
Verify Behaviors of CGF with ASM

Zhang Wei, Zeng Liang
School of Computer

National University of Defense Technology
Changsha, P.R.China

{wadezhang, liangzeng}@nudt.edu.cn

Li Sikun, Xiong Yueshan
School of Computer

National University of Defense Technology
Changsha, P.R.China

{sikunli, ysxiong}@nudt.edu.cn

Abstract—Verification is one of the most important steps in
modeling and simulation. However, behavior modeling is
extremely complex, especially in battlefield simulations. Till
now, there are few efficient methods for behavior verification
of computer generated forces. In this paper, a novel approach
is proposed based on the theory of Abstract State Machines
(ASM), which is usually used in the field of model-based
software testing. In our work, Behaviors of CGF are described
in ASML, which is a kind of specification language of ASM.
With this approach, the verification of the states of CGF
behaviors can be possibly achieved at the design stage, and we
can improve our behavior design then.

Keywords-Abstract state machine, AsmL, Computer
generated forces, Behavior

I. INTRODUCTION

Computer generated forces [1-3] (CGF), which is one of
the most important parts of the distributed virtual battlefield
environment, is implemented as a computer model of
soldiers or weapon platforms. It can greatly reduce the
requirements of equipments and weapons. Military
applications require the performance of CGF entities’
behavior as realistic as possible. Therefore, it makes the
behavior modeling laborious and difficult to verify. It also
often lacks systematic engineering methodology, clear
semantics and adequate tool support.

Abstract State Machine (ASM) theory is a formalized
method for the description of software design, which support
high-level semantic models and stepwise refinement
approach.

We apply this theory and its method to CGF behavior
modeling. And it describes and verifies the states of CGF
behaviors formally at the early design stage.

II. ASM AND ASML

The concept of ASM can be traced back to the mid-1980s.
The inventor of ASM, Yuri Gurevich, tried to improve
Turing's thesis. He formulated the ASM Thesis: every
algorithm, no matter how abstract, is step-for-step emulated
by an appropriate ASM. In 2000, Gurevich axiomatized the
notion of sequential algorithms, and proved the ASM thesis
for them. Roughly stated, the axioms are as follows: states
are structures, the state transition involves only a bounded
part of the state, and everything is invariant under
isomorphisms of structures. (Structures can be viewed as

algebras, which explains the original name evolving algebras
for ASMs.) The axiomatization and characterization of
sequential algorithms have been extended to parallel and
interactive algorithms.

Over the past 20 years, The method built around the
notion of ASM has been proved to be a scientifically well
founded and an industrially viable method for the design and
analysis (verification and validation) of complex systems,
which has been applied successfully to programming
languages, protocols, embedded systems, architectures,
requirements engineering, etc.

A. basic concepts of asm

ASM is a dynamic algebra on an alphabet Σ, while Σ= {f1,
f2, f3, …}. Here, fn is an n-ary function symbol. Function
symbols are divided into static symbols and dynamic
symbols. 0-ary function static symbols are called constants.
It’s always assumed that Σ contains Undef, False, and True.
False and True are Boolean values. Undef, which is for
partial functions, means a function is not defined at some
point.

A sequential ASM is defined as a set of transition rules of
form

if Condition then Updates
which transform first-order structures (the states of the

machine), where the guard Condition, which has to be
satisfied for a rule to be applicable, is a variable free first-
order formula, and Updates is a finite set of function updates
(containing only variable free terms) of form

t := f (t1, t2, ..., tn).
The execution of these rules is understood as updating, in

the given state and in the indicated way, the value of the
function f at the indicated parameters, leaving everything
else unchanged. (This proviso avoids the frame problem of
declarative approaches.) In every state, all the rules which
are applicable are simultaneously applied (if the updates are
consistent) to produce the next state. If desired or useful,
declarative features can be built into an ASM by integrity
constraints and by assumptions on the state, on the
environment, and on the applicability of rules.

There are four types of rules: Block Rule, Conditional
Rule, Choose Rule, and Simultaneous Rule.

A Block Rule R is a sequence of transition rules:
R1, ..., Rn

All Rn should be executed when R is executed under the
state S.

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1113

A Conditional Rule R is like this: (g is a term, R0 and R1
are rules)

if g then
R0

else
R1

end if
The rule means: if the value of g under the state S is True,

the updates of R under S are the same as the updates of R0
under S; Otherwise, they are the same as the updates of R1
under S.

A Choose Rule R has the form:
choose v satisfying c(v) do

R0(v)
end choose

In this rule, v is a variable, c(v) is an item with v, and
R0(v) is a rule. The result of this rule is uncertain. When R is
executed under the state S, an element a which satisfy
c(a)=True is chosen, and R0(a) is executed; If such element
doesn’t exist, do nothing.

A Simultaneous Rule R is:
for all c(v) do

R0(v)
end for

The rule means: for all elements v which satisfies
c(v)=True, do R0(v); If no element satisfies the condition, do
nothing.

B. asml

AsmL [4, 5] is an industrial-strength software
specification language based on the theory of ASM. It
developed by the group on Foundations of Software
Engineering (FSE) at Microsoft Research, and the current
version is AsmL2 (AsmL for Microsoft.NET). This version
is embedded into Microsoft Word. It uses XML and Word
for literate specifications. It is fully interoperable with
other .NET languages. AsmL generates .NET assemblies
which can either be executed from the command line, linked
with other .NET assemblies, or packaged as COM
components. With AsmL, A Human-readable and Machine-
executable model can be created.

AsmL provides the foundations of the model-based
testing tool Spec Explorer [6,7] . The Spec Explorer
distribution includes the latest AsmL compiler for
Microsoft .NET. Spec Explorer can also explore models
written AsmL. It extends Microsoft Visual Studio for
creating models of software behavior, analyzing those
models with graphical visualization, checking the validity of
those models, and generating test cases from the models.

Specifications written by AsmL are called executable
specifications which have several remarkable features.

The executable specification describes how software
components work as the traditional software specification
does. But the difference between them is that the executable
specification has an exclusive, certain meaning. The meaning
is shown as abstract state machines, mathematical models, or
run-time states.

III. MODELING CGF BEHAVIORS WITH ASML

Our CGF behavior module is built based on enhanced
finite state machines (FSM). Each action has its certain
execution time. Each behavior module monitors its actions,
and starts, continues or terminates each state as needed.

Althrough the high-level actions are simple, CGF
behaviors are very complex. Describing an entire CGF
system is a huge project. Thus, we chose a representative
action "GoToTarget" to show how it is modeled by AsmL.

In this action, an agent is expected to find a path to reach
the target, and avoid all the obstacles on the way. If the target
is unreachable finally, then it should give up. Figure 1 shows
how the action works.

Avo
id

ed
 O

bs
tac

le

Stuck

Figure 1. Action “GoToTarget”

We describe this action of an agent with Spec Explorer.
Part of AsmL codes are presented in straw yellow regions.
We defined eight states as follows:

namespace CGF

enum AgentState

 START

 WAITING_FOR_PATH

 MOVING_THROUGH_PATH

 GOING_TO_PATH_POINT

 AVOID_ABSTACLE

 JITTERING

 FINISHED

 GIVE_UP

Null(X), IsReachable(X), Reached(X) and Empty(X) are
defined as predicates, while Stuck and Bumped are Boolean
variables.

Target, TimeElapsed, PathPoints are variables.
TIME_TO_AVOID, TIME_WAIT_FOR_PATH and
TIME_RESTART are constant values.

State START, FINISHED, and GIVE UP are end states,
FINISHED means the target is successfully reached, while
GIVE UP means failed.

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1114

enum NavPoint

 PNull // Null path

 P0 // start point

 Pt // target point

 PObs // obstacle

var NullTarget as Boolean = false

var IsReachableTarget as Boolean = false

var Path as Set of NavPoint = {}

var timeElapsed_wait as Boolean = false

var timeElapsed_restart as Boolean = false

var timeElapsed_avoid as Boolean = false

var myState = START

The agent begins with the START state, and the target is
set by the sensor. If no goal is set (Null (Target)==True),
then the agent will do nothing.

If the target can not access directly, the module will
request a path for it, and turn into the WAITTING FOR
PATH state. The agent starts MOVING THROUGH PATH
when a path is received.

At the state WAIT FOR PATH, the module sends a
GetPath command, and wait for the path information. If the
time Elapsed exceeds TIME_WAIT_FOR_PATH, The agent
will give up(state GIVE UP).

[Action]

WaitingForPath()

 require myState = START or myState =

WAITING_FOR_PATH

 myState := WAITING_FOR_PATH

[Action]

GiveUp()

 require myState = WAITING_FOR_PATH or myState =

GOING_TO_PATH_POINT or myState = JITTERING

 match myState

 WAITING_FOR_PATH:

 myState := GIVE_UP

 GOING_TO_PATH_POINT:

 myState := GIVE_UP

 JITTERING:

 myState := GIVE_UP

We use a set of navigation points to present a path. The
return of GetPath command is a list of navigation points. If
the path does not exist, then the it is Null.

[Action]

GoToPathPoint()

 require myState = WAITING_FOR_PATH or myState =

AVOID_OBSTACLE

 myState := GOING_TO_PATH_POINT

If the agent has visited all the navigation points of a path,
then it reached the state of FINISHED, and the action is
successful.

[Action]

Finished()

 require myState = MOVING_THROUGH_PATH

 myState := FINISHED

If there are still navigation points, it enters the state
GOING TO PATH POINT. If it meets obstacles, it enters the
state AVOID OBSTACLE. If the agent has failed to avoid
obstacles, it enters the state JITTERING. In this state, the
agent will try some random actions to leave the place where
it stays. Then, the agent enters GIVE UP state. This is
because it has moved for a while and should recalculate the
path from the START state.

[Action]

AvoidObstacle()

 require myState = GOING_TO_PATH_POINT or myState

= AVOID_OBSTACLE

 myState := AVOID_OBSTACLE

[Action]

Jittering()

 require myState = GOING_TO_PATH_POINT or myState

= AVOID_OBSTACLE

 myState := JITTERING

Three properties are defined for us to retrieve the state of
the state machine.

property CGFTarget as Boolean

 get

 return not NullTarget

property IsReachable as Boolean

 get

 return IsReachableTarget

property CGFState as AgentState

 get

 return myState

Figure 2. FSM diagram generated by Spec Explorer

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1115

After describing the action with AsmL, set “Exploration
Goal” to “FSM Generation”, and run this code. We will the
result as shown in Figure 2.

By comparing Figure 1 and Figure 2, we can see that two
finite state machine diagrams are nearly the same. It is easily
to verify the design of CGF behavior module with AsmL.

IV. CONCLUSION

Models built by AsmL language can run as simulations
of the systems they describe. This feature can help us check
the completeness of our design before implementation. It can
also help us check our design and implementation during the
implementation stage.

Finite state machine provides a useful solution for the
CGF behavior module, while modeling and analyzing with
AsmL language helps find design flaws, and verify the
completeness of the model. It also can be used to improve
the design of CGF behavior module.

REFERENCES

[1] GUO Qi-sheng; YANG Li-gong; YANG Rui-ping; XU Ru-yan;
DONG Zhi-ming. An Introduction to Computer Generated Forces[M],
Beijing: National Defence Industry Press, 2006. (in Chinese)

[2] ZENG Liang; ZHENG Yi; LI Si-kun. Behavior Model of Computer
Generated Forces Based on Cybernetics, Journal of System
Simulation [J], 2005.17(4), PP773-775. (in Chinese)

[3] ZHENG Yi. The Research of Behavior Modeling and Implementation
Technology of Computer Generated Forces[D], Changsha: National
University of Defense Technology, 2003. (in Chinese)

[4] Foundations of Software Engineering, Microsoft Research.Abstract
state machine Language[EB/OL].
http://research.microsoft.com/fse/AsmL.

[5] Gurevich Y. Evolving algebra 1993: Lipari guide[C]. Oxford
University Press,1995, PP9-36.

[6] Veanes M; Campbell C;Grieskamp W; Schulte W; Tillmann N;
Nachmanson L. Model-Based Testing of Object-Oriented Reactive
Systems with Spec Explorer[C]. 4949 of LNCS, 2005, PP39-76.

[7] Barnett M, Schulte W. Runtime verification of . NET contracts[J].
Journal of Systems and Software,2003,65(3):199~208.

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1116

