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Abstract—Altering one or more knots of B-spline curves and 
surfaces, points of curves and surfaces will move on well 
defined curves called paths. Letting the knot value tend to 
infinity, the limit of the paths will be computed in this paper. 
The effect of two-parameter alteration of B-splines is discussed. 
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I.  INTRODUCTION 

A B-spline curve is the composition of a number of curve 
segments, each of which is defined on a knot span[1]. As is 
well known, B-spline curves and surfaces(and their rational 
forms-NURBS curves and NURBS surfaces) are widely used 
in Computer Aided Geometric Design and Computer 
Graphics(CAGD&CG). In the designing process, one of the 
most important thing is modification of the shape of the 
model. Due to the popularity of the B-spline and NURBS 
models, there are many methods to modify the shape of the 
B-splines[2-12], among which modifying the knots is an 
important way. 

Modifying knots of B-splines, the association between 
curve segments and knot spans will be changed, and hence 
the shape of the curve will be modified. For example, 
changing one or more knots of a B-spline curve, points of the 
curve will move on well defined curves called paths[6]. 
There are some publications  studied the effect of the 
alteration of one or more knots on the shape of the curve[6-
10]. By these theories, some authors worked on the 
constraint-based shape modification of B-spline curves and 
NURBS curves [11-13]. [14-16] performed the research on 
the effect of the alteration of some knots of B-spline curves 
and surfaces and obtained some interesting results on the 
restricted part of the path. 

In this paper, we present some theorems describing the 
effect of alteration of knots of B-spline and NURBS surfaces 
based on the modification of two parameters.  

This paper is organized as follows: In Section 2, the basic 
definitions and notations will be presented. Then in Section 3, 
we present the effect of the modification of two knots of 
NURBS curves by one parameter.  Alteration of knots of 
tensor surfaces by two parameter will be given in Section  4 
and 5. 

II. MODIFY THE KNOTS OF B-SPLINES 

A. B-SPLINES 

A B-spline is a generalization of the Bézier curve. Let a 

vector known as the knot vector be defined U = {ul}

 , 

where U is a nondecreasing sequence. The basic definitions 
of basis functions are the followings.  

Definition 1. Let U = {ul}

  be a given knot sequence 

with ul ≤ ul+1, the normalized B-spline basis functions of 
order k (degree k − 1) are defined recursively by the 
following equations:  
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Here we define 0/0=0. Define control points pl, l = 0, 

1, …, n, then the curve defined by 
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is a B-spline curve. The ith arc can be written as 
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Defining weights wl, we get the definition of Non 
Uniform Rational B-spline(NURBS) curve 
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The definition of B-spline curve and NURBS curve can 

be generalized to the tensor product surfaces: 
Definition 2. The surface s (u, v) defined by  
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is called B-spline surface of order k × h, where Nl,k(u) 
and Ng,h(v) are B-spline basis functions of order k and h, 

which defined on given knot sequences U = {ul}

   and V 

= {vg}

   respectively, and plg are control points. The i × 

j'th patch can be written as 
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Define weights wlg, we have the definition of the 
NURBS surface 
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B. one-parameter alteration of b_spline curves 

The knot vector is a nondecreasing sequence, so when a 
knot ui is altered within the defined range [ui-1, ui+1], points 
of the B-spline curve will move on special rational curves s(u, 
ui) called paths[6]. When we modify two knots ui and uj , i < 
j to the values ui + tλ and uj − tλ by one parameter λ with t 
∈ (0; 1), the value of λ must be within the range [−c/t; c/t], c 
=min{ ui − ui-1, ui+1 − ui, uj − uj-1, uj+1 − uj }. So paths 
obtained by the modification of knots are relatively short 
arcs due to the limited range of the modification. To get 
more information about spline’s characteristics, some 
authors extended the paths by extending the value of the 
modified knot[16], that is, modifying ui in any way allowing 
ui < ui-1 and ui > ui+1 and λ can be any value. In [15], the 
authors presented a limit theorem of one-parameter alteration 
of two knots of a B-spline curve: 

Lemma 1 Modifying the knots ui = ui + tλ, ui+z = ui+z -
(1-t) λ, z = 1,2,…,k of a B-spline curve, the points of the 
extended paths of the arcs r(u), u ∈ [ui; ui+z) tend to a point 
of the line segment pi pi+z-k, the barycentric coordinates of 
which are t and 1 − t, i.e. 

lim ( , , ) (1- ) ,  [ , ), [0,1].
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III. ONE-PARAMETER ALTERATION OF NURBS CURVES 

By a parameter t ∈ [0, 1], we can modify two knots of a 
NURBS curve in the same way. The extended paths is 
obtained:  
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Denoting wl pl by ql and letting λ→-∞, by Lemma 1, we 

have 
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Thus we have the following proposition:  
Theorem 1  Modifying the knots ui = ui + tλ, ui+z = ui+z 

-(1-t) λ, z = 1,2,…,k of a NURBS curve, the points of the 
extended paths of the arcs r(u), u ∈ [ui, ui+z) tend to a point 
of the line segment pi pi+z-k, the barycentric coordinates of 
which are twi and (1−t)wi+z-k, i.e.(See Fig. 1) 

lim ( , , ) ,  [ , ), [0,1].
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Figure 1.  Extended paths of the points of a cubic NURBS curve obtained 

by a one-parameter  

modification of u4 and u6 with t=0.2(left) and t=0.6 
(right). 

IV. TWO-PARAMETER ALTERATION OF B-SPLINE 

SURFACES 

Modifying four knots of a B-spline surface by two 
parameter t and f, 0≤ t, f ≤1, that is, changing the values of ui, 
ui+a, (a=1,2,…,k) and vj, vj+b, (b=1,2,…,h) to u,+ tλ, ui+a - 
(1-t)λ and vj+ fμ, vj+b - (1-f) μ respectively, the extended 
paths of patches s(u, v, t, f, λ, μ), u [ui, ui+a], v [vj, vj+b]∈ ∈   
can be expressed as:  
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Here we give the following proposition:  
Theorem 2. Altering four knots ui, ui+a, (a= 1, 2, …, k) 

and vj, vj+b, (b= 1, 2, …, h) of a B-spline surface by two 
parameter t, f, the extended paths of points of patches are 

, , ,lim ( , , , , , ) ( (1 ) ) (1 )( (1 ) )        
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(2) 
Proof: From Section 2 of [15], we know that the 

following equations hold for u∈[ui, ui+a): 

, ,lim ( , , ) , lim ( , , ) 1 , 1,..., 1 
 
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It is the same for the v-direction: 
, ,lim ( , , ) , lim ( , , ) 1 , 1,..., 1 
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, ,lim ( , , ) lim ( , , ) 1, 
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The above equations yield (2) (See Fig. 2). 

 
Figure 2.  Extended paths of the points of a 3×3 B-spline surface 

obtained  

by two parameter alteration( t = 0.3, f = 0.6) 

V. TWO-PARAMETER ALTERATION OF NURBS 

SURFACES  

Substituting wlgplg by qlg in (1) and modifying four 
knots of a NURBS surface by two parameter t and f, 0 ≤ t, f≤ 
1 as in section 4, we get the extended paths of the segments 
s(u, v, t, f, λ, μ), (u ∈ [ui, ui+a], v ∈ [vj , vj+b]) of the 
NURBS surface 
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By Theorem 2, the numerator and the denominator of the 

limitation of s(u, v, t, f, λ, μ) when λ→ −∞ and μ → −∞ are 
obtained below:  

 
Figure 3.  Extended paths of the points of a 3×3 NURBS surface obtained  

by two parameter alteration( t = 0.7, f = 0.7) 
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Therefore, we get the theorem for the two-parameter 
alteration of four knots of NURBS surfaces: 

Theorem 3. Altering four knots ui, ui+a, (a= 1, 2, …, k) 
and vj, vj+b, (b= 1, 2, …, h) of a NURBS surface by two 
parameter t, f, 0 ≤ t, f ≤ 1, the extended paths of points of 
patches s(u, v, t, f, λ, μ)converge to a point when λ→ −∞ and 
μ → −∞, that is: 
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where qlg = wlgplg, l =i, i + a − k, g = j, j + b − h. 
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