
A Triggered Delay-based Approach against Cache Privacy Attack in NDN

Naveen Kumar, Ashutosh Kumar Singh, Shashank Srivastava

Department of Computer Science & Engineering, Motilal Nehru National Institute of Technology Allahabad,
Allahabad, Uttar Pradesh 211004, India.

E-mail: nk10121989@gmail.com, ashuit89@gmail.com, shashank12@mnnit.ac.in

Abstract

Content caching is one of the most significant features of Named Data Networking (NDN) that improves
the performance. However, this feature makes the cache vulnerable to attacks that determine the recent
cache access pattern. In cache privacy attack, an attacker can probe request and determine if the received
content is cached or not, by simply observing the time difference between the requested and the received
data. Existing solutions apply delay whenever the data is accessed from the cache. These approaches
mitigate attack to some extent but compromise the performance of NDN. To overcome this issue, a counter
scheme has been proposed in this article that detects the attack pattern at the gateway router itself and
triggers the countermeasure in case of attack. The triggered-based approach delays the data accessed
from the cache, only when the attack is detected instead of each time when the data is accessed from the
cache. The proposed approach has been compared with an approach that induces a random delay in case
of the cache hit. The results prove that the triggered delay-based approach is better than the random delay
approach in terms of average delay.

Keywords: Cache Privacy Attack, CPA, Named Data Networking, NDN

1. Introduction

According to forecast conducted by Visual Net-
working Index 2016, global Internet Protocol (IP)
traffic per month will reach 194 Exabytes and IP
video traffic will be 82% of all traffic by the year
20206. TCP/IP was developed to overcome the
problem of communication between users. In cur-
rent scenario, Internet is mainly used to fetch data.
Users do not bother about who is satisfying the re-
quest until the data is fetched from the authenticated
publisher. Information Centric Networking (ICN)5

was introduced to handle requirement of the current
network. Some popular ICN-based networks are
data-oriented network architecture8, content media-
tor architecture for content-aware networks14, Con-
tent Centric Networking (CCN)7, and Named Data

Networking (NDN)15.
NDN is one of the most promising ICN candi-

dates among all the ICN type networks. NDN has
content-centric network architecture rather than a
host-centric. It uses the name of the data for for-
warding, routing, and fetching content. The con-
sumer can request a content by using interest packet
which can be satisfied by a data source (publisher
or router having that data) using the data packet.
Additionally, the data is cached by each in-between
routers.

Content caching is the fundamental feature of
NDN that reduces network congestion, optimizes
bandwidth utilization and provides fast access to
the content. However, this feature enables attack-
ers to access the pattern of the cache miss or hit.
In Cache Privacy Attack (CPA), an attacker tries to

174

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

International Journal of Networked and Distributed Computing, Vol. 6, No. 3 (July 2018) 174 - 184

find out recently accessed private content from the
gateway router to which it is directly attached. The
attacker compiles a list of privacy-sensitive unpop-
ular contents. The attack timing and the list is in-
telligently decided so that the attacker can associate
these content to user(s). After compiling the list of
the contents, the attacker calculates the hit time of
the cache for the access router by requesting same
content twice. The first time the content is accessed
from the data source (publisher or the router having
that data packet) and the second time the content is
accessed from the cache. The time taken when the
data is accessed second time is the hit time for the
cache. After knowing the hit time, the attacker re-
quests each content in the list one by one to find out
whether it is accessed from the cache or not by com-
paring the delay with the hit time. After knowing
whether the content is hit or not the attacker can find
out the type of content accessed by the users and the
timing of accessing those contents.

Solutions proposed by some of the
authors14,7,15,16 have degraded this attack to some
extent, but with the degradation of the NDN perfor-
mance. A counter technique for the mitigation of
CPA is proposed which utilizes the attack pattern
for the detection of the attack. After the detection,
a counter is triggered to inform the router to apply
delay only to the malicious namespace. Thus our ap-
proach only targets the malicious namespace rather
than all the contents. The main contributions of this
paper are

• Implemention of CPA using ns313 based ndnSIM3

simulator on the linear topology.
• Development of a detection approach that counter

CPA proposed by Lauinger et al.9.
• A delay based counter measure which trigger after

the detection of CPA.
• Comparison of the proposed approach with the

approach in which random delay is applied every
time on cache hit.

The rest of the paper is organized as follows.
Section 2 describes NDN architecture in brief. Sec-
tion 3 presents related work on CPA. Section 4
describes CPA in NDN. Section 5 shows the at-
tack modeling, attack detection and countermeasure.

Section 6 illustrates the result of attack detection.
Finally, section 7 concludes this article along with
scope of future work.

2. NDN Architecture

In NDN, the name of the data plays a significant role
as it helps in forwarding, and routing of the con-
tent. NDN uses human-readable hierarchical names
for naming content. Each name has variable length
string components which are separated by “/” as
the delimiter. For example /ucla/new/video3.mp4.
There are two types of packets in NDN, i.e., inter-
est packet and data packet these packets are used for
the communication. Interest packet is used to send
the request, and the data packet is the reply for that
interest packet. In NDN data source can be a pub-
lisher (or the router having data packet in its Content
Store). Each data packet is signed by the publisher
which can be verified by the consumer using pub-
lisher’s public key given by the key locator field of
the data packet.

Each router maintains three kinds of data struc-
tures, i.e., Pending Interest Table (PIT), Forward-
ing Information Base (FIB), and Content Store (CS).
PIT stores all the metadata of all the incoming un-
satisfied interest packets. Each PIT has TTL field
which specifies the time after which the PIT entry
becomes invalid.

If data packet corresponding to the entry is not
received before expiration of TTL, then the PIT en-
try is flushed. The router checks FIB to find out
where to forward the interest packet when the data
packet is not found in the CS. Whenever a new
data come from the data source, it gets cached in
CS according to the replacement strategy like Least
Recently Used (LRU), or Least Frequently Used
(LFU).

The consumer specifies its request by forming an
interest packet containing the name of the data. On
receiving the interest packet, the router first checks
its CS. If the data packet corresponding to the inter-
est packet is present in CS then it is forwarded back
to the consumer, else the name in the interest packet
is checked in the PIT. If a matching entry is found
in the PIT then the incoming interface of the interest

175

International Journal of Networked and Distributed Computing, Vol. 6, No. 3 (July 2018) 174 - 184

packet is appended to the PIT entry, else a lookup
is performed in the FIB table. The FIB decides the
outgoing interface on the basis of the longest pre-
fix match, and a new entry for the interest packet
is created in the PIT. If there is no match found in
FIB, then the router sends either drop the interest
packet or send a negative acknowledgment back to
the sender depending upon the router’s policy.

Data

Content

 Store

Pending Interest

 Table (PIT)
FIB

add incoming face

Pending Interest

 Table (PIT)

forward

cache

Content

 Store
discarded Data

lookup miss lookup hit

Data

Interest

Downstream
Upstream

Fig. 1. Forwarding pipeline in NDN

On receiving a data packet, the router first checks
if its entry present in the PIT or not. If the entry
is found then the router forwards the data packet
through all the interfaces specified by the incoming
interface field of matching PIT entry. Additionally,
the data packet is cached in CS using caching strate-
gies like LRU or LFU. If no entry found correspond-
ing to the data packet, then the packet is dropped.
The forwarding pipeline is given in Fig. 1

3. Related Work

Lauinger et al.9 proposed request monitoring attack
in which an attacker performs an attack by probing
interest packet at frequency fp called probing fre-
quency. This fp should be greater than or equal to
1
tc for 100% detection rate, here tc is the average pe-
riod for which a data packet remains in CS. Several
countermeasures like tunneling, disabling the scope
field, etc., have been proposed these approaches re-
duce CPA to some extent but they compromise NDN
performance too.

Mohaisen et al.10,11 have given three different ap-
proaches based on applying delay for time t in the
case of a cache hit. These are 1) vanilla approach,
2) efficient approach, and 3) low granularity ap-
proach. In the first approach, the edge router main-
tains the record of the content’s name and the num-

ber of times the content requested by a consumer.
If a consumer requests a data that the consumer re-
quested previously then no delay is applied. Oth-
erwise, a delay is applied based on the RTT of that
content. In the second approach, the router main-
tains the record of the content’s name and the num-
ber of times the content requested from an interface
of the router. This approach incurs less storage over-
head for the router. The third approach takes the
advantages of both the above approaches by main-
taining both the records, i.e., the number of times
the content requested from an interface and the user.
These three approaches were proposed for ICN that
cannot be applied to the NDN as in NDN there is no
User-ID and no concept of a layer-2 device.

Acs et al.1 proposed three delay based ap-
proaches which apply a delay on replying data pack-
ets for the first k requests of privacy-sensitive con-
tents. These approaches are 1) Non Private Naive, 2)
Uniform Random Cache, and 3) Exponential Ran-
dom Cache. In the first approach, this k is fixed for
all the content in the cache. In the second approach,
this k is chosen using a uniform random variable
which gives a value between (0,k]. In the third ap-
proach, this k is chosen using an exponential random
variable. They have extended their work in which
they have given a proof of their approach11. This
approach is based on maintaining trade-off between
privacy and caching. In this approach, each router
has to maintain the state of all the contents that are
present in CS. Therefore, it gives extra processing
and storage overhead to the router.

Zhang et al. 17 given a security mechanism based
on adding a dynamic password. This approach al-
lows a legal consumer to add some random num-
ber as nonce calculated by an algorithm known to
the consumer. Receiving router may accept or re-
ject this request based on the added number. Under
this scheme, the router has to perform extra com-
putation like checking request field for each request
which may lead to additional overhead. Ntuli and
Han12 proposed a scheme to detect cache snooping
in NDN on the basis of the high-interest rate in short
time. Dogruluk et al.4 proposed a countermeasure
based on the above detection in which the router ap-
plies delay fixed, random, or cryptographic delay.

176

International Journal of Networked and Distributed Computing, Vol. 6, No. 3 (July 2018) 174 - 184

Most of the previous approaches try to avoid
CPA by adding additional delay. However, there is
very less work done on the actual implementation of
attack and its countermeasure. Our approach tries to
counter the CPA by detecting the attack based on the
attackers’ pattern of probes and then applying coun-
termeasure.

4. Cache Privacy Attack

The main issue regarding cache privacy is deciding
whether the content is private or public. Privacy of
content depends on whether it can be linked to a par-
ticular context (such as political view, religious be-
liefs, etc.), user, the location at a given time. The
entity (either user or publisher) which will decide
the privacy of a data and how this privacy will be
implemented (how private and public content is dif-
ferentiated so that the router reacts according to it)
is also a crucial issue in NDN.

Besides these issues, if the content is private,
then it must be handled in such a way that attack-
ers could not detect whether the content is recently
requested or not. Cache privacy can be maintained
by disabling router’s cache, but that would result in
a decrement of NDN performance. A good solution
for this attack is to make difficult for an attacker to
link privacy sensitive content to a user(s).

There are mainly two types of CPA i.e., timing-
based attack and object discovery attack. Our work
is mainly focused on timing based attack.

Fig. 2. Detection Model

4.1. Timing Based Attack

In this attack, an attacker tries to find out the recent
access to a privacy-sensitive content from the nearby
cache. The attack is performed by compiling a list
of privacy-sensitive unpopular content related to one
or more users. After compiling the list, the attacker

finds the delay in accessing a cached content from
the nearest router, also called hit time for the cache.
Hit time can be calculated by requesting the same
content twice. The first time, the content gets cached
by the nearest router. The second time the request is
satisfied by the cache of the nearest router. The de-
lay in receiving the content second time is the hit
time of the cache. After getting the hit time attacker
requests privacy-sensitive contents one by one from
the list to check whether it is cached or not. If the
cache-hit occur then, the attacker can interpret that
the user to which the attacker has linked the content
while making the list of the privacy-sensitive unpop-
ular contents must have accessed cache recently.

Fig. 3. Attacker probing at low frequency unable to detect
request for content object

Algorithm 1 Measurement of tc
OUTPUT: tc,u, tc,l
1: N = MAX IT ERAT ION
2: o(j) = /alice/generate/ < j > . Object name template
3: for j = 1; j 6 N; j = j+1 do
4: request(o(j))
5: ti, j = currentTimeStamp()
6: tc,l = 0
7: tc,u = ∞

8: for j = 1; j 6 N; j = j+1 do
9: request(o(j))

10: if request(o(j)) =CACHE HIT then
11: tc,l = current
12: sleep f or 1

fm
seconds

13: return [tc,l ; tu,l]

4.2. Object Discovery Attack

In this attack, an attacker sends the root (represented
as “/”) namespace as the first request packet to the
router. The router responds by sending any data
packet which is cached. Again the attacker sends an-
other request packet excluding the data packet that
the attacker got earlier by setting the exclude field
of interest packet to the name of the data packet re-
ceived earlier. This time the attacker gets a new data
packet as a reply. By repeating this action repeat-

177

International Journal of Networked and Distributed Computing, Vol. 6, No. 3 (July 2018) 174 - 184

edly, an attacker can know the configuration of data
packets in CS.

This paper focuses on timing based attack. The
object discovery attack utilizes NDN features such
as exclude field so it can be mitigated by just dis-
abling the exclude field. This may result in degra-
dation of NDN performance. However, the timing-
based attack can be made without utilizing any ad-
ditional NDN interest. Also object discovery attack
is not a well-focused attack as the attacker may have
to wait for the the appropriate contents which are
privacy-sensitive but in the timing-based attack, the
attack can target intended content.

5. Proposed Countermeasure

We utilize Lauinger et al.9 approach of performing
the attack by measuring the average time for which
a data packet exists in the CS called Characteristic
Time (CT) represented as tc. This tc is used for set-
ting the lower bound for the probing frequency. The
probing frequency fp should be greater than or equal
to 1

tc
to achieve 100% detection.

5.1. Attack Model

For performing the attack, we have considered lin-
ear topology as shown in Fig. 2. The attacker and
the consumer are attached to R1, and the producer is
attached to R5. The attacker wants to check whether
consumer recently requested privacy sensitive con-
tent published by the publisher who is publishing
content for prefix “/prefix.”

Fig. 4. Computation of CT using parallel probing

Algorithm 2 Parallel Cache Probing
1: N = MAX IT ERAT ION
2: c(j) = /alice/generate/ < j > . Chunk name template
3: for j = 1; j 6 N; j = j+1 do
4: if request(c(j mod (m−1))) =CACHE HIT then
5: “Some one requested O”
6: else
7: “No content is detected”
8: sleep f or 1

fm
seconds

We assume that there may be other consumer at-
tach to R1 which can request content from any pub-
lisher. To make scenario easy to understand, we have
shown only one consumer, and one publisher whose
prefix is used by the attacker to check whether con-
tent belongs to that prefix is cached or not. We as-
sume that the attacker can only access CS by sending
interest packet. We also assume that the attacker can
measure the time when the data is sent and received.
We use LRU as cache replacement policy for CS.

Table 1: Detail of History data structure
Field Description
name First component of received interest name
time Time at which the interest arrived
face Interface at which the interest in received

count Count number of successive malicious
interests

isAttack Set to true on attack detection

CC Counts how much times the mitigation has
been applied

AT Attack Threshold
CountT Counter Threshold

δ
Amount of deviation of successive interest
from CT

∆
Increment counter count so that counter
decreases gradually

5.2. Measure Characteristic Time

For performing an attack, the attacker has to com-
pute the probing frequency fp. If fp is too low, then
a request from a user can go unnoticed by an attacker
as shown in Fig. 3. Therefore for 100% detection
fp > 1

tc
, here tc is the time interval for which an ob-

ject remain in cache 9. Also, if fp is too high, then
the attacker may access the content cached by him-
self which may result in false detection. To avoid
both the above scenario the value of fp should be

178

International Journal of Networked and Distributed Computing, Vol. 6, No. 3 (July 2018) 174 - 184

almost equal to 1
tc

.

Algorithm 3 OnInterest (Trigger on interest packet
retrieval)
INPUT: interest, inFace
1: f irstComp = interest.get(0)
2: f ound = search(f irstComp, inFcae)
3: if f ound == NULL then
4: his =Create < Ob ject > (History)
5: his.name = f irstComp
6: his.time = now()
7: his. f ace = inFace
8: his.count = 1
9: his.isAttack = f alse

10: his.CC = 0
11: history.push(his)
12: else
13: it = history.advance(f ound)
14: if ((avgLT − δ) < (it.time − now()))&((it.time − now()) <

(avgLT +δ)) then
15: it.count = it.count +1
16: it.time = now()
17: if (it.count = AT)&(it.isAttack = f alse) then
18: it.isAttack = true
19: it.CC = it.CC+1
20: if ((it.isAttack = true)&(it.CC <CountT)) then
21: it.CC = it.CC+1
22: if (it.CC =CountT) then
23: history.remove(it)
24: else
25: if (it.isAttack = true) then
26: it.CC = it.CC+∆

27: if (it.CC >CountT) then
28: history.remove(it)
29: Content =ContentStore.Lookup(interest)
30: if (Content! = NULL) & (f ound == true) & (it.isAttack ==

true) then
31: Delay data packet
32: Usual interest process

Lauinger et al.9 have given Algorithm 1 for com-
puting fp. Initially, a large number of different con-
tents are requested at the same time so that they get
cached in the CS. The attacker requests each content
after 1

fp
time interval. Thus first object is requested

after 1
fp

time, the second object is requested after
1
fp
∗2 time, ... the nth object is requested after 1

fp
∗n

time and so on. Fig. 4 shows how an attacker can
compute upper (tc,u) and lower bound (tc,l) of CT.

5.3. Perform Cache Privacy Attack

Lauinger et al. has given an approach to perform
attack so that the request of attacker himself do
not distract attack. The attacker requests chunks
c(0),c(1), ...c(m) of the same content parallely with
frequency fp > 1

tc
as shown in Algorithm 2. Cache

hit implies that the given content is requested 1
tc

time
unit before.

Table 2: Variation of CT in seconds for different val-
ues of frequencies and CS sizes

CS size
Frequency 100 200 400 800
100 3.2130 7.0670 16.7350 19.9760
200 1.6760 3.5780 8.2160 10.9540
400 0.665 1.842 4.2460 5.9930
800 0.171 0.9259 2.182 9.0930

5.4. Attack Detection and Mitigation

We have proposed an approach which utilizes the
attacker’s pattern for the detection of the CPA. For
performing the attack, the attacker has to send a re-
quest after every 1

tc
time approximately. The occur-

rence of this pattern for a threshold number of times
can be utilized to detect the attack. For detecting
this pattern, we have used the History data structure
implemented as a linked list that has six fields as
given in Table 1. The attack detection is described
in Algorithm 3. On receiving an interest packet, the
router first checks if the first name component of the
interest packet is in the History data structure or not.
If the data is not found then a new entry is created
having name field equals the name of the first com-
ponent of the received interest packet and time field
equals to the current time. The face field is set to the
interface on which interest packet is received, count
field is set to one, isAttack field is set to false, and
Counter Count (CC) field is set to zero. If this entry
is already present in History, then the router checks
if the time difference between the current time and
the time in the time field approximately equals to the
average lifetime (avgLT) of the data packet or not. If
yes then the value of count field is incremented and
time field is set to current time. Here this approxi-
mate depends on δ which is a configurable value that
can be set by the router according to convenience.

Next, the count field is checked if it equals to At-
tack Threshold (AT) then isAttack field is set to true
and the CC field is incremented by one. Next, the
isAttack field is checked if it is true and CC field
is less than the counter threshold(CountT) then the

179

International Journal of Networked and Distributed Computing, Vol. 6, No. 3 (July 2018) 174 - 184

value of CC field is incremented by one. If the value
of the CC field becomes equals to CountT then the
corresponding entry is removed. In case the request
does not lie within the detection zone and isAttack
field is true then the CC field is incremented by the
∆ threshold, this is done to ensure that the entry will
be removed after some successful reception of the
data packet. If the value of CC field becomes greater
than or equals to CountT then the corresponding en-
try is removed. After detecting the attacker’s pattern
and updating entry of History data structure the data
packet corresponding to interest packet is searched
in CS. If the content is present in CS (in case of
cache hit), its entry present in History, isAttack field
is true then delay is applied. After applying the de-
lay, the interest packet is processed according to the
normal NDN forwarding pipeline.

6. Experimental Results

We have used ns-3 based simulator ndnSIM for the
analysis of our approach. As shown in Fig. 2,
linear topology is used for the evaluation of pro-
posed countermeasure. We have taken fix PIT size
of 12000kb. CS size varies from 100 to 800. Two
consumer applications are installed on the consumer
node; these are active during 0 to 600 seconds of
simulation time. These applications requests interest
packets whose names follow the Zipf distribution2

with the value of q and s set to default of 0.7. The
first application sends interest packets at a fixed rate
of one packet per 10 seconds to producer application
installed at producer node which listens to prefix
“/p1.” The second application sends packets at vari-
able rates (per second), i.e., 100, 200, 400, and 800
to producer application installed at producer node
which listens to prefix “/p0.” The attacker applica-
tion is installed on attacker node which sends inter-
est packet for prefix “/p1” with frequency equals to
reciprocal of CT computed by the attacker.

Evaluation can be divided into three phases i.e,
computing CT of the access router, performing at-
tack at probing frequency which is calculated using
CT, and countermeasure. For computing CT, we in-
stalled m additional consumer applications to the at-
tacker node which sends a single packet to producer

application installed on producer node listens to pre-
fix “/qi” where i varies from 1 to m. First, these ap-
plications send a single interest packet so that CS
of the access router caches data packets correspond-
ing to these interest packets. Then after some time,
these applications send interest packets according to
Algorithm 1. The value of CT calculated for the dif-
ferent scenario is shown in Table 2. After calculat-
ing the CT, the attacker can perform the attack with
frequency equals to reciprocal of CT.

We have considered five different scenarios for
the evaluation of our countermeasure.

1. No privacy: We do not apply any mechanism
to counter CPA.

2. Uniform random delay: We apply additional
delay when the data item is satisfied by the CS
this delay is obtained using the uniform ran-
dom variable.

3. Exponential random delay: We apply addi-
tional delay when the data item is satisfied by
the CS this delay is obtained using the expo-
nential random variable.

4. Our approach with uniform random delay:
This is our countermeasure approach in which
the delay is obtained using the uniform ran-
dom variable.

5. Our approach with exponential random
delay: This is our countermeasure approach
in which the delay is obtained using the expo-
nential random variable.

Fig. 5 and Fig. 6 show the performance of our
countermeasure as frequency and CS size changes in
case of uniform random delay and exponential ran-
dom delay respectively. For the evaluation of our ap-
proach, we have chosen the average delay of all the
flows in the network per second. As we increase the
frequency of the consumer, the rate of arrival of the
data packets also increases which leads to the decre-
ment of CT. The value of CT increases with the in-
crease in the size of CS as shown in Table 2. We can
also observe the decrease in average delay as the size
of CS is increased and the increase in average delay
as the frequency increases. We can also observe that

180

International Journal of Networked and Distributed Computing, Vol. 6, No. 3 (July 2018) 174 - 184

0 100 200 300 400 500 600

Time in seconds

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
A

ve
ra

ge
 D

el
ay

For Frequency=100 and CS size=100

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
ve

ra
ge

 D
el

ay

For Frequency=100 and CS size=200

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
ve

ra
ge

 D
el

ay

For Frequency=100 and CS size=400

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ve

ra
ge

 D
el

ay

For Frequency=200 and CS size=100

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

A
ve

ra
ge

 D
el

ay

For Frequency=200 and CS size=200

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

A
ve

ra
ge

 D
el

ay

For Frequency=200 and CS size=400

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
ve

ra
ge

 D
el

ay

For Frequency=400 and CS size=100

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
ve

ra
ge

 D
el

ay

For Frequency=400 and CS size=200

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
ve

ra
ge

 D
el

ay

For Frequency=400 and CS size=400

No Privacy

Random Delay

Our Approach

Fig. 5. Variation of average delay w.r.t. time when uniform
random delay is applied

181

International Journal of Networked and Distributed Computing, Vol. 6, No. 3 (July 2018) 174 - 184

0 100 200 300 400 500 600

Time in seconds

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
A

ve
ra

ge
 D

el
ay

For Frequency=100 and CS size=100

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
ve

ra
ge

 D
el

ay

For Frequency=100 and CS size=200

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
ve

ra
ge

 D
el

ay

For Frequency=100 and CS size=400

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

A
ve

ra
ge

 D
el

ay

For Frequency=200 and CS size=100

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

A
ve

ra
ge

 D
el

ay

For Frequency=200 and CS size=200

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

A
ve

ra
ge

 D
el

ay

For Frequency=200 and CS size=400

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
ve

ra
ge

 D
el

ay

For Frequency=400 and CS size=100

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.25

0.3

0.35

0.4

0.45

0.5

0.55

A
ve

ra
ge

 D
el

ay

For Frequency=400 and CS size=200

No Privacy

Random Delay

Our Approach

0 100 200 300 400 500 600

Time in seconds

0.25

0.3

0.35

0.4

0.45

0.5

0.55

A
ve

ra
ge

 D
el

ay

For Frequency=400 and CS size=400

No Privacy

Random Delay

Our Approach

Fig. 6. Variation of average delay w.r.t. time when
exponential random delay is applied

182

International Journal of Networked and Distributed Computing, Vol. 6, No. 3 (July 2018) 174 - 184

the best performance is achieved when no privacy is
applied, this is the upper bound of the performance
of the CS, but it does not have any privacy. In the
random delay approach, the attacker would not be
able to decide whether a request is served from the
cache or by the producer, but the performance still
degrades considerably. Our approach is better than
the random delay approach.

For the uniform random delay, the range of val-
ues lie between 0 to 3000 ms having mean equals to
1500ms. For the exponential random delay, the in-
put parameters are mean and upper bound which are
equals to 1500ms and 6000ms respectively. From
Fig. 5 and Fig. 6, we can observe that the av-
erage delay in case of exponential random delay
is less than uniform random delay. Therefore ap-
proach based on exponential random delay perfor-
mance better than uniform random delay.

7. Conclusion and Future Work

An approach to perform CPA efficiently is im-
plemented by calculating CT and probing interest
packet with the frequency equal to or higher than the
reciprocal of CT. Then a detection scheme has been
proposed for this attack and the countermeasure is
applied through delay induction. The proposed ap-
proach is better than the approach which applies de-
lay after each cache hit in terms of average delay.
Exponential random delay performs better than uni-
form random delay.

However, the proposed work have been experi-
mented for a single consumer whose request follow
Zipf distribution in the linear topology. In a more
complex scenario comprising of heavy traffic, it is
difficult to estimate correct CT for the attacker. The
value of the threshold can be optimized as a future
task by evaluation of the approach under a different
scenario.

References

1. Gergely Acs, Mauro Conti, Paolo Gasti, Cesar Ghali,
and Gene Tsudik. Cache privacy in named-data net-
working. In Distributed Computing Systems (ICDCS),
2013 IEEE 33rd International Conference on, pages
41–51. IEEE, 2013.

2. Lada A Adamic and Bernardo A Huberman. Zipf’s
law and the internet. Glottometrics, 3(1):143–150,
2002.

3. Alexander Afanasyev, Ilya Moiseenko, Lixia Zhang,
et al. ndnsim: Ndn simulator for ns-3. University of
California, Los Angeles, Tech. Rep, 4, 2012.

4. Ertugrul Dogruluk, Antonio Costa, and Joaquim
Macedo. Evaluating privacy attacks in named data
network. In Computers and Communication (ISCC),
2016 IEEE Symposium on, pages 1251–1256. IEEE,
2016.

5. Ali Ghodsi, Scott Shenker, Teemu Koponen, Ankit
Singla, Barath Raghavan, and James Wilcox.
Information-centric networking: seeing the forest for
the trees. In Proceedings of the 10th ACM Workshop
on Hot Topics in Networks, page 1. ACM, 2011.

6. Cisco Visual Networking Index. Global mobile data
traffic forecast update, 2016–2021 white paper, 2017.

7. Van Jacobson, M Mosko, D Smetters, and JJ Garcia-
Luna-Aceves. Content centric networking. whitepa-
per 2007, 2009.

8. Teemu Koponen, Mohit Chawla, Byung-Gon Chun,
Andrey Ermolinskiy, Kye Hyun Kim, Scott Shenker,
and Ion Stoica. A data-oriented (and beyond) network
architecture. In ACM SIGCOMM Computer Commu-
nication Review, volume 37, pages 181–192. ACM,
2007.

9. Tobias Lauinger, Nikolaos Laoutaris, Pablo Ro-
driguez, Thorsten Strufe, Ernst Biersack, and Engin
Kirda. Privacy implications of ubiquitous caching
in named data networking architectures. Technical
Report TR-iSecLab-0812-001, ISecLab, Tech. Rep.,
2012.

10. Abedelaziz Mohaisen, Xinwen Zhang, Max
Schuchard, Haiyong Xie, and Yongdae Kim.
Protecting access privacy of cached contents in infor-
mation centric networks. In Proceedings of the 8th
ACM SIGSAC symposium on Information, computer
and communications security, pages 173–178. ACM,
2013.

11. Aziz Mohaisen, Hesham Mekky, Xinwen Zhang,
Haiyong Xie, and Yongdae Kim. Timing attacks on
access privacy in information centric networks and
countermeasures. IEEE Transactions on Dependable
and Secure Computing, 12(6):675–687, 2015.

12. Nonhlanhla Ntuli and Sunyoung Han. Detecting
router cache snooping in named data networking. In
ICT Convergence (ICTC), 2012 International Confer-
ence on, pages 714–718. IEEE, 2012.

13. George F Riley and Thomas R Henderson. The ns-3
network simulator. In Modeling and tools for network
simulation, pages 15–34. Springer, 2010.

14. FJ Ramón Salguero. Content mediator architecture
for content-aware networks. COMET EU FP7 Report,
2010.

183

International Journal of Networked and Distributed Computing, Vol. 6, No. 3 (July 2018) 174 - 184

15. Lixia Zhang, Alexander Afanasyev, Jeffrey Burke,
Van Jacobson, Patrick Crowley, Christos Papadopou-
los, Lan Wang, Beichuan Zhang, et al. Named data
networking. ACM SIGCOMM Computer Communi-
cation Review, 44(3):66–73, 2014.

16. Lixia Zhang, Deborah Estrin, Jeffrey Burke, Van Ja-
cobson, James D Thornton, Diana K Smetters, Be-

ichuan Zhang, Gene Tsudik, Dan Massey, Christos
Papadopoulos, et al. Named data networking (ndn)
project. Relatório Técnico NDN-0001, Xerox Palo
Alto Research Center-PARC, 2010.

17. Zengwu Zhang and Ke Zhang. Research on security
and privacy issues of ndn. 2014.

184

International Journal of Networked and Distributed Computing, Vol. 6, No. 3 (July 2018) 174 - 184

