

Research of Software Failure Prediction Based on Support Vector Regression

Zheng Qiuhong
College of Computer Science and Information Technology

Zhejiang Wanli University
Ningbo, China

Abstract—Software failure prediction is currently a hot subject
of research all over the world. The support vector regressions
(SVRs) are very efficiency for solving regression problems. The

parameters just as C 、 、 performs very important
roles in the generalization of SVR, and it’s hard for beginner to
choose them. But in formar models, they diden’t care about
this problem.A SVR-based generic model adaptive to the
characteristic of the given data set is used for software failure
time prediction. We also compare the prediction accuracy of
software reliability prediction models based on 1-norm SVM,
2-norm SVM, v- SVM and artificial neural network (ANN).
Experimental results by four data sets show that the new
software reliability prediction model could achieve higher
prediction accuracy than that of the ANN-based or SVM-based
models.

Keywords- Software Reliability Prediction, Support Vector
Regression, Artificial Neural Network

I. INTRODUCTION

In modern society, computers are used for many
different applications, such as nuclear reactors, aircraft,
banking systems, and hospital patient monitoring systems.
As the demand of the application quality becomes higher
and higher, the research of the computer software reliability
becomes more and more essential. The software reliability is
defined as the probability that the software will operate
without a failure under a given environmental condition
during a specified period of time [1]. To date, the software
reliability model is one of the most important tools in
software reliability assessment.

Most of the existing software reliability models [2-5]
depend on a priori assumptions about the nature of software
faults and the stochastic behavior of software failure process.
As a result, each model has a different predictive
performance across various projects. To overcome this
problem, several alternative solutions are introduced. One
possible solution is to employ the ANNs [6- 11]. ANNs
have many advantages that account for its popularity in data
mining and analysis. For example, ANNs can learn
nonlinear mapping between the input and output of a
system/process, and it has been theoretically proven that
ANNs can approximate nonlinear functions to arbitrary
accuracy. In this case, the focus of the training process is
model fitting and tends to cause over fitting. The error on
the training data set is driven to a very small value for
known data, but when out-of-sample data is presented to the

network, the error is unpredictably large, which yields
limited generalization capability.

As an alternative, a novel type of learning machine,
SVM, has been receiving increasingly attention in areas
ranging from its original application in pattern recognition
to the extended application of regression estimation. This
was brought about by the remarkable characteristics of
SVM such as good generalization performance, absence of
local minima, and sparse representation of solution. SVM
was developed by Vapnik [12] and it is based on the SRM
principle which seeks to minimize an upper bound of the
generalization error consisting of the sum of the training
error and a confidence interval. This induction principle is
different from the commonly used ERM principle which
only minimizes the training error. Established on the unique
principle, SVM usually achieves higher generalization
performance than traditional neural networks that
implement the ERM principle in solving many machine
learning problems. Another key characteristic of SVM is
that training SVM is equivalent to solving a linearly
constrained quadratic programming problem so that the
solution of SVM is always unique and globally optimal,
unlike other networks’ training which requires nonlinear
optimization with the danger of getting stuck into local
minima. In software reliability prediction domain, there
have been some studies on building SVM-based SRPMs as
well. Tian and Noore [13] proposed an SVM-based model
for software reliability prediction. Pai and Hong [14] also
made their contributions.

However, despite its success, we can identify a number
of significant disadvantages of the SVM reliability model.

The parameters just as C 、 、 performs very
important roles in the generalization of SVM, and it’s hard
for beginner to choose them. In Tian and Yang’s models,
they diden’t care about this problem. Scholkopf[15]
proposed a new type of SVM which can choose the
parameters automatically. In this paper, we use 1-norm SVR,
2-norm SVR，v- SVR to model software reliability and
gets better performance than previous work.

II. SUPPORT VECTOR REGRESSION
[12]

We have already discussed the problem of learning a
real-valued function ，the 1-dimensional output of a real-
valued function can be seen as a special case. The term
regression is generally used to refer to such real-valued

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1289

learning. We will begin this section by giving a fuller
description of support vector regression methods.

Assuming that a total of n pairs of training patterns are
given during SVR learning process,

1 1 2 2(,), (,), , (,), , (,)i i N Nx t x t x t x t

Where the inputs are n-dimensional vectors
n

ix R and

the target outputs is continuous value it R . The RVM

model used for function approximation is:

0
1

(;) (,)
M

i i
i

t y x w w k x x w

These{ }iw are the parameters of the model, generally

called weights, and (,)K is the kernel function which is the

inner product of two vectors in feature space φ(x) and φ
(xi). By introducing the kernel function, we can deal with
the feature spaces of arbitrary dimensionality without
computing the mapping relationship φ(x) explicitly. Some
commonly used kernel functions are polynomial kernel
function and Gaussian kernel function. In this paper, we
make the choice to utilize Gaussian data-centre basis
functions:

2

2
(,) exp{ }m

m

T T
K T T

Where 0 is a constant that defines the kernel width.

The“empirical risk” []empR f is defined to be just

the measured mean error rate on the training set.

2 2

1

1 1 1
[] ()

2 2

l

emp i i
i

R w R f w C T f t
l

其中， []empR f 为 where ()C is lose function，

0 ,i i

i i

i i

if T f t
T f t

T f t otherwise

。

It’s the same to solve the following optimization
problem:

 2 *

1

1
min

2

l

i i
i

J w C

*

*

(, ())

. . (, ())

, 0

i i i

i i i

i i

T b t

s t t T b

A. Norm SVR [15]

The linear ε-insensitive loss for support vector

regression raises the question of what stability analysis is

appropriate. A straightforward rewriting of the

optimization problem that minimizes the linear loss is as

follows:

Process

max

subject
to

find * to the optimization problem:

1 1
()

l l

i i ii i
W y

, 1

1

2

l

i ji j

 (,)i jk x x

1
0, , 1, 2, ,

l

i ii
C C i l

*

1
()

l

j ji
w x

* * *

1

(/) (,)
l

j i j i j
i

b C y k x x

for i with
*0 i

* *

1
() (,)

l

j ji
f x k x x b

B. Norm SVR [15]

We can optimize the sum of the quadratic ε -

insensitive losses again subject to the constraint that the

norm is bounded. This can be cast as an optimization

problem by introducing separate slack variables for the

case where the output is too small and the output is too

large. Rather than have a separate constraint for the norm

of the weight vector we introduce the norm into the

objective function together with a parameter C to

measure the trade-off between the norm and losses. This

leads to the following computation. The weight vector w

and threshold b for the quadratic ε-insensitive support

vector regression are chosen to optimize the following

problem:

Process

max

subject
to

find
* to the optimization problem:

1 1
()

l l

i i ii i
W y

, 1

1

2

l

i j
i j

 1
((,))i j ijk x x

C

1
0

l

ii

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1290

*

1
()

l

j ji
w x

* *

1
(,)

l

i j i ji
b y k x x

for i with
*0 i C

* *

1
() (,)

l

j ji
f x k x x b

v-SVR [15]

One of the attractive features of the 1-norm support

vector machine was the ability to reformulate the

problem so that the regularization parameter specifies the

fraction of support vectors in the so-called ν-support

vector machine. The same approach can be adopted here

in what is known as ν-support vector regression. The

reformulation involves the automatic adaptation of the

size ε of the tube.

Process

max

subject
to

find
* to the optimization problem:

1 1
()

l l

i i ii i
W y

, 1

1

2

l

i ji j

 (,)i jk x x

1 1
0,

/ / , 1,2, ,

l l

i ii i

iC l C l i l

*

1
()

l

j ji
w x

* *

1
(,)

l

i j i ji
b y k x x

for i with
*0 /i C l

* *

1
() (,)

l

j ji
f x k x x b

III. FORMULATION OF THE SVM-PREDICTOR

Suppose that we have observed a total number of n
failures, the constructed model will first be trained with
collected data, and then it can be used for prediction purpose.
The SVM learning scheme is applied to the failure time data,
forcing the network to learn and recognize the inherent
internal temporal property of software failure sequence, thus
it can be used for prediction purpose. Use the new vector as
model input, and the predicted value of can be obtained.
Our approach for software reliability prediction can be
illustrated as Figure 1.

Figure 1. Software reliability model based on SVR

IV. EXPERIMENTAL RESULTS

The performance of our proposed approach is tested using the

same real-time control application and flight dynamic application

data sets as cited in Park et and Karunanithi et. We choose a

common baseline to compare our results with related work cited in

the literature. All four data sets used in the experiments are

summarized as follows [5]:

 DATA-1: Real-time command and control
application consisting of 21,700 assembly instructions and
136

 DATA-2: Flight dynamic application consisting of
10,000 lines of code and 118 failures.

 DATA-3: Flight dynamic application consisting of
22,500 lines of code and 180 failures.

 DATA-4: Flight dynamic application consisting of
38,500 lines of code and 213 failures.

When testing a proposed model, it is necessary to
quantify its prediction accuracy in terms of some meaningful
measures. The following statistical metrics are used for
comparing prediction performance, represented by RE, and
AE [5]:

^

i i

i

t t
RE

t

 ，

^

1

1
100

n
i i

i m i

t t
AE

n m t

Where it

denotes the predicted value of failure time,

and it the actual value of failure time.

Table I summarizes the results of modeling the
temporal inter-relationship among software failure time
sequence using our proposed SVM approach. We use the
same data sets as cited in Tian Liang et al. [13], Park et al. [7]
and Karunanithi et al. [5] in order to establish a common
baseline for comparison purposes. Park et al. applied failure
sequence number as input and cumulative failure time as
desired output in feed-forward neural network (FFNN).
Based on the input-output learning pair of cumulative
execution time and the corresponding accumulated number
of defects disclosed, Karunanithi et al. employed both feed-
forward neural network (FFNN) and recurrent neural
network (RNN) structures to model the failure process.
These results are also summarized in Table 2. For example,
using our proposed approach with data set DATA-1, the
average relative prediction error (AE) is 0.82, 0.89and 0.46.

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1291

This error is lower than the results obtained by Tian Liang
(2.4) using SVM, Park et al. (2.58) using feed-forward neural
network, Karunanithi et (2.05) using recurrent neural
network, Karunanithi et al. (2.50) using feed-forward neural
network. In all four data sets, the AE results show that using
our proposed SVRSRPM yields a lower average relative
prediction error compared to the other approaches.

TABLE 1. COMPARISON OF AVERAGE RELATIVE PREDICTION ERROR

D
ata sets

S
V

M
[1

3
]

F
F

N
N

[5
]

R
N

N
[5

]

F
F

N
N

[7
]

1
-N

o
rm

S
V

R

2
-N

o
rm

S
V

R

v-S
V

R

data-1 2.44 2.58 2.05 2.50 0.82 0.89 0.46

data-2 1.52 3.32 2.97 5.23 0.98 1.35 1.02

data-3 1.24 2.38 3.64 6.26 0.73 0.81 0.75

data-4 1.20 1.51 2.28 4.76 0. 79 0. 82 0. 82

V. SUMMARIES

In this paper, we proposed an SVM-based software
reliability prediction model which has two special features.
We conduct comparative studies on model performance
between our proposed SRPM and existing SVM-based and
some ANN-based SRPMs. Data collected from real
software projects are used in the studies. Experimental
results show that the proposed SVMSRPM model could
achieve the best performance in terms of prediction
accuracy.

REFERENCES

[1] IEEE Std 1633-2008, IEEE Recommended Practice on Software

Reliability
[2] Inoue S and Yamada S. Generalized discrete software reliability

modeling with effect of program size. IEEE Transactions on Systems,

Man and Cybernetics, 2007, Part A, 37(2): 170–179
[3] Pham S and Pham H. Quasi-renewal time-delay fault-removal

consideration in software reliability modeling. IEEE Transactions on

Systems, Man and Cybernetics- Part A:Systems and Humans 2009,
39(1): 1-10

[4] Huang C Y and Huang W C. Software reliability analysis and

measurement using finite and infinite server queueing models. IEEE
Transactions on Software reliability, 2008, 57(1): 192-203

[5] Karunanithi N, Whitley D and Malaiya Y K. Prediction of software

reliability using connectionist models. IEEE Trans. Software
Engineering, 1992, 18(7): 563–574

[6] Karunanithi N, Whitley D and Malaiya Y K. Using neural networks

in reliability prediction. IEEE Software, 1992, 9(4): 53-59
[7] Park J Y, Lee S U and Park J H. Neural network modeling for

software reliability prediction from failure time data. J. Electrical

Engineering and Information Science ,1999, 4(4) : 533–538
[8] Cai K Y, Cai L and Wang W D. On the neural network approach in

software reliability modeling. Journal of Systems and Software, 2001,

58 (1): 47-62
[9] Aljahdali S H, Sheta A and Rine D. Prediction of software reliability:

A comparison between regression and neural network non-parametric

models, In: Proc. 16th ACM/IEEE Int. Conf. Computer Systems and

Applications, Beirut, Lebanon, 2001:470-473
[10] Ho S L, Xie M and Goh T N. A study of the connectionist models for

software reliability prediction. Computers and Mathematics with

Applications, 2003, 46(7): 1037-1045
[11] Sitte R. Comparison of software-reliability-growth predictions:

Neural networks vs parametric-recalibration. IEEE Transactions on

Reliability, 1999, 48(3): 285–291
[12] Vapnik V. The nature of statistical learning theory. New York:

Springer Verlag, 1995

[13] Tian L and Noore A. Dynamic software reliability prediction: An
approach based on support vector machines. International Journal of

Reliability, Quality and Safety Engineering, 2005, 12(4): 309–321

[14] Yang B and Li X. A study on software reliability prediction based on
support vector machines. In: Proc IEEE International Conference on

Industrial Engineering and Engineering Management, 2007:1176-

1180
[15] Scholkopf B, Smola A. Learning with kernels: Support vector

machines, regularization, and beyond. Cambridge, MA: MIT

Press.2002.

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1292

