
An Research for Formal Verification of Safety-Critical Software

Weigang Ma1,2, Xinhong Hei2
1. Key Laboratory of Computer Networks and Information Security (Ministry of Education), Xidian University, Xi’an,

710071, China
2. School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, 710071, China

Abstract—A verification methodology is presented for railway
interlocking system which is regarded as a safety-critical
system. The methodology utilizes UML to model the function
requirement and LTL to verify the safety requirements of the
specification. The device specifications of railway interlocking
system are modeled with UML, then translate into FSM. The
safety specification is translated LTL and analyzed with
NuSMV. We try to show the feasibility of improving the
reliability and reducing revalidation efforts when designing
and developing a decentralized railway signaling system.

Keywords- SafetyCritical Software, FSM, LTL, UML

I. INTRODUCTION

Safety-critical systems, which are a sort of software
application that its failure could result in loss of life,
significant property damage, or damage to the
environment ,had a boost in the last few years, But many
problems are even more serious when the systems to be
controlled are becoming more and more complex. So
software correctness may be a very important issue for
safety-critical systems.

A railway system may be large enough to make it
necessary to divide it into many sections and to assign to
each section a controller running its own specific software. A
sort of distributed railway system consisting of signal units
which indicating whether trains should run or stop, switch
units which deciding what way the train should go, and track
units which checking the train position and sending this
information to control terminals or other interlocking devices
belongs to safety-critical system.

there are some solid reasons for implementing an
automatic verification process for that kind of development.
A kind of object-oriented software architecture has been
proposed for distributed railway system [1]. The new
architecture avoids interlocking system being developed
whenever a new station is to be constructed or revised, but
once the prototyping devices are developed, they can be
easily deployed in other different stations with slight
configurations.

This paper proposes a modeling and verification
methodology for the object-oriented software system of a
railway interlocking system. The methodology combines
UML (Unified modeling Language), a standard of OMG
(Object Management Group) for analyzing and designing
object-oriented systems [6], and FSM (Finite State Machine)
as well as SMV (Symbolic Model Verifier) to analyze and

verify the system safety requirement. SMV is a useful tool
having a plenty of extensions and being adapting from
system analysis, design, to verification [7, 14].

II. BACKGROUND

A. Unified Modeling Language

The Unified Modeling Language (UML) is a collection
of semi-formal models for specifying, visualizing,
constructing, and documenting models of technical systems
and of software systems [8]. Various diagram types is
provided and allowing the description of different system
viewpoints. And it is very flexible and customizable, because
of its extension mechanism. Among the behavioral UML
diagrams especially the Sequence charts are suitable for
modeling the systems behavior and it describe the way that
objects interact externally.

Statecharts describe single cycles inside the system and
how instances of classes behave internally [15]. In a
complete design they provide a full description of how the
system works. The statechart is linked for each object into its
box in the Sequence diagram. At any point in the lifetime of
this system, there are several same objects perhaps but each
object must be in one of its internal states.

UML is a widely accepted modeling standard in industry.
It is not allow modeling and evaluating of properties like
timeliness, throughput or fault-tolerance without extensions
UML[16].

B. NuSMV

All the rules were efficiently verified by NuSMV[12].
NuSMV is used as the checker which is a reimplementation
that extends the SMV[13], developed at the Carnegie Mellon
University. The FSM of the system of a railway station
should be translated into the NuSMV program. The
programming language is basically the same language as
defined by SMV (the “SMV language”).

The SMV language has a different semantics, since it
considers that every assignment is executed in parallel.

Table I shows an example of the translation from one
language into NuSMV.

TABLE I. THE TRANSLATION FROM ONE LANGUAGE INTO NUSMV.

Original program: SMV translation:

A = .B * D * (C + A);
B = .A * D;

next(A) := ! B & D & (C | A);
next(B) := !next(A) & D;

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

0836

III. DESIGN AND REQUIREMENT OF SYSTEM

A. Modeling of Interaction of OBJECT

When a train comes, as mentioned above, all devices
must send and receive many messages and make decisions
according to the conditions of all devices which are related to
it. With these programs of sending and receiving messages
and actions of each device predefined, a sequence diagram is
designed in Figure 1.

There are three objects in the sequence diagram: Signal
Unit, Track Unit and Switch Unit. The sequence diagram
illustrates the program of interaction of three kinds of device
objects when a train try to pass the switch unit which.

First the track object obtains the message that the train
will pass the track unit though the circle of electric in it. And
then the track unit sends route request message to signal unit
and switch unit, then it waits for return message from signal
object and switch object.

Second the signal object will call some methods to
determine that if it is safe to allow the signal changing to
green. Then it will send the result of the processing to the
track object. The switch object will call some methods to
determine that if is safe to allow the signal changing the state
from current to the state which the train in the track had
requested, and then send the result to the track unit.

Third the track unit will call some method to find out that
if it is safe to allow the train passes itself to the switch, and
send the result to signal unit and switch unit then call some
methods to inform the train to control the train. The signal
object received the message from track object and changed
his state to green allowing the train passing or red forbidding
the train passing according to the message received from
track unit. The switch object received the message and
changed it state according the message. If the message
allows the train passing the switch, then the switch changed
his state from current to which the train requested and allow
the train passing the switch.

Last, the track object, signal object and switch object
return to initial state and continue to work. The process of
above was illustrated in the sequence diagram in the Figure 1
below.

Figure 1. Design of Sequence Diagram

B. SAFETY REQUIREMENTS

Our goal is to develop a train control and interlocking
system, satisfying the following two safety requirements:

No collision. Two trains must not reside on the same
segment.

No derailing. Trains must not derail (by passing an end
point of the network or by entering a point from a segment
which is not connected with the next segment).The notion of
safety can be formalized by defining a predicate which can
be used to test whether a state is safe. Here, segments is an
auxiliary function giving the segments of a position. Observe
that the no-derailing safety requirement above only covers
wrong point positions as the cause for derailing, but does not
refer to derailing due to excessive speed of trains. However,
this cause for derailing can be handled by a completely
separate safety-mechanism.

To avoid derailing due to excessive speed, the maximum
velocity is calculated as a function of the train type, the
number of wagons attached to the train engine, and the actual
train position. It is continuously checked whether the actual
speed does not exceed the calculated maximum value,
otherwise the train control computer issues a warning and
may even automatically trigger the brakes.

Obviously, this safety mechanism can be designed and
implemented completely independent from the safety
mechanisms preventing collisions and derailing due to wrong
point positions. Therefore, we do not consider derailing due
to excessive speed in the following sections.

IV. MODELING AND ANALYSIS

A. Transforming UML Statecharts to FSM

A two-step translation is performed in the proposed
approach in order to obtain a set of FSM from the UML
statecharts constituting the DRIS specification.

In the first step, FSM is created from each statechart. All
guards and actions in statechart is deleted from the
transitions and replaced by event labels. This step apparently
removes all data dependencies from the transitions. The
synchronisation constraints described by the guards and
actions on the transitions are introduced into the model by
adding one state machine for each variable used in the
statechart.

Given that the original UML statecharts are specified
using formal notation, the translation into finite-state
machines can be performed automatically.

This translation process so far has only been carried out
for the DRIS model, but based on the experience obtained; it
can easily be extended to handle arbitrary statecharts.

Different models have been created, representing
different fault possibilities and buffering capacities.

In the second step, the FSM of a railway station is
obtained though composition of each FSM of the elements of
the railway station. In this step, each element of railway
station has its FSM of behavior himself. The Cartesian
product of all elements’ FSM of railway station describes the
DRIS specification of a railway station.

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

0837

B. Translate to NuSMV

Therefore, we needed a program to automatically
translate the original source code into the SMV language.
The translator we implemented creates a single SMV input
file declaring all the variables and the complete set of
assignments defined by the original source code. There is a
one to one correspondence between the assignments in the
original source code and the SMV input language.

The translator is responsible for the following tasks:
•The assignment, and the operators and, or and not are

represented by different symbols in both languages, so the
original representation has to be converted according to the
SMV language rules.
•The SMV language does not accept variables with a

digit as the first character, so the translator always includes
an underscore (_) at the beginning of every variable.
•The SMV operator next is attached to any variable at the

left-hand side of an assignment.
In doing so, we specify that the next state value of the

variable being assigned will be the result of the formula at
the right-hand side.
• The translator has to decide how it translates any

variable var at the righthand side of an assignment.
It can translate it just as “var” or it can translate it as

“next (var)”. The former case is used when, starting the
translation from the first assignment, var has not already
been used at the left-hand side of an assignment. The later
case is used otherwise. The last task preserves the semantics
of the original source code during its translation into the
SMV language. In the original source code, the assignments
are executed sequentially from top to bottom.

C. Checking with NuSMV

All the rules were efficiently verified. Tab 2 shows the
part of safety specification of system. Some errors can be
found through the verification by NuSMV, and then
modification of the design of UML dialog is performed to
debug the error.

Considering that it was a very positive result, we tried the
verification of the rules to a larger section. The new
experiment was a much more complicated track section,
having more inputs, more state variables, and other new LTL
specifications. Furthermore, we have created and analyzed
the model including timing assumptions, which is needed to
verify certain application-specific properties requiring timing
constraints.

But it is possible to observe from experiment that the
used technique circumvented the state explosion problem.

Here safety check rules associated with the observable
behavior of the track is translated a series of LTL formulas in
order to check and verification. The set of rules does not
completely describe all the safety-related requirements of the
system, but helps the feasibility analysis of the use of model
checking for that kind of system.

TABLE II. LTL SPECIFICATION FOR THE SAFETY RULE

Rule LTL Specification

1 G(T1=free & SS1=green→T1=locked)

2 G ¬(SSY=green & SS2=green)

3 G ¬(TRAIN1LOC = TRAIN2LOC)

4 G (TRAIN1LOC in trackSet).

V. CONCLUSION

A kind of methodology is presented to support design
and validation of UML diagram and safety specifications in
the paper,. Our research work covers to generate FSM model
from UML diagram to allow use of existing analysis
techniques such as NuSMV. Two key activities are discussed:
1) Generation of individual FSM of the objects and whole
system‘s FSM through product of each object of system
which composed the whole system from system and
designed the interaction of each object, and 2) Translateing
the FSM of the system requirement and translate them into
NuSMV, and then verify the safety requirement through
NuSMV. It is verified that the methodology can find some
errors which may contravene the law of the safety
specifications in the process of system analysis and design.
The experience showed that we are able to verify all the rules
in relatively short time, with no need for further abstractions,
which would demand more manual interference on the
process as well as the possibility of inserting errors into the
verification. The main problem that we could have faced is
the state explosion problem.

REFERENCES

[1] Hei X. , Mochizuki H., Takahashi S. and Nakamura H. ,”Modeling a
distributed railway interlocking system with object-oriented Petri-
net,” 10th International Conference on computer system design and
operation in the railway and other transit system, Prague, Czech
Republic, 309-318 (2006).

[2] Doron A, Peled. Software Reliability Methods. Springer (2001).

[3] John D. Musa, Software Reliability Engineering: More Reliable
Software Faster and Cheaper, Autorhouse, second edition (2004).

[4] W.T. Tsai, R. Mojdehbakhsh, F. Zhu, “Ensuring System and Software
Reliability in Safety-Critical Systems,” 1998 IEEE Workshop on
Application - Specific Software Engineering and Technology,
p.48(1998).

[5] John C, Knight, “Safety Critical Systems: Challenges and
Directions,” Proceedings of the 24th International Conference on
Software Engineering

[6] Mark Priestley, Practical Object-Oriented Design with UML,
McGraw Hill Higher Education (2003).

[7] R. Malik., R. Muhlfeld, “A Case Study in Verification of UML
Statecharts: the PROFIsafe Protocol,” Journal of Universal Computer
Science, vol. 9, no. 2 (2003), 138-151.

[8] Object Management Group. Unified Modeling Language
Specification v.2.0. www.uml.org, September 2003.

[9] Anne E. Haxthausen and Jan Peleska, “Formal Development and
Verification of a Distributed Railway Control System,” IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO.
8, AUGUST 2000, 687-701.

[10] X. Hei, S. Takahashi, H. Nakamura, M. Fukuda, K. Iwata and K. Sato,
Improving reliability of railway interlocking system with component-
based technology, Journal of Reliability Engineering Association of
Japan, 28(8), 2006, 557-568.

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

0838

[11] Alessandro Giua, Carla Seatzu, “Modeling and Supervisory Control
of Railway Networks Using Petri Nets,” IEEE TRANSACTIONS ON
AUTOMATION SCIENCE AND ENGINEERING, VOL. 5, NO. 3,
JULY 2008, 431-445.

[12] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: a
new symbolic model checker,” International Journal on Software
Tools for Technology Transfer, 2(4):410–425, 2000.

[13] K. McMillan, “Symbolic Model Checking: An Approach to the State
Explosian Problem,” Kluwer Academic Publishers, Norwell, MA,
USA, 1993.

[14] Nelson Guimar˜aes Ferreira and Paulo S´ergio Muniz Silva,
“Automatic Verification of Safety Rules for a Subway Control
Software,” Electronic Notes in Theoretical Computer Science 130
(2005) 323–343.

[15] D. Harel and M. Politi, Modeling Reactive Systems with Statecharts:
The StateMate Approach, Wiley, New York, 1998.

[16] Object Management Group, UML profile for schedulability,
performance, and time, www.uml.org, March 2002.

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

0839

