

A Study on the Algorithms for 2D Texture Mapping and Its Employment in

Hardware Design

Wang Donghui
Department of computer science, XUPT,

Xi’an 710121, China

Dong Liang
Department of computer science, XUPT,

Xi’an 710121, China

Du Huimin
Department of electronic engineering, XUPT,

 Xi’an 710121, China

Abstract— Based on a solid analysis of the working principle of
graphic processors, this paper puts forward the dual-rail
handshake protocol of the data pipeline which is to be proved
to improve the architecture of graphics rendering pipeline and
thus make the system much closer to that of a graphic
processor in real time. Specific algorithms and hardware
design methods are as well developed in this work with their
focus dwelling on the computation-consuming texture
mappings, including two critical techniques: texture coordinate
calculation and texture filtering. FPGA result shows that
circuits based on textual algorithms can define accurately the
textual coordinates and yield precise textual images, bringing
significant improvements to the performance of graphics
rendering.

Keywords-GPU, organization, pipeline, texture mapping

I. INTRODUCTION

With an in-depth study and several necessary
improvements on typical working principles of graphics
processor [1], we develop a graphics processing pipeline
organization tree [2] as is shown in Figure.1. A data pipeline
organization of this kind using the dual-rail handshake
protocol [3] makes our simulation designing platform much
closer to that of a real time graphics processor [4].

Figure 1. Pipeline organization of graphics processor

The graphics accelerator pipeline we have designed
includes texture mapping techniques. It dramatically speeds
up image processing by reusing the original image instead
of reweaving a new one [5]. The texture mapping process is
very suitable for such designs as hardware circuits[6], since

it demands simple repetitive calculations for each screen
pixel and the calculation of texture coordinates and filtering
is so complex that only functionally dedicated hardware can
help overcome the practical time limits[7][8]. Having
conducted an overall study on the cases of orthographic and
perspective projection, this paper is going to offer in terms
of these two projections a solution of texture coordinate
calculation and two filtering methods which are known as
the nearest point sampling filtering and the bilinear filtering.
We set the research emphasis on the design of 2-D texture
mapping.

II. CALCULATION AND DESIGN OF THE

TEXTURE COORDINATES

First of all, the relation between coordinate and
mapping needs to be established. In the object coordinate
system, when pixel vertex has experienced such coordinate
transformations as geometric transformation, projective
transformation and window transformation, the vertex
would be in the window coordinate system. Therefore,
while texture mapping is being implemented, it is also
necessary to realize the mapping among the window
coordinate (such as (Xw, Yw) in Figure 2, namely the
window coordinate), the texture coordinate and the texture
image coordinate [9]. The coordinate axes of texture
coordinate are marked as s and t with a default range of [0.0,
1.0], as is shown in Figure 2. The coordinate axes of texture
image are marked as u and v which correspond respectively
with the width and height of the image in Figure 2, where
the width and height are both set at 64 in this design.

Figure 2. Line segments in texture mapping

After the pixels are assembled, the window coordinates
and the texture coordinates of the points, the line and the
vertexs of triangles are defined, and when achieving texture

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1271

mapping in scan conversion and pixel colouration in level
one, we need to figure out the relations between the texture
coordinates and the window coordinates of all the pixels
inside the beeline and the triangle by means of bilinear or
hyperbolic insert value, so as to obtain the texture
coordinates of the point.

1. To texture map a point is to locate it in the texture
image so that its color value can be obtained. The mapping
of this kind is known as a process of “posting a texture
element” and it works as follows:

After obtaining the point’s window coordinate (x, y, w)
and its texture coordinate (s, t, q), we need to calculate
according to the following equations:

)1(widthsu ,)1(heighttv (1)
2. For the texture mapping of a line segment, the relation

between window coordinates and texture coordinates is
obtained with linear interpolation. The principle is shown in
Figure 2.

Inferred from linear interpolation,
|AP|/|AB|=|A1P1|/|A1B1|is applicable for any point P on the
line in Figure.2. The similar triangles principle is used here
and we replace the ratio of abscissas with that of lengths
during the hardware implementation:

x xa xb x
s sb sa

xb xa xb xa

, x xa xb x

t tb ta
xb xa xb xa

 (2)

Then we transform the value of s and t obtained in

formula (1-1) to u and v in the texture image. The texture
image coordinates (u, v) is the pixel point mapped onto the
texture image.

For the vertical line segment, we replace y, ya and yb
with x, xa and xb. The method is the same.

3. The triangle texture mapping is achieved in two
steps. The first step is to rearrange the place of the triangle
window coordinates according to the value of y, where the
node order in Figure.3 is obtained with P0 in the above, P1
in the lower left corner and P2 in the lower right corner. The
second step is to calculate the pixel values of the texture
coordinates of the sample points.

Figure 3. Texture mapping a triangle

As is shown in Figure 3., given that the texture
coordinates of the three vertices P0, P1 and P2 of the
triangle to be drawn are N0, N1 and N2, and that P is any
point on segment AB (y = yA = yB), point A (xA, yA) and
point B (xB, yB) being the intersection points of a scan line
and the triangle, then the texture coordinates of points A and
B, according to their positions on line P0P1 and P1P2, can
be calculated with linear interpolation, and the texture
coordinate Ps (s, t) of point P can as well be calculated with
linear interpolation of the line AB. The specific expressions
are as follows.

1 0

A1 0 1

0 1 0 1

s
AP AP

s s
P P P P

2 0

1 0 2

0 2 0 2

sB

BP BP
s s

P P P P
 ,

1 1s B A
A B

B A B A

x x x x
s s

x x x x

 (3)

This algorithm for the projection transformation where
the w value is always 1 is correct. The value of w may vary
if perspective projection transformation is adoped here. In
this case, it should be amended by the hyperbolic
interpolation. The calculation expressions are as follows(1-
4).

0 1

0 1
A 1

0 1

(, ,)

s
1 1

(, ,)

A

A

s s
lerp f

w w

lerp f
w w

0 2

0 2
B 1

0 2

(, ,)

s
1 1

(, ,)

B

B

s s
lerp f

w w

lerp f
w w

 (4)

Among them, (, ,) (1)lerp a b f af b f ,

and
1 0 1f AP P PA ,

2 0 2
f BP P P
B
 In the expression(1-4),

w0,w1 and w2 are respectively the w values of transformed
vertices. Therefore, the texture coordinates of Ps can be
obtained with:

1 1
B A

A B

B A B A

x x x x
s s s

x x x x

，

1 1
B A

A B

B A B A

x x x x
t t t

x x x x

 (5)

We put the values of s and t into expression (1-1) and
transform them into the relavent texture image u and v so
that we can calculate the texture image coordinates of point
PU in the uov texture image coordinate system which
corresponds with any point P on line segment A1B1 in sot
window coordinates .

In practical hardware designing, when we calculate the
texture coordinates in accordance with the principle of
similar triangles with the ratio of the distances between fA
and fB in the expression above replaced by the fact that the
ratio of longitudinal length is equal to that of the side length,
the calculation of square and square root can be avoided and
circuit performance can as well be greatly enhanced.

III. TEXTURE FILTER AND DESIGN

Nearest point sampling and bilinear filtering are
included in this design[10].

A. Nearest Point Sampling:

Nearest point sampling is a process where the value of
the nearest one of the 4 coordinate points around the texture
sample point is taken as the texture sample pixel value.

As is shown in Figure 4., the coordinates of any point
P(u, v) is on a minimum pixel region of the texture image. If
neighboring pixels form a quadrilateral P0P1P2P3, the
texture pixels the point corresponds with are as follows (The
integral parts of calculated coordinates of u and v are taken
and denoted as | u | and | v |.):

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1272

When u <| u | +0.5& v <| v | +0.5, use the texture pixels
of coordinate points P0;

When u <| u | +0.5& v> | v | +0.5, use the texture pixels
of coordinate points P1;

When u> | u | +0.5& v <| v | +0.5, use the texture pixels
of coordinate points P3;

When u> | u | +0.5& v> | v | +0.5, use the texture pixels
of coordinate points P2.

In case of the sampling point P happening to fall on the
horizontal or vertical symmetry line of the quadrilateral, the
principle of “lower left first” is adoped.

P0 P3

P2P1

P

(u0,v0)

(u,v)

(|u|+0.5,
|v|+0.5)

Figure 4. Nearest Point Sampling

S1

S3

S4

S2

MC0

C6

C5

C7 C8

C1

C3 C2C4

Figure 5. Bilinear Filtering

B. Bilinear Filtering

For bilinear filtering, the texture pixel value of the
sample point is defined by the pixel values of the 4 textual
pixel points around it. The weights of this 4 point are in
direct proportion to the corresponding area they cover.

As is shown in Figure.5, the coordinate of arbitrary
point M(u,v) falls on a minimum pixel area of the texture
image. If neighboring pixel points form a quadrilateral

8246 CCCC , the texture pixel value of this point M is

4 8

6 2

4 2

1 2 3 4 1 2 3 4

3 1

1 2 3 4 1 2 3 4

S S
c c c

S S S S S S S S

S S
c c

S S S S S S S S

 (6)

In the equation above, S1~S4 are the 4 areas in
Figure.5, c4、c8、c6 and c2 are the color value of C4、
C8、C6 and C2.

Therefore, the final computing formula is

4 8

6 2

(1) () () (1)

 +(1) (1) () ()

c u u v v c u u v v c

u u v v c u u v v c

(7)

C. Designing the Nearest Sampling Point and the Bilinear
Filtering

Figure.6 is the framework map of the nearest sampling
point and bilinear filtering. Each time the latter two are used,
they will read the texture color values from RAM (For

bilinear filtering, the divider is activated. The divider in
Figure 6. below is omitted.):

Figure 6. General framework of the nearest sampling point and bilinear

filtering

IV. GENERAL DESIGN AND ITS VALIDITY

The general hardware circuit architecture of the texture
mapping consists of 4 parts: the master module,
nearest_linear_uv_rgba, the RAM module and the divider,
as is shown in Figure 7.

Figure 7. General Framework

Functions of each module:
(1) Master module is the most important module,

which is mainly used for data stream processing and
controls the computing of other modules.

(2) Filtering module, processes the nearest sampling
point and bilinear filtering of the texture mapping. For the
previous texture coordinates and according to the input
control words, we can choose one of the filtering methods
and figure out the texture pixel value of the sampling point.

(3) The main function of the RAM module is to store
texture images.

(4) The divider operates 32-bit division (22-bit integers
and 10-bit decimals) calculation.

In FPGA circuit authentication, an ALTERA DE2-70
development board is

used and a standard 64*64 checkerboard serves as the
texture image. Following

is an analysis of how well the algorithm design is
simulated.

The texture image obtained by hardware simulation is
as follows in Figure 8:

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1273

Figure 8. Textural performance of the nearest sampling point and

bilinear filtering

Shown in Figure 8 is a hexahedron, each face of which
is mapped with a checkerboard texture image and is weaved
in the mode of perspective projection. The hexahedron on
the left is drawn with the algorithm of the nearest sampling
filtering and the right one with that of bilinear filtering. It is
observable in Figure. 8 that the latter performs better and
has achieved the antialiasing effect.

V. CONCLUSION

In this paper, we have firstly calculated textual
coordinates in orthographic and perspective projection by
making use of the algorithms for bilinear and hyperbolic
interpolation, then realized textural mapping by means of
the nearest point sampling and bilinear filtering, and finally
offered a hardware circuit design of textural mapping. The
authentication result shows that the design of the graphics
processor system offered in this paper is correct and the
algorithm for bilinear filtering can lead to more accurate
images.

VI. REFERENCES

[1] Smelyanskiy, M.; Holmes, D.; Chhugani, J., et al. Mapping High-
Fidelity Volume Rendering for Medical Imaging to CPU, GPU and
Many-Core Architectures. Visualization and Computer Graphics [J],
2009, PP: 1563-1570.

[2] Fresse, V.; Houzet, D.; Gravier, C. GPU architecture evaluation for
multispectral and hyperspectral image analysis. Design and
Architectures for Signal and Image Processing [J], 2010, PP: 121-127.

[3] Civit, J.; Escoda, O.D. Robust foreground segmentation for GPU
architecture in an immersive 3D videoconferencing system .
Multimedia Signal Processing [J], 2010, PP75-80.

[4] Poli, G.; Saito, J.H.; Mari, J.F.; Zorzan, M.R. Processing Neocognitron
of Face Recognition on High Performance Environment Based on
GPU with CUDA Architecture.Computer Architecture and High
Performance Computing [J], 2008, PP81-88.

[5] Dudgeon, J.E.; Srinivasan, An Algorithm for Graphics Texture
Mapping. System Theory [J], 1991, PP 613-617.

[6] Demirer, M.; Grimsdale, R.L.; Cavusoglu, A.. Real time performance
for texture mapping using the Pim Map technique in hardware.
Electrotechnical Conference [J], 1996, PP 149 - 152

[7] Crow. The Aliasing Problem in Computer Generated Shaded Images.
CACM [J], 1977, PP: 799- 805.

[8] Gouraud. Continuous Shading of Curved Surfaces. IEEE Trans.
Computers [J], 1971.PP:623-629.

[9] Donghyun Kim; Lee-SupKim. Area-efficient pixel rasterization and
texture coordition interpolation. Computer&Graphics [J], 2008, PP:
669-681.

[10] Heckbert, P.S. Survey of Texture Mapping. Computer Graphics and
Applications, IEEE [J], 1986, PP: 56-67.

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1274

