developer ones within each category; We use
the lines of code (LOC) as our metric of program
size since it is well-known metric which is highly re-
lated to the fault-proneness of programs24. Accord-
ing to the distribution of LOC values in our dataset,
we decided to categorize the source files into the fol-
lowing four categories:

(1) “small” whose LOC ⩽ 17;
(2) “relatively small” whose LOC > 17 and ⩽ 48;
(3) “relatively large” whose LOC > 48 and ⩽ 119;
(4) “large” whose LOC > 119,

where values 17, 48 and 119 are the 25 percentile,
the median and the 75 percentile of the LOC distri-
bution, respectively. Table 6 and Fig. 7 show the FR
comparison results.

As Fig. 7 shows, the magnitude relationship
of FR between multi-developer files and single-
developer files is the same as the total result shown
in Fig. 6, except for LOC category (1)—small-sized
source files. Moreover, the gap of FR between file
types gets larger when the source file becomes larger

∗∗The null hypothesis “the FR in multi-developer files is equal to the FR in single-developer files” was rejected by a χ2 test with
χ2 = 15.546, df = 1 and p value < 8.053×10−5.
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Table 6. Comparisons of multi-developer files and single-
developer within LOC categories.

LOC category File type FR
( # of faulty files

# of source files

)
multi 0.8% (1/132)(1) small single 7.5% (9/120)
multi 7.9% (13/164)(2) relatively

small single 5.4% (5/92)
multi 17.6% (28/159)(3) relatively

large single 4.8% (4/84)
multi 32.3% (63/195)(4) large single 13.0% (7/54)

0.8%

7.5% 7.9%
5.4%

17.6%
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Fig. 7. Comparisons of the fault-proneness within LOC

categories.

which are in LOC categories (3) or (4). The differ-
ences of FRs are statistically significant at 1% sig-
nificance level in LOC categories (3) and (4), but
not significant in categories (1) and (2) ††.

As mentioned above, a successful update of other
programmer’s code is not easy task. The difficulty
would increase as the program gets larger since
the programmer has to properly comprehend more
source lines and moreover the program structure
would be more complex. Therefore, it seems to
be natural that the gap of FR becomes larger in
the LOC categories (3) and (4)—relatively-large or
large source files. Similarly, as the program gets
smaller, a proper comprehension and update of code
would become easier even if the code was written
by other programmers. Furthermore, in general, a
smaller program originally tends to be less fault-
prone. Hence, it would be a natural result that there
is no significant difference of the FR values between

the small-sized multi-developer files and the small-
sized single-developer ones.

Notice that the above results are derived from the
data of “fault fix” but not of “fault creation.” There
may be a case such that: a fault was introduced into a
source file when the file was a single-developer one,
and then the fault was detected and fixed after the
file became a multi-developer one by a participation
of another developer. One of key reasons why more
faults were detected and fixed in multi-developer
files might be that more developers reviewed these
files. In other words, a single-developer file might
have latent faults which have not been detected yet
because the file has been maintained by a certain
developer only. Although our focus on whether a
source file is a single-developer file or not seems to
be noteworthy through this data analysis, we have to
do a more detailed analysis in the future: a further
analysis on when the fixed faults were introduced.

3.4. Results for RQ2

On RQ2, we classified the source files into five cate-
gories C0, C1, . . ., C4 by their contribution entropy,
and compared these categories in terms of the fault-
proneness. Table 7 and Fig. 8 show the results.

As a result, the least fault-prone category is C0
whose contribution entropy is zero, i.e., the cate-
gory of the single-developer files. In contrast, the
most fault-prone category is C1 which is right next
to C0. Category C1 corresponds to source files in
which the developers’ contributions are highly im-
balanced. The fault-proneness (the FR value) de-
creases as the contribution entropy gets higher, i.e.,
as the structure of contributions gets away from the
most imbalanced state.
Table 7. Comparison of source files categorized by their contri-
bution entropy.

Entropy category FR
( # of faulty files

# of source files

)
C0 7.1% (25/350)
C1 28.1% (43/153)
C2 19.6% (33/168)
C3 9.2% (15/163)
C4 8.4% (14/166)

††(1) χ2 = 5.8335, df = 1 and p value = 0.01572; (2) χ2 = 0.24359, df = 1 and p value = 0.6216; (3) χ2 = 6.8509, df = 1 and p value
= 0.00886; (4) χ2 = 6.9028, df = 1 and p value = 0.008606.
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Fig. 8. Comparison of source files categorized by their

contribution entropy.

3.5. Discussions for RQ2

In order to investigate the impact of contribution
balance among developers on the fault-proneness,
we categorized source files by their contribution en-
tropy into five categories C0 – C4, and compared
their FR values. As a result, multi-developer source
files in category C1 are the most fault-prone. In
such a source file, there are two or more develop-
ers who have had contributed to the file, but their
contributions are highly-imbalanced and one of the
corresponding developers is dominant. That state of
source file would be made when the source file was
just changed from the single-developer maintenance
to the multi-developer maintenance. By a partici-
pation of another developer in the maintenance of a
source file, it seems to become unstable in terms of
the code quality and the most fault-prone.

Since the trend of FR values shows a monotoni-
cally decreasing from C1 to C4, we can predict that a
multi-developer source file is likely to be more fault-
prone as its contribution entropy gets smaller.

We can consider the following two potential rea-
sons why C1 is a fault-prone category of source file:
(1) a fault was created by a new developer through
a code modification, or (2) a fault was detected by
a new developer. In general, a code modification
has a risk of creating a fault25,26. Since it is not
easy task to accurately comprehend and properly
change a source code written by other programmers,
the fault-creation risk would get higher when a code
change is made by a new developer. In another per-

spective, a participation of a new developer includes
another code review. Then, a latent fault might be
detected as a result of code review by a new devel-
oper. In both cases, more faults may be detected
from source files of category C1. On the other hand,
source files in categories C2, C3 or C4 tend to be
more changed and reviewed more times by two or
more developers. Through those code changes and
reviews, the source files may be polished and be-
come less fault-prone. Because our data is based on
fault-fix events in the repository, we cannot clearly
analyze the above potential reasons in this study. In
order to examine the reason why C1 is so fault-prone
and the fault-proneness gets lower as the contribu-
tion entropy becomes higher, we need to perform a
further analysis using data of “fault creation” in the
future.

As with the above discussion on RQ1 (Section
3.3), it would be better to analyze the impact of the
program size (LOC) on the results as well. Although
we originally considered dividing each of C0 – C4
into four subcategories in accordance with the above
four LOC categories, the devision made small-sized
categories—e.g., the subcategory of C1 correspond-
ing to the small-sized programs (LOC category (1))
has only 9 source files. Since there were such small-
sized categories, we considered it is hard to properly
compare the subcategories by using their FR values.
That is to say, it is difficult to discuss the change of
fault-proneness over the contribution entropy while
stratifying source files by their LOC. Thus, as a yet
another way of analysis, we build a fault-prone pre-
diction model whose explanatory variables are LOC
and the proposed entropy metric. If the impact of
LOC is dominant in the fault-prone prediction, the
proposed entropy metric cannot contribute to the
prediction when it is used together with LOC.

While there are many types of prediction models,
we build a model using the random forest method
which is a promising way of predicting fault-prone
programs27. The random forest-based prediction
model use two metrics as its explanatory variables—
the LOC of a source file and the contribution entropy
of the file—, and predicts whether the source file is
faulty or not. The random forest can present the im-
portance of each explanatory variable according to
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Table 8. Importance of explanatory variables (metrics).

Dataset LOC Contribution entropy
all 93.9 92.0

multi-developer file only 84.1 87.8

the Breiman’s method28 in a quantitative form. Ta-
ble 8 shows the importance of two metrics in the
random forest model, where a larger value means a
higher importance. In the table, the dataset “all” sig-
nifies the all source files included in our dataset, i.e.,
the importance values on the row are computed from
the random forest model which was built by using
not only the multi-developer files but also the single-
developer ones; the dataset “multi-developer file
only” means that the corresponding random forest
model was built by using only the multi-developer
files.

As the results, the importance values showed that
the proposed metric—the contribution entropy—
plays an important role in the fault-prone predic-
tion even if it is used together with the LOC. Espe-
cially, when we focus only on the multi-developer
source files, the proposed metric outperforms the
LOC. Since all single-developer files’ entropies are
zero, such a data separation would enhance the per-
formance of the entropy metric. While the LOC
metric is one of promising metrics to predict fault-
prone programs, the proposed entropy metric can
contribute to the prediction as well. As we saw in
Fig. 7, the contribution entropy can be useful in de-
tecting fault-prone programs when they are large-
sized ones. Moreover, category C1 would be a hot
spot of fault-prone programs as shown in Fig. 8.
These characteristics of the proposed contribution
entropy metric would help a more precise prediction
of fault-prone programs.

3.6. Threats to Validity

We analyzed popular OSS projects whose main-
development language is Java. Since our data col-
lection method does not depend on any Java-specific
feature, we can perform a similar analysis to other
projects developed in other languages without any
changes of our method if their code is maintained
with Git. Since OSS projects written in other lan-
guages may show different trends, it is a threat to

the validity regrading the generality of our findings,
and our significant future work.

In order to ensure quality of code, some OSS
projects have strict checking (reviewing) systems
for a code change proposed by a developer. Such
a checking system may have a large impact on
our results of data analysis. To mitigate such a
threat to validity, we collected data from various
OSS projects in different domains. Moreover, to
avoid any project-specific bias, we randomly se-
lected the same number of source files from each of
the projects. We plan to perform a further analysis
focusing on project-specific features in the future.

To examine if the proposed metric can contribute
to a fault-prone program prediction, we leveraged
the random forest model. It is a popular and widely-
used model in the fault-prone prediction studies.
However, its computation (model construction) re-
quires many parameters and these parameters can
affect the computational results. That is to say, if we
use a different set of parameters in the model con-
struction, a different result might be obtained in our
analysis. Since the decision of their parameters can
be a yet another threat to validity, we used default
parameters (settings) of randomForest package of
R in our computation to avoid any bias regarding the
parameter decision. A further study on a better pa-
rameter turning is our future work.

4. Related Work

Bird et al.14 focused on an ownership of a source
file: an ownership metric in their paper is the per-
centage of commits made by major contributors.
They reported that a source file having lower own-
ership is likely to be more fault-prone. Aman et
al.18 performed a survival analysis of the time to
fault fix, and proved the trend such that a source
file modified by a new developer has a shorter time
to the occurrence of the next fault fix. These pre-
vious work showed a risk of transiently increasing
the fault-proneness of a source file by a participa-
tion of other developers in the maintenance of the
file. While the notion of such a risk is common to
this study, we performed a finer-grained data analy-
sis which is at a source line-change level rather than
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a commit level.
Matsumoto et al.19 proposed developer metrics

and utilized those metrics for predicting faults in
modules. Through an empirical study using a
dataset of the Eclipse Platform project, they showed
that their developer metrics can be useful explana-
tory variables in fault-prone module prediction mod-
els. Moreover, they reported that a module which
has been touched by more developers tends to be
more fault-prone. While their findings are consistent
with our result for RQ1 mentioned above, we have
also performed an analysis of the relationship with
the source file (module) size in this paper. Further-
more, we have studied multi-developer files in terms
of the balance of developers’ contributions rather
than the number of developers.

Posnett et al.15 focused developers’ contributions
from both the perspective of developer and that of
module. In the former perspective, they quantified
the degree to which a developer contributes to a cer-
tain module; in the latter one, they evaluated the de-
gree to which a module is contributed by a certain
developer. Through a data analysis, they reported
that a developer who has contributed to a certain
module tends not to create a fault, i.e., he/she would
be a specialist of the maintenance of the module;
a module which is contributed by more developers
may be fault-prone. While we also have the latter
perspective of their work, we analyzed the balance
of contributions as well in this paper.

5. Conclusion

We focused on the cumulative contributions of de-
velopers to the development and maintenance of a
source file, and proposed a novel metric, contribu-
tion entropy, to evaluate the balance of contributions
to the file.

We performed a data analysis of source files from
10 popular OSS projects. As the results, the fol-
lowing trends were founds: (1) a source file main-
tained by two or more developers tends to be more
fault-prone than a file maintained by a certain devel-
oper only. The fault-proneness of the former-type
source file is about two times higher than that of the
latter-type one; (2) when a source file has been main-

tained by two or more developers and the develop-
ers’ contributions are more imbalanced, the source
file is more fault-prone; (3) the proposed metric can
be useful for predicting fault-prone source files even
if it is used together with the lines of code.

From the results, the fault-proneness of a source
file seems to be transiently increased when the file’s
maintenance structure shifts from a single-developer
maintenance to a multi-developer one, i.e., when an-
other programmer started to change a part of the
code. A successful OSS quality management would
be prompted by focusing on such changes as well.

In order to understand a more detailed impact
of another programmer’s participation, we plan to
check not only fault-fix commits but also fault-
introducing commits, and analyze who made the
corresponding code changes as our significant future
work. Moreover, to predict the code quality stabil-
ity, we will examine the impact of number of con-
tributing developers on the quality, and investigate
changes in the contribution entropy over time. Other
our future work includes: (1) a further analysis us-
ing OSS projects whose development languages are
other than Java to examine the generality of our find-
ings, and (2) an application of our results to the just-
in-time quality assurance studies.
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