
Verify Behaviors of CGF with ASM 

 

Zhang Wei, Zeng Liang  
School of Computer 

National University of Defense Technology 
Changsha, P.R.China 

{wadezhang, liangzeng}@nudt.edu.cn 

Li Sikun, Xiong Yueshan 
School of Computer 

National University of Defense Technology 
Changsha, P.R.China 

{sikunli, ysxiong}@nudt.edu.cn
 
 

Abstract—Verification is one of the most important steps in 
modeling and simulation. However, behavior modeling is 
extremely complex, especially in battlefield simulations. Till 
now, there are few efficient methods for behavior verification 
of computer generated forces. In this paper, a novel approach 
is proposed based on the theory of Abstract State Machines 
(ASM), which is usually used in the field of model-based 
software testing. In our work, Behaviors of CGF are described 
in ASML, which is a kind of specification language of ASM. 
With this approach, the verification of the states of CGF 
behaviors can be possibly achieved at the design stage, and we 
can improve our behavior design then. 

Keywords-Abstract state machine, AsmL, Computer 
generated forces, Behavior 

I.  INTRODUCTION 

Computer generated forces [1-3]  (CGF), which is one of 
the most important parts of the distributed virtual battlefield 
environment, is implemented as a computer model of 
soldiers or weapon platforms. It can greatly reduce the 
requirements of equipments and weapons. Military 
applications require the performance of CGF entities’ 
behavior as realistic as possible. Therefore, it makes the 
behavior modeling laborious and difficult to verify. It also 
often lacks systematic engineering methodology, clear 
semantics and adequate tool support. 

Abstract State Machine (ASM) theory is a formalized 
method for the description of software design, which support 
high-level semantic models and stepwise refinement 
approach.  

We apply this theory and its method to CGF behavior 
modeling. And it describes and verifies the states of CGF 
behaviors formally at the early design stage. 

II. ASM AND ASML 

The concept of ASM can be traced back to the mid-1980s. 
The inventor of ASM, Yuri Gurevich, tried to improve 
Turing's thesis. He formulated the ASM Thesis: every 
algorithm, no matter how abstract, is step-for-step emulated 
by an appropriate ASM. In 2000, Gurevich axiomatized the 
notion of sequential algorithms, and proved the ASM thesis 
for them. Roughly stated, the axioms are as follows: states 
are structures, the state transition involves only a bounded 
part of the state, and everything is invariant under 
isomorphisms of structures. (Structures can be viewed as 

algebras, which explains the original name evolving algebras 
for ASMs.) The axiomatization and characterization of 
sequential algorithms have been extended to parallel and 
interactive algorithms. 

Over the past 20 years, The method built around the 
notion of ASM has been proved to be a scientifically well 
founded and an industrially viable method for the design and 
analysis (verification and validation) of complex systems, 
which has been applied successfully to programming 
languages, protocols, embedded systems, architectures, 
requirements engineering, etc. 

A. basic concepts of asm 

ASM is a dynamic algebra on an alphabet Σ, while Σ= {f1, 
f2, f3, …}. Here, fn is an n-ary function symbol. Function 
symbols are divided into static symbols and dynamic 
symbols. 0-ary function static symbols are called constants. 
It’s always assumed that Σ contains Undef, False, and True. 
False and True are Boolean values. Undef, which is for 
partial functions, means a function is not defined at some 
point. 

A sequential ASM is defined as a set of transition rules of 
form  

if Condition then Updates 
which transform first-order structures (the states of the 

machine), where the guard Condition, which has to be 
satisfied for a rule to be applicable, is a variable free first-
order formula, and Updates is a finite set of function updates 
(containing only variable free terms) of form 

t := f (t1, t2, ..., tn). 
The execution of these rules is understood as updating, in 

the given state and in the indicated way, the value of the 
function f at the indicated parameters, leaving everything 
else unchanged. (This proviso avoids the frame problem of 
declarative approaches.) In every state, all the rules which 
are applicable are simultaneously applied (if the updates are 
consistent) to produce the next state. If desired or useful, 
declarative features can be built into an ASM by integrity 
constraints and by assumptions on the state, on the 
environment, and on the applicability of rules. 

There are four types of rules: Block Rule, Conditional 
Rule, Choose Rule, and Simultaneous Rule. 

A Block Rule R is a sequence of transition rules:  
R1, ..., Rn 

All Rn should be executed when R is executed under the 
state S. 
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A Conditional Rule R is like this: (g is a term, R0 and R1 
are rules) 

if g then  
R0 

else 
R1 

end if 
The rule means: if the value of g under the state S is True, 

the updates of R under S are the same as the updates of R0 
under S; Otherwise, they are the same as the updates of R1 
under S. 

A Choose Rule R has the form: 
choose v satisfying c(v) do 

R0(v) 
end choose 

In this rule, v is a variable, c(v) is an item with v, and 
R0(v) is a rule. The result of this rule is uncertain. When R is 
executed under the state S, an element a which satisfy 
c(a)=True is chosen, and R0(a) is executed; If such element 
doesn’t exist, do nothing. 

A Simultaneous Rule R is: 
for all c(v) do 

R0(v) 
end for 

The rule means: for all elements v which satisfies 
c(v)=True, do R0(v); If no element satisfies the condition, do 
nothing. 

B. asml 

AsmL  [4, 5] is an industrial-strength software 
specification language based on the theory of ASM. It 
developed by the group on Foundations of Software 
Engineering (FSE) at Microsoft Research, and the current 
version is AsmL2 (AsmL for Microsoft.NET). This version 
is embedded into Microsoft Word. It uses XML and Word 
for literate specifications. It is fully interoperable with 
other .NET languages. AsmL generates .NET assemblies 
which can either be executed from the command line, linked 
with other .NET assemblies, or packaged as COM 
components. With AsmL, A Human-readable and Machine-
executable model can be created.  

AsmL provides the foundations of the model-based 
testing tool Spec Explorer [6,7] . The Spec Explorer 
distribution includes the latest AsmL compiler for 
Microsoft .NET. Spec Explorer can also explore models 
written AsmL. It extends Microsoft Visual Studio for 
creating models of software behavior, analyzing those 
models with graphical visualization, checking the validity of 
those models, and generating test cases from the models. 

Specifications written by AsmL are called executable 
specifications which have several remarkable features. 

The executable specification describes how software 
components work as the traditional software specification 
does. But the difference between them is that the executable 
specification has an exclusive, certain meaning. The meaning 
is shown as abstract state machines, mathematical models, or 
run-time states. 

III. MODELING CGF BEHAVIORS WITH ASML 

Our CGF behavior module is built based on enhanced 
finite state machines (FSM). Each action has its certain 
execution time. Each behavior module monitors its actions, 
and starts, continues or terminates each state as needed.  

Althrough the high-level actions are simple, CGF 
behaviors are very complex. Describing an entire CGF 
system is a huge project. Thus, we chose a representative 
action "GoToTarget" to show how it is modeled by AsmL.  

In this action, an agent is expected to find a path to reach 
the target, and avoid all the obstacles on the way. If the target 
is unreachable finally, then it should give up. Figure 1 shows 
how the action works. 
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Figure 1.  Action “GoToTarget” 

We describe this action of an agent with Spec Explorer. 
Part of AsmL codes are presented in straw yellow regions. 
We defined eight states as follows: 

namespace CGF 

 

enum AgentState 

  START 

  WAITING_FOR_PATH 

  MOVING_THROUGH_PATH 

  GOING_TO_PATH_POINT 

  AVOID_ABSTACLE 

  JITTERING 

  FINISHED 

  GIVE_UP 

Null(X), IsReachable(X), Reached(X) and Empty(X) are 
defined as predicates, while Stuck and Bumped are Boolean 
variables. 

Target, TimeElapsed, PathPoints are variables. 
TIME_TO_AVOID, TIME_WAIT_FOR_PATH and 
TIME_RESTART are constant values.  

State START, FINISHED, and GIVE UP are end states, 
FINISHED means the target is successfully reached, while 
GIVE UP means failed. 
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enum NavPoint 

  PNull // Null path 

  P0    // start point 

  Pt    // target point 

  PObs  // obstacle 

 

var NullTarget as Boolean = false 

var IsReachableTarget as Boolean = false 

var Path as Set of NavPoint = {} 

var timeElapsed_wait as Boolean = false 

var timeElapsed_restart as Boolean = false 

var timeElapsed_avoid as Boolean = false 

var myState = START 

The agent begins with the START state, and the target is 
set by the sensor. If no goal is set (Null (Target)==True), 
then the agent will do nothing. 

If the target can not access directly, the module will 
request a path for it, and turn into the WAITTING FOR 
PATH state. The agent starts MOVING THROUGH PATH 
when a path is received. 

At the state WAIT FOR PATH, the module sends a 
GetPath command, and wait for the path information. If the 
time Elapsed exceeds TIME_WAIT_FOR_PATH, The agent 
will give up(state GIVE UP). 

[Action] 

WaitingForPath() 

  require myState = START or myState = 

WAITING_FOR_PATH 

  myState := WAITING_FOR_PATH 

  

[Action] 

GiveUp() 

  require myState = WAITING_FOR_PATH or myState = 

GOING_TO_PATH_POINT or myState = JITTERING 

  match myState 

    WAITING_FOR_PATH: 

      myState := GIVE_UP 

    GOING_TO_PATH_POINT: 

      myState := GIVE_UP 

    JITTERING: 

      myState := GIVE_UP 

We use a set of navigation points to present a path. The 
return of GetPath command is a list of navigation points. If 
the path does not exist, then the it is Null. 

[Action] 

GoToPathPoint() 

  require myState = WAITING_FOR_PATH or myState = 

AVOID_OBSTACLE 

  myState := GOING_TO_PATH_POINT 

If the agent has visited all the navigation points of a path, 
then it reached the state of FINISHED, and the action is 
successful. 

[Action] 

Finished() 

  require myState = MOVING_THROUGH_PATH 

  myState := FINISHED 

If there are still navigation points, it enters the state 
GOING TO PATH POINT. If it meets obstacles, it enters the 
state AVOID OBSTACLE. If the agent has failed to avoid 
obstacles, it enters the state JITTERING. In this state, the 
agent will try some random actions to leave the place where 
it stays. Then, the agent enters GIVE UP state. This is 
because it has moved for a while and should recalculate the 
path from the START state. 

[Action] 

AvoidObstacle() 

  require myState = GOING_TO_PATH_POINT or myState 

= AVOID_OBSTACLE 

  myState := AVOID_OBSTACLE 

 
[Action] 

Jittering() 

  require myState = GOING_TO_PATH_POINT or myState 

= AVOID_OBSTACLE 

  myState := JITTERING 

Three properties are defined for us to retrieve the state of 
the state machine. 

property CGFTarget as Boolean 

  get 

    return not NullTarget 

 

property IsReachable as Boolean 

  get 

    return IsReachableTarget 

 

property CGFState as AgentState 

  get 

    return myState 

 
Figure 2.  FSM diagram generated by Spec Explorer 
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After describing the action with AsmL, set “Exploration 
Goal” to “FSM Generation”, and run this code. We will the 
result as shown in Figure 2. 

By comparing Figure 1 and Figure 2, we can see that two 
finite state machine diagrams are nearly the same. It is easily 
to verify the design of CGF behavior module with AsmL. 

IV. CONCLUSION 

Models built by AsmL language can run as simulations 
of the systems they describe. This feature can help us check 
the completeness of our design before implementation. It can 
also help us check our design and implementation during the 
implementation stage. 

Finite state machine provides a useful solution for the 
CGF behavior module, while modeling and analyzing with 
AsmL language helps find design flaws, and verify the 
completeness of the model. It also can be used to improve 
the design of CGF behavior module. 
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