Least Absolute Deviation Estimators for Interval
Regression

Seung Hee Choi *

Abstract

In this paper we introduce the least abso-
lute deviation estimators to construct an in-
terval regression model, having interval out-
put and crisp input data. Two numerical
examples are presented comparing a perfor-
mance of the proposed model using the least
absolute deviation estimators with the in-
terval regression model based on the least
squares method when the data contains in-
terval outliers.

1. Introduction

Regression analysis is a statistical method
to estimate any functional relationship that
might exist among a dependent variable and
one or more Independent variables. Appli-
cations of regression analysis exist in nat-
ural science, technology, economics, educa-
tion and etc. The goal of regression anal-
ysis is to determine the values of parame-
ters for a function that cause the function
to best fit a set of data observations. Tanaka
and coworker[4-6] introduced initially an in-
terval linear regression model, which has in-
terval parameter and suggested a linear pro-
gramming method to estimate interval pa-
rameters. Inuiguchi et al.[3] and Buckley and
Choi[1] used a least squares method to con-
struct the interval regression model. How-
ever, the sensitive of the least squares esti-
mators has been well known in the regression
analysis. Therefore, we need robust methods,
which are less sensitive to some outliers, to
estimate interval coeflicients in the interval
regression model.

This paper deals with the interval regres-
sion using the least absolute deviation esti-
mators, and compare the performance of our
proposed model with the interval regression
model based on the least squares method.

2. Interval Least Absolute Deviation
Moaodel

and James J. Buckley ?

In this paper we consider the following in-
terval regression model:

Yi = Y{x)+E;
= (f(xi’ C)=9(|Xi|’ W)) + Eia

where Y; 1s an observed interval with the
center y{ and the width ", fand g are
real-valued functions, E; is an interval er-
ror with the center ef and width ¢, C =
(COa"' acp)a W = (wOa"' awp) and |Xz| =
(lzal, - ).

When crisp Input data and interval cutput
data are given as

:Eip) and Y; = (yfv y;“v):

an interval least absolute deviation estima-
tors based on (x; : Y;), denoted by (6, W,
is defined as the value minimizing the follow-
ing functions

xi = (2,

D lwE - £xi, O
i=1
and
S ls - a(x:l, W)
i=1

subject to
w; = 0 for each j.

Then, the interval least absolute deviation re-

gression(ILADR) model is as follow:
Vi = (6,8 = (£0c, 0,90l W)

Now, we consider a method to construct an
upper and a lower regression model using the
least absolute deviation estimators. For the
upper regression model (Y;*) which is to sat-
isfy ¥; © Y;* for each ¢, let I, = 4§ — o,
ry, = Yyl by, = 97— and vy, = G747
Then we get a revised width as follow:
gt =g HY; Y
and

PRTiE

U=+ max{\lyl = lﬁz

}

1 ‘Tyz - Tﬁ‘z
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when Y; g ﬁ

Thus, we obtaln the upper estimation
model based on the least absolute deviation
estimators, denoted by ?;* = (gE*, 4%,

For the lower regression model (Y;,) which
is to satisfy Y;. C Y; for each ¢, we consider
the least absolute deviation estimators with
constrained conditions, denoted by (C, W),
as follow:

> Iy — £(x5,C)| = min!
i=1

subject to
| f(x:,C) — i < v

and
T

Dy — gIxsl, W)| = min!

=1
subject to

wy > 0 for each j.

In order to estimate the lower regression
model, let 3 = f(xz,é') and ' =
ai|x:l, W) Then we use a new width of the
predicted interval as follow:

U =9 EY;C Y

and

-@:: = min{f{;”’, ‘gzc = T ’|§sz _lyz }

when ﬁ* g Y;.
Thus, from the above width we obtain the
lower estimation model, denoted by Y;, =

(@A/zc*:@:i) where -@'f* = f(X:i, C)
3. Numerical Examples

This section defines an interval outlier for
the interval regression model, and suggests a
measure to investigate a performance of the
proposed model and the Interval regression
model using the least squares method. For
this, let Y; = (75, 4¥) be a predicted interval
of the observed interval ¥; and & a positive
number. Also, let ¢¢(g5) be the first{third)

quantiles of the set {rf : r{ = |gf — yf|,i =
1, ,n} and 4§ (4¥) the first(third) quar-
tiles of the set {r¥ : 7 = |§¥ — ¢¥|,1 =
1, ,n}, respectively.

A C-type interval outlier Y? = (45, 1°°)

ig defined as
8% < g — k(g5 —49)
or
i’ > s+ k(g5 — i)
= |7° — yf|. A W-type interval
outlier Y2 = (y°, y¥°) satisfies

z

where rf°

i < gy — klgg — a')
or

i > g3+ k(g5 — af)
where r¥° = |§¥° — y¥|. Specially, when
k =15 and & = 3, we will called the out-
lier as mild outlier and extreme outlier, re-
spectively. Buckley and Choi[l] introduced
the length of the symmetric difference be-
tween intervals to compare interval regres-
sion models. The length of the symmetric
difference for two intervals A; and A;, de-
noted by {(4; & A;), is equal to

{lilj|+r1-rj if A;NA; £ 0

(’.'“z'*li)Jr(Tj *Ej) lf AiﬂAj :Q,

where [;({;) and r;(r;) are the left and the
right endpoints of the interval A;(A4;). Now,
we consider the following measure as a cri-
terlon to Investigate the performance of an
estimated interval regression model ¥;

My => Mg
=1

where
My — g(Yg )1 it 1Y) >1
: m(Y; £ Y;), if (Y <1,

[(Y;) denotes a length of the interval Y3, and
m(Y; A V) = 1(Y: A Vi) +min{|s; — 55| : 55 €
Y8 € flz}, and . On the other hand, they
suggested a measure M7 to consider the per-
formance of the estimated upper regression
model ¥;* and lower regression model f}w s1-

T
multaneously as follow:



ic A

where
(yz - Yis ) if
u;
ie AC.

ME: =
" { @ o) it
and AY denotes the complement set of A =
{1]i(¥s) > 1}

In the following examples we compare the
performance of the ILADR model and the in-

terval least squares regression(IL.SR) model
for the data with the interval outliers.

Example 3.1 Table 3.1 shows the nu-
merical value used by Tanaka et al.[7] and
Chen[2] with modifications to introduce ah-
normal value in the fuzzy regression.

Input Cutput ¥; Errors M?_ Brrors M%i
f

Ly Y Y

1 & 1.5 0.93 1.258 5887 .79
2 5.4 22 0.81 0.55 5,605 4,09
3 9.5 2.8 0.2 0.12 1.43% 0.62
4 13.85 2.6 0.83 0.51 4,791 579
5 13 2.4 0.29 0.13 2,201 0.89
8 15.2 2.3 0.18 0 1.233 0.02
7 i7 2.2 0.18 0.08 1.4658 0.29
8 19.3 4.8 0.48 0.52 4.64 5.02
9 20.1 1.2 0.52 0.42 3.520 2.48
10 24.3 2 0.69 .78 4. 599 519
Total error 4.88 4.63 35.187 31.19

Table 3.1 : Data and Error in Exampls 3.1

The eighth observation in Table 3.1 Is a
W-type extreme outlier. The result in Table
3.1 explains that the ILADR model is better
than the ILSR meodel in this example with
the interval outlier.

Example 3.2 The underlying model con-
sidered In this example is given in the follow-
ing function:

Y; = (oo + c12a + aoz4, Bo) + (€f, €7 ),

where 85 = 3.3, ;0 = r% and the coefficients
(CE(), 1, Odg) = (25, 14,09)

Input Output Y Errors M'}f;1 Brrors M}f}
@ YL Y7 ILSRE ILADR ILSR ILADR
1 3.3 [§ 0.27 0.25 371 3.21
1.5 B.128 6.1 0.38 0.33 4.4%7 4.09
2 T 5.1 0.45 0.42 4,56 5.04
2.5 17.625 5.1 0.589 0.92 9,22 5.45
3 18.6 549 0.51 0.585 6. 28 ‘malde
3.5 19,325 6.1 0.18 0.14 2.14 1.84
4 22 5.8 0.48 0.43 5.18 5.04
4.5 30.425 5.3 0.21 0.258 2.3 3.55
5 33.8 BT 0.11 0.04 1.18 0.96
5.5 41,325 BT 0.28 0.37 2.9 3.86
5} 43.7 4.4 0.42 0.27 558 .06
6.5 48,728 5.8 0.588 0.73 10,78 4.92
i 56.5 4.8 0.39 0.2 BT 5.01
7.5 72.225 5.4 1.3 1.48 12.358 5.44
8 7i.4 4.4 0.28 0.28 578 4.31
‘Total error 5.98 6.66 8211 £8.83
Table 3.2 : Data and Error in Example 3.2

A random sample of size 15 is generated
as follows:

The input =z;; satisfles z1;, =
55(2'«‘,»1)1 =T;n+ 0.5.

The center €f is distributed under Cauchy
distribution with local zero and scale two.

The width ef iz uniformly distributed
within the interval [1,3].

The fourteenth observation in Table 3.2
is a C-type mild interval outlier. Table 3.2
shows that the ILADR model is better than
the ILSR model for this example.

4, Conclusion

1 and

In this paper we introduced the interval
regression model using the least absolute de-
viation estimators. This paper has shown
that the proposed model is better than the
interval regression model based on the least
squares method when there are interval out-
liers.
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