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Abstract. The matrix factorization (MF) algorithm plays an important role in collaborative filtering 
(CF). The traditional MF algorithms usually assume that the correlated data is distributed on a linear 
hyperplane, which is not always the case. Therefore, it is a hot topic to combine the kernel algorithm 
with the matrix factorization algorithm for collaborative filtering. Aiming at the shortcomings of the 
existing CF algorithm, an single matrix factorization method based on dictionary is firstly proposed 
for collaborative filtering. On this basis, considering that data can be efficiently embedded into high 
dimensional space, only one kernel function can not achieve the limitation of optimality energy, a 
matrix factorization algorithm based on multi kernel learning (MKLMF) is proposed for collaborative 
filtering. The MKLMF algorithm assumes that there are a set of ppositive defined base kernels, and 
then the two potential factor matrices are embedded into the high dimensional Hilbert space by the 
best linear group of the learned p  kernels. Finally, the product of the two potential factor matrices is 
used to realize the nonlinear reconstruction of the scoring matrix in the original space. A full 
simulation experiment is carried out with real data sets. The simulation results show that the 
proposed algorithm can accurately grasp the nonlinear correlation between data, and the prediction 
accuracy is better than the latest CF algorithm. 

Keywords: Matrix factorization; Collaborative filtering; Kernel algorithm; potential factor matrices; 
prediction accuracy. 

1. Introduction 

With the rapid growth of online available data, how to obtain useful information from massive 
data becomes an urgent problem. Collaborative filtering technology ([1]), as one of the various 
solutions, has attracted much attention in recent years. This technology is one of the most mature 
recommendation algorithms used in today's recommendation systems [2]. It uses the preferences of 
groups with similar interests and common experiences to recommend information that users are 
interested in. Individuals respond to information (such as ratings) to a considerable extent through a 
cooperative mechanism and record it for filtering purposes. And help others to filter information. 
Compared with other recommendation technologies, collaborative filtering does not need any 
information about the content of the project or users, mainly by scoring observations to analyze 
users'preferences. In addition, it does not require any domain knowledge, so it is suitable for large-
scale data sets and different system types. 

Collaborative filtering algorithm can be divided into two types of [3]: neighbor based algorithm 
and model-based algorithm. Among them, the neighbor-based algorithm estimates the score of the 
target user or item as follows: First, the vector cosine similarity, conditional probability similarity 
and other indicators [4] are used to determine the score of a group of adjacent users or adjacent items; 
then, these known scores are fused to generate the prediction score. This kind of algorithm is relatively 
easy to implement, but it is vulnerable to the impact of data sparsity, sometimes it is difficult to find 
a very similar set of neighbors. In addition, this kind of algorithm needs to search the whole data 
space to determine similar users or similar items. When the number of users or items is large, the cost 
of scoring prediction process is very high, and the scalability of the algorithm is poor [5]. 

Model-based algorithms learn from known training data to acquire robust models that can 
recognize complex patterns. Therefore, the performance of these algorithms is better than that of 
neighborhood-based algorithms in the face of sparse problems. At present, the typical algorithms are 
Matrix factorization (MF) [6], AVG [7], IVC-COS [8], IVC-PERSON [8] and SVD [9]. Matrix 
factorization method has many advantages in solving matrix completion problem, and it is a hot 
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research topic at present. Matrix factorization method will also be used to study collaborative filtering 
problem. 

Nowadays, the research focus of matrix factorization in collaborative filtering mainly focuses on 
how to obtain low-rank primitive eigenvalue matrix by singular value decomposition. However, for 
many data sets in real life, it is impossible to obtain complete matrices effectively by linear low rank 
factorization, so the traditional method is to embed data into high-dimensional feature space to solve 
this problem. However, the prediction accuracy of collaborative filtering based on thecombination of 
accounting and matrix factorization still needs to be improved [12]. The specific reasons are as 
follows: 1) At present, the matrix factorization method based on kernel function [13,14] often needs 
metadata, social graph, text review and other auxiliary information. However, recommendation 
systems in real life sometimes fail to provide the above information. 2) In the traditional matrix 
factorization method, the latent factors of users and items are often explicitly defined as two low-rank 
matrices. But for the factorization problem based on kernel function, the matrix of potential factors 
only exists in implicitly defined Hilbert feature space. Therefore, it is difficult to develop an 
accounting method suitable for matrix completion problems. 

In order to solve these problems, this paper proposes an MKLMF algorithm which combines 
matrix factorization with multi-kernel learning to solve the cooperative filtering problem. Unlike 
previous studies, MKLMF algorithm accurately grasps the non-linear correlation in the scoring data, 
and does not need any auxiliary information, effectively improving the prediction accuracy of 
collaborative filtering. The rest of the article is structured as follows. Section 2 gives the basic 
concepts and problem descriptions; Section 3 gives the MKLMF algorithm proposed in this paper; 
Section 4 discusses the experimental results; Section 5 summarizes the full text. 

2. Problem Description 

2.1 Mark Method 

For ease of description, the meaning of the relevant symbols used in the paper is first presented, 
as shown in Table 1. 

Known m users and n projects, the observed score is three tuple  , , uiu i r ,It indicates that user u

assigns the score uir to the project i .user  1, ,u m  ,project  1, ,i n  ,   score uir  .Assuming that 

each user can only score once for each item, all scores can be expressed as an m n  matrix R ,The 
first ui element is uir . If user p  fails to score for project q , the corresponding element pqr in R is 

unknown or unobserved. The observed elements are represented as set observed} Be:),{  uiriu（ ,
 indicates that the number of observations is often far less than m n . 

Let u  indicate the index of the observation score ur  of line u , i represents the index of the
i column observation score :,ir . If the score of ur  is not observed except first and third values, then 

there are:  T
1, 3u  and  T

1 3,
u u ur r r 

.
 

For any given matrix A , :, uA is represented as a submatrix consisting of a matrix A first column 

and a third column. Similarly, if the score of ur  is not observed except second and fourth values, 

Then we have:  T
2,4i  and  T

2 4:,
,i i ir r


r .Let 

:, i
A represent the submatrix of the matrix A second 

column and the fourth column. The goal of collaborative filtering is to estimate the unobserved score 
  | ,uir u i   based on the observed score.   

 
 
 
 
 
 

Advances in Intelligent Systems Research, volume 161

23



 

Table 1. meaning of related symbols 

Symbol Meaning 

R  Scoring matrix with only partial observations 

R̂  A dense scoring matrix deduced from 

U  User latent factor matrix 

V  Project latent factor matrix 

  ,u i   Index set for observation score,  ,u i  , uir Representing the observed values in R  

u  Index of observation score for line u in R  
i  Index of u column observation score in R  

:, u
A or :, i

A  The submatrix of matrix A  composed of columns indexed by u or i  

 1, , k  d d  Collection of dictionary vectors 

    Implicit mapping function of partial kernel 

    1 , , k  d d  A matrix composed of dictionary in Hilbert feature space 

ua and ib  User's Dictionary weight vector; dictionary weight vector of item 

A and B  The user's Dictionary weight matrix; the dictionary weight matrix of the item. 

 1, , p    Set of bases kernel functions 

 1, , p  K K  Set of base kernel matrices 

2.2 Factorization of Matrix 

Matrix factorization, as a main method to solve matrix completion problem, can be applied to 
collaborative filtering of online recommendation system. The problem of collaborative filtering based 
on matrix factorization can be expressed as follows: the scoring matrix of some elements is known, 
each row of the matrix represents the user of the recommendation system, and each list represents the 
items of the system. Our goal is to predict the unknown element  ,i j by calculating the intrinsic 

eigenvector of row I (user) and the inner product of column J, As shown in Figure 1. 
 

 
Fig 1. predict unknown score through matrix factorization. 
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In order to ensure the accuracy of collaborative filtering, the main idea of this method is to 
approximate the observation matrix R to the product of two low rank matrices: TR U V .among, U

represents k m matrix, V  represents k n matrix. Parameter k is used to control the rank of 
factorization and to represent the number of original features of each user and item.In most cases, 
there are  min ,k m n .Once the low rank decomposition matrix U and V are obtained, the 

estimated score of user u for item i can be calculated as follows: 
 

                

T

1

ˆ
k

ui ju ji u i
j

r u v


  u v                                  (1) 

 
Among them, juu represents the j row u column element of matrix U ; jiv represents the j row u 

column element of matrix V ; uu represents the u column of matrix U ; and iv  represents the i 
column of matrix V . By solving the following problems, we can determine the low rank parameter 
matrices U and V : 

 

     
   2 2 2T

,
min imize

F FF
P    

U V
R U V U V                        (2) 

 
Projection  P X denotes the matrix formed when the observed elements in X are preserved and 

the unobserved elements are all set to zero.
2

F
 Representing Frobenius 2 - norm; a normalization 

term that can avoid overfitting. These problems are non-convex and can be solved by gradient descent 
algorithm and alternative Least Square (ALS) [15]:Assuming that U is fixed, V is obtained by 
solving equation (2).At this point, the problem can be decomposed into N separate ridge regression 
problems [16]. For the j column of V , the ridge regression problem can be expressed as follows: 

 

           

2

:, :, 2
min imize j j

j
j j

F


 
 

v
r U v v                              (3) 

 

: j
r represents the j column vector obtained by deleting the unobserved elements in matrix R , and 

:, j
U obtained by deleting the corresponding columns in U , as defined in Section 2.1.The closed form 

solution of the ridge regression problem can be expressed as: 
 

           1
T

:, :, :, :,
ˆ j j j jj 



   
 v U U I U r                               (4) 

 
For n single ridge regression problem, a solution ˆ kv can be obtained for each problem, and a 

k n matrix V̂ can be obtained by combining n v̂ .Similarly, by fixing V , we can get the solution of 
Û by solving m separate ridge regression problems. Repeat this step until convergence, and finally 
get the solution of Û and V̂ .  

3. Multi Core Collaborative Filtering 

However, the matrix factorization method assumes that the data of matrix R are distributed on a 
linear hyperplane, but this assumption is not always true in reality. If the data of matrix R is 
distributed on a nonlinear hyperplane, the kernel-based matrix factorization method [17,18] works, 
as shown in Figure 2. Firstly, two potential factor matrices U and V are embedded into a high-
dimensional Hilbert space by a linear combination of kernel functions. Then, the nonlinear 
reconstruction of the score matrix in the original space is realized through the product of two latent 
factor matrices.  
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Fig 2. unknown score prediction based on matrix factorization of kernel function 

 
The main function of kernel function is to embed data into high dimensional (sometimes infinite 

dimensional) feature space H , and the embedding process is indirectly defined by the kernel. 
Suppose the kernel feature space mapping is expressed as : H   , where  represents the original 
space and H represents the Hilbert feature space. The embedding of known data vectors x  and 
x in H can be expressed as  x . Although  x is not clear enough at this time, the inner product 

of data points in the feature space is clear, and      T
x x ,x x     , where  represents the kernel 

function of the corresponding kernel. The commonly used kernel function is the Gauss kernel function 
(or RBF kernel function):  

 

            

 
2

2

x x
x, x exp

2




 
   
 
 

                                  (5) 

 
Among them, 2 is called bandwidth parameter. Unlike kernel functions, data embedding is 

different and data association is different. In this paper, two matrix factorization methods based on 
kernel function are proposed for collaborative filtering problems. Details are given in the following 
section.  

3.1 Dictionary based Single Matrix Factorization (KMF) 

Suppose we have k dictionary vector  1, , k  d d , among dd . At the same time, we assume that 

the eigenvector  u u of uu can be expressed as a linear representation of the dictionary vector in the 

kernel space.  

             
   

1

k

u uj j u
j

a 


 u d a                                (6) 

 
uja  denotes the weight of each dictionary vector;  i d denotes the eigenvectors in the Hilbert 

feature space,  T

1, ,u u uka a a and     1 , , k  d d
 
. Similarly, suppose that the eigenvector of 

iv  can be expressed as:  

            
   

1

k

i ij j i
j

b 


 v d b                               (7) 

 
Among them, ib j represents the weight of each dictionary vector and  T

1, ,i i ikb b b . Therefore, 

for each user  1, ,u m  , we have weight vector ua . For each item  1, ,i n  , we have weight 

vectors ib . 

Similar to Eq. (3), by fixing all  u u (equivalent to fixed weight matrix  1, , m  A a a ), we want 

to solve all  i v , that is, the weight matrix  1, , n  B b b .  
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 
        

2T T
min imize

i
ui u i i i

H
u

r


   


 
v

u v v v                     (8)  

 
Obviously, we have:  

   

        T T T T
u i u i u i   u v a b a Kb                             (9) 

 

           T T T T
i i i i i i   v v b b b Kb                             (10) 

 
Among them, TK    represents the Gram matrix (or kernel matrix) of the dictionary vector set 

1{ ,..., }kd d . Thus, formula (8) can be rewritten as: 
 

     
 2T Tmin imize

k
i

ui u i i i
u

r 


 
b

a Kb b Kb                       (11) 

 
The upper form is equivalent to:

   

    

2
T T

:, :,
min imize i i

k
i

i i i
F


 
 

b
r A Kb b Kb                      (12) 

 
The upper form is similar to the ridge regression of kernel function, and its closed form solution 

is: 
 

      †
T T T

:, :, :, :,
ˆ

i i i ii 
   

 b K A A K K K A r                       (13) 

 
By putting n b̂ together separately, we can get an estimate matrix k n of  1

ˆ ˆ ˆ, , n B b b
 
. 

Similarly, if B  is fixed and Â solver is solved by image type (12), the solution of m can be 
obtained. At this point, the closed form solution of each ˆ ua is as follows:  

 

       †T T T
:, :, :,

ˆ
u u u uu     a K B B K K K B r                          (14) 

3.2 Matrix Factorization Based on Multicore Learning 

A kernel function can represent a similarity, but when data is efficiently embedded into high-
dimensional space, only one kernel function can not achieve optimal performance [19]. For this 
reason, many algorithms have been proposed to study the linear combination of multiple kernels, that 
is, multiple kernel learning (MKL) [20] is applied to matrix factorization problem based on kernel 
function. The basic idea of MKL is to merge multiple cores instead of using only one kernel.Suppose 
there is a set of p  1, , p  K K  with clear definition,Our goal is to learn the kernel-based prediction 

model by finding the best linear combination of p kernels (i.e. weighted combination 

 T

1, , p   ). Learning problems can be expressed as follows: 

  

 
T T

T 2 T T

, , 1 1 1

minimize ( ) ( )
k

u i

ui ui

p p p

ui j u j i i j j i u j j u
u i j j j

r



   
    

     
a b

v

a K b b K b a K a
 

   

                       (15) 
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Among them, p
  and T 1p l . In order to facilitate computation, vector is introduced in this 

paper.  TT T T T
1 1 , ,ui u u i i u p u i p i    a K a b K b a K a b K b

,  TT T
1 , ,ui u i u p i  a K b a K b .Then, the optimization problem 

in formula (15) can be re represented as: 
 

           10;1constraint

:minimize
T
P

T





μ：μ

μμμ ZY
                          (16) 

 

Among them,  
T

, ui uiu i 
Y   ,   ,

2 ui uiu k
r 


 Z .When all ui and ui are determined ( A and 

B are determined), the optimization problem described in equation (16) can be regarded as a quadratic 
programming problem [21], which can be solved efficiently by Cvxopt or Cvx package [22].  

 
Algorithm 1: matrix factorization (MKLMF) 

based on multicore
Input:, , , 
k , d , 1, , p   , R , , , maxteri  

1:Set up k mA , k nB , p ,

 :1d
iD i k   d , 

 :1k k
i i p  K , k kK ; 

2:Initialization
T

1 1
, ,

p p

 
  
 

 , A , B ; 

3:for  1i  , p  do 

4:    
1 ,

,i i h j
h j k


 

K d d  

5:end for 
6: 0iter   
7:repeat 
8:  

1

p

i ii



K K  

9:  Update B by using (13); 
10: Update A by using (14); 
11: Update  by using (16); 
12:until maxiter iter Or converge; 
13:Return A , B ,  , K . 

 
Combining Sections 3.1 and 3.2, this paper proposes a multi-core matrix factorization method for 

cooperative filtering problems, as shown in algorithm 1.At the beginning, we have known rank k , 
dictionary dimension d , and p basis kernel function  1, , p  ,The algorithm initializes k

dictionary vector  1, , kD   d d initializes, and then calculates the p  basis kernel matrix 

  
1 ,

,i i h j
h j k


 

K d d . The algorithm initializes the kernel weight vector to 
T

0 1 1
, ,

p p

 
   
 

 and 

generates low rank matrix 0A and 0B randomly. So at the beginning, the synthetic kernel matrix 
0 0

1 i ii p


 
K K . After initialization, we first fix 0A and 0 , determine 1B  by solving m separate 

optimization problems in Eq. (12), and obtain each solution directly by calculating the closed-form 
expression in Eq. (13).Similarly, 1B and 0 can be fixed to get 1A . Finally, fixed 1A and 1B , using 
the previously solved convex optimization series algorithm (16), and then get 1 .Repeat the above 
steps similar to ALS until the algorithm converges or reaches the maximum number of iterations 
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specified before.The optimal solution obtained by the above iteration steps is expressed as 
* *

,A B and 
*

 , and the corresponding synthetic kernel matrix is expressed as 
* *

1

p

i ii



 K K .Therefore, for each 

test 3 tuple  , , uiu i r , the predictive value of the algorithm in this paper is 
*

T
ûi u ir  a K b , which is also 

the element of the U th row I column of the recovery matrix 
T* * *

ˆ R A K B . The scoring estimation 
method is shown in algorithm 2. 

 
Algorithm 2: scoring estimation 

input: ̂ ,
*

K ,
*

A ,
*

B  
1:distribution P ; 
2:for ˆ,u i   do 

3:  
T* * *

ˆ u iuir  a K b ; 
4:  take ûir Join P ; 
5:end for 
6:Return P . 

4. Simulation Experiment 

In order to evaluate the collaborative filtering performance of the proposed algorithm, a 
comprehensive simulation experiment was carried out using several real data sets. This section first 
introduces data sets and experiment settings, and then gives experimental results and results analysis. 

4.1 Data Set 

This algorithm uses the following six real data sets of the recommendation system for performance 
evaluation: MovieLens, Jester, Flixster, Dating Agency, Yahoo Music and ASSISTTments. The 
details are shown in Table 2. Among them, each data set has different scoring ranges. For example, 
the Jester data set scored between - 10 and 10 consecutive points, while Yahoo Music scored between 
1 and 100. For each data set, we select the top 1000 items with the highest rating frequency and 
randomly select 1000 users to generate 1000 1000  (Jester data set is 1000 100  matrix). This test is 
divided into two experimental scenarios: the first scenario, each user randomly selected a score as a 
test, the rest of the score for training. Each dataset is randomly selected 5 times. In the second scenario, 
each user randomly selected 3 scores as the test, and the rest scores were used for training. Each 
dataset is also randomly selected 5 times independently. The first scene is represented as Leave 1, the 
second scene is represented as Leave 2, and the training matrix of Scene 2 is more sparse than that of 
scene 1. 

 
Table 2. basic data sets 

data set Number of users Number of projects density(%)
MovieLens 6,040 3,900 6.3

Jester 73,421 100 55.8
Flixster 147,612 48,784 0.11

Dating Agency 135,359 168,791 0.76
Yahoo Music 1,948,882 98,211 0.006
ASSISTments 46,627 179,084 0.073
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4.2 Evaluation Index 

In order to verify the effectiveness of the proposed KMF algorithm and MKLMF algorithm, the 
performance of the proposed algorithm is compared with several typical collaborative filtering 
algorithms, such as AVG [7], IVC-COS [8], IVC-PERSON [8], SVD [9], and MF [6]. Among them, 
the KMF algorithm can be regarded as a single core version of MKLMF, using only 1 kernel functions 
at a time. In order to ensure the fairness of comparison, the maximum iteration times of all algorithms 
are set to 20 times. The performance of the collaborative filtering algorithm is evaluated by the 
accuracy of the grading prediction. The commonly used score prediction accuracy index is the root 
mean square error (RMSE): 

   

      

  
2

,
ˆ

RMSE
ui uiu i

r r








                            (17) 

4.3 Result Analysis 

In the simulation test, we first use a set of three simple kernels: 1) linear kernel function (LINEAR) 

  T
1 x, x x x   ; 2) degree polynomial kernel function (POLY)    2T

2 x, x 1 x x    ; 3) Gaussian kernel 

(RBF kernel) function       T

3 x, x exp 0.5 x x x x /        and 0.5  .Using the optimization 

problem of the MKLMF algorithm (15) in this paper, we study the linear combination of 3 base 
kernels. At the same time, we use 3 base cores to test the KMF algorithm proposed in this paper. 
Tables 3 and 4 show the experimental results of various algorithms on six real data sets. The following 
conclusions can be drawn: 1) In general, the RMSE values of the proposed MKLMF algorithm on 
each data set are better than those of other algorithms. For ASSISTments datasets, AVG performs 
best in RMSE in both scenarios because ASSISTments datasets are scored binary. However, the 
performance of MKLMF algorithm in Leave 1 scenario is still better than that of all other algorithms. 
The performance of KMF algorithm based on RBF kernel in Leave 2 scenario is better than that of 
all other algorithms. This shows that the kernel used in matrix factorization is helpful for the model 
to grasp the non-linear relationship between the data and to improve the overall accuracy. 2) In some 
scenarios, the performance of KMF is not as good as MF, but the performance of MKLMF algorithm 
which combines the three kernels used by KMF is better than MF and other algorithms. This shows 
that MKLMF has a better data embedding effect when learning the weights of multiple kernels using 
scoring data. 3) the performance of MKLMF under Leave 2 is slightly worse than that of Leave 1, 
while KMF is not affected. This shows that compared with solving kernel ridge regression problem, 
multi-core learning algorithm is more sensitive to sparse problems. 

 
Table 3. the running results of each algorithm in the Leave1 scenario (RMSE (rank))   
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Table 4. the running results of each algorithm in the Leave2 scenario (RMSE (rank)) 

 

4.4 Parameter Analysis 

Figure 3 (a) and 3 (b) analyze the sensitivity of the algorithm to the parameter d  (the dimension 
of the dictionary vector). As can be seen from Figure 3, the RMSE values of the KMF algorithm and 
the MKLMF algorithm are generally at a relatively stable level as the d  value increases. For the 
Yahoo Music data set, the optimal value of parameter d  is about 300; for the ASSISTments data 
set, the optimal value of parameter d  is about 100. The two algorithm is similar to other data sets, 
and is not discussed here in detail due to the limited space. Intuitively, the bigger the parameter d , 
the more information the dictionary can describe, and the performance of the algorithm depends on 
the parameter d . However, the dictionary vectors in KMF algorithm and MKLMF algorithm are 
finally embedded into the Hilbert feature space whose dimension is higher than d , which makes the 
algorithm less sensitive to parameters.  

   

MKLMF MKLMF

 
(a)Yahoo Music data set     (b)ASSISTments data set 

Fig 3. parameter d (Dictionary vector dimension) compares the algorithm performance with 
different values.  

 
In addition, we also analyze the influence of parameter k on the performance of our algorithm, 

where k denotes the rank of two low rank characteristic matrices. It is well known that parameter k
should be adjusted by cross-validation or multi-round test data and training data to optimize the matrix 
factorization method [11]. Figures 4 (a) and 4 (b) show the performance of KMF and MKLMF 
algorithms on Jester and Flixster datasets with different k values. The optimal values of rank under 
two data sets are 9k  . Thereafter, when k increased, KMF and MKLMF appeared to be over fitting. 
KMF algorithm and MKLMF algorithm have similar performance in other data sets, that is, they have 
the same k value selection rule as the non-kernel matrix factorization method. In addition, we find 
that the optimal value of k in ASSISTments data set is about 120, which is not consistent with the 
principle of  min ,k m n . We speculate that this is because the ASSISTments dataset may contain 

some special attributes that the low rank matrix factorization method cannot effectively handle.  
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    (a)Jester data set          (b)Flixster data set 

Fig 4. Algorithm performance comparison of parameters k  (rank of characteristic matrix) with 
different values  

5. Concluding Remarks 

Two new algorithms of KMF and MKLMF are proposed for collaborative filtering. Both 
algorithms can simultaneously utilize the nonlinear underlying association between rows (users) and 
columns (items) of the scoring matrix. Specifically, KMF introduces the accounting method into the 
matrix factorization problem, embeds the low rank characteristic matrix into the higher dimensional 
space, and uses the score data of the original space to learn the nonlinear association. MKLMF 
algorithm further expands KMF, uses the observation data in the score matrix to learn the weight of 
each kernel function, and then synthesizes multiple kernel functions for collaborative filtering. The 
simulation results show that the prediction accuracy of this algorithm is better than other current 
algorithms. In the next step, we will analyze the problem that the discrete score can not reasonably 
express the user's views and the sparsity of the traditional collaborative filtering algorithm, and study 
a collaborative filtering algorithm based on trapezoidal fuzzy number. 
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