

Judging the Intersection of Convex Polygons by Bracket Method

Ying Chen
Department of Basic Sciences

Beijing Electronic Science and Technology Institute
Beijing, P.R. China
ychen@besti.edu.cn

Yaogang Du
Department of Basic Sciences

Beijing Electronic Science and Technology Institute
Beijing, P.R. China

duyaogang@besti.edu.cn

Abstract-In this paper, we study a basic problem based on
bracket manipulations in computational geometry: how to
judge if two solid convex polygons intersect or not. A key
idea in our criteria is that the signs of some brackets of the
homogeneous coordinates of the vertices of the two convex
bodies are all we need in carrying out the judgment.
Experiments show that the uniformity of representation by
bracket is significant and efficient in practical computation.

Keywords- Bracket, Computer graphics, Convex polygons

Intersection

I. INTRODUCTION

Judging whether two given convex polygons intersect
is a basic task in planar computational geometry and
computer graphics. As we know, this problems can be
easily described theoretically. The most popular method
with complexity O(log2 n) is given by Dobkin &
Kirkpatrick [1, 2], Muller & Preparata [3], Shamos &
Hoey [4, 5]. However, from the application point of view,
the efficiency of the above criteria still bears much
concern, and finding more robust detection method is an
active research topic nowadays.

One interesting thing is that if two planar convex
polygons are separate, then there exists a line between
them but not touching any of them. This idea leads to a
separation-searching algorithm. In the other side, a
concept, namely bracket, is put forward in this paper. By
introducing bracket [6], we can apply it to our separation-
searching algorithm. Moreover, the simple and uniform
algebra expression is obtained for the computation of
geometric objects.

The rest of this paper is arranged as follows. In
Section 2, some notations and preliminaries are
introduced. In Section 3, the details of our algortithm are
discussed. In Section 4, Experimental results are showed.
In Section 5, conclusions are summarized.

II. NOTATIONS

Definition 1. In R2, three points x1, x2, and x3 with
the coordinates form xi=(xi1, xi2) for i=1, 2, 3, their
bracket [x1 x2 x3] is defined as follows:

 x11 x21 x31

[x1 x2 x3]= x12 x22 x32 .
 1 1 1

Obviously, once x1, x2, and x3 are counterclockwise,

the sign of [x1 x2 x3] is nonnegative and is zero if the three
points are collinear. Another interesting thing is that the
bracket [x1 x2 x3] can be regarded as twice the signed area
of the trangle △ x1x2x3. By the convexity of covex
polygon, we have the following definition.

Definition 2. A convex polygon 12…n is positive
orientation, if and only if [i(i+1)k]>0 for any i, k=1,
2, …, n, where k is not equal i or i+1.

In this paper, we always assume that the given convex
polygon 12…n is positive orientation. For a vertex i of a
convex polygon 12…n, the two vertices joined to i are
denoted by i-1 and i+1 respectively. Such indices are
always modulo n. Often, we drop the bold face notation
for points.

Definition 3. A discrete real function f(x) where x=1,
2, …, n is a discrete unimodal function if for some value
m , it is weakly monotonically decreasing (or increasing)
for x≤m and weakly monotonically increasing (or
decreasing) for x≥m.

Figure 1 shows the example of discrete unimodal
function.

Figure 1. Discrete unimodal function

Definition 4. A discrete real function f(x) where x=1,
2, …, n is a discrete bimodal function if for some value

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1312

m , f(m), f(m+1), …, f(n), f(1), f(2), …, f(m-1) form a
discrete unimodal function.

Figure2 shows the example of discrete bimodal
function.

Figure 2. Discrete bimodal function
The signification of discrete bimodal function is that

we can easily find its maximum value and minimum value
with complexity O(log n) by [7]. Then the following
lemma holds.

Lemma 1. For a convex polygon 12…n and a line
segment 1`2`, then the signed distance d(x) where x=1,
2, …, n from vertex x to line segment 1`2` is a discrete
bimodal function.

Proof. Without loss of generality, we assume that all
the vertices are on the same side of line segment 1`2`, as
shown in Figure 3. Clearly, d(x) have its maximum value
and minimum value. Let d(k) be the maximum value and
d(i) be the minimum one. We can see that d(i), d(i-1), …,
d(k), d(k-1), d(k-2), …, d(i+1) form a discrete unimodal
function. □

Figure 3. Proof of lemma 1
Since [1`2`i] can be regarded as twice the signed area

of the trangle △ 1`2`i, the signed distance d(i) is
proportional to [1`2`i].

III. SEPARATION-SEARCHING ALGORITHM

For two convex polygons in one plane, the following
lemma is true.

Lemma 2. Two convex polygons do not intersect if
and only if there exists a line passing through one edge of

a polygon such that the two polygons are on different
sides of the line and one polygon does not touch the line
at all.

Let 12…n and 1`2`…m` be two convex polygons. We
have m vectors like that Mi=([i`(i+1)`1], [i`(i+1)`2], …,
[i`(i+1)`n]) for i=1, 2, … , m and n vectors like that
M`k=([k (k+1) 1`], [k(k+1) 2`], …, [k(k+1) m`]) for k=1,
2, …, n. Based on the bracket, the above lemma can be
written as:

Lemma 3. For two convex polygons 12… n and
1`2`…m`, they do not intersect if and only if at least one
vector of Mi or M`k is composed of negative elements.

Obviously, the scalars of Mi or M`k is a discrete
bimodal function. That is to say, we can obtain an
algorithm to judge intersection of two polygons with
complexity O(nlog n).

Algorithm: Separation-searching Detection

Input: The coordinates of points 1, 2, …, n and 1`,
2`, …, m` respectively.

Output: “Intersection” or “No Intersection”.
Step 1: Set i=1.
Step 2: If i≤m,

scan Mi, find the maximum value of Mi

and let it be q.
If q<0,

output “No intersection” and exit.
If i>m,
 goto Step 4.

Step 3: Set i=i+1, goto Step 2.
Step 4: Set i=1.
Step 5: If i≤n,

scan M`k, find the maximum value of M`k
and let it be q.

If q<0,
output “No intersection” and exit.

If i>n,
output “Intersection” and exit.

Step 6: Set i=i+1, goto Step 5.

IV. EXPERIMENT

In our experiments, we take one convex polygon as
inscribed in a circle and the other convex polygon as
inscribed in a branch of a hyperbola. The total number of
tests is p1+p2, where p1 is the number of intersection and
p2 is the number of separation, and each time we
randomly choose n and m points sequentially from the
circle and the huperblola respectively to form the vertices
of our convex polygons. On a 2.40GHz CPU and 2.00GB
RAM PC with the operating system of Windows 7, the
tests were implemented in Matlab 6. Tab. 1 shows the
performance of the different methods respectively.
Though the complexity of our algorithm is more than the
other methods, it can be see that our algorithm use less
time in most situation from Tab.1.

k

i

1`

m

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1313

V. CONCLUSION

In this paper, we present a novel approach based on
bracket to solve some planar computational geometric
problem. It is how to judge whether two convex polygons
intersect. Although the complexity of our algorithm is
O(nlog n) more than the one of traditional methods O(log2

n), it based on bracket has simple expression and steady
robustness. It deserves to be specially noted that only
bracket manipulation in our algorithm, which can be more
easily realized in hardware programming. That is to say,
algorithm based on bracket has still much room for
improvement in application and this is one focal point of
our future works.

ACKNOWLEDGEMENT

The authors would like to thank many other
workmates for their valuable suggestion. This work is
supported by the National Natural Science Foundation of
China (Grant No.10971217).

REFERENCES

[1] D. P. Dobkin and D. G. Kirpatrick, Fast Detection of Polyhedral

Intersection, Theor. Comput. Sci., 27: pp. 241-253, 1983.
[2] D. P. Dobkin and D. G. Kirpatrick, Determining the Separation of

Preprocessed Polyhedra - A Unified Approach, Proc. 17th Internat.

Colloq. Automata Lang. Program., Vol. 443 of Lecture Notes
Comp. Sci., pp. 401-413, Springer Verlag, 1990.

[3] D. E. Muller and F. P. Preparata, Finding the Intersection of Two

Convex Polyhedra, Theor. Comput. Sci., 7: pp. 217-236, 1978.
[4] M. I. Shamos, Computational Geometry, Ph. D. Thesis, Dept. of

Comput. Sci., Yale Univ., 1978.

[5] M. I. Shamos and D. Hoey, Geometric Intersection Problems, In
Proceedings of the 17th Annual IEEE Symposium on Foundations

of Computer Science, IEEE, New York, pp. 208-215, 1976.

[6] H. Li, M. T. Cheng, Proving Theorems in Elementary Geometry
with Cliford Algebric Method, Advances in Mathematics, Vol. 26,

No. 4, pp. 357-371, 1997.

[7] P. Hodge, Algorithmic Geometry, Cambridge, 1952.

TABLE 1. PERFORMANCE WITH DIFFERENT METHODS

Time of Dobkin & Kirkpa

trick (second)

Time of Muller & Prepar

ata (second)

Time of Shamos & Hoe

y (second)

Time of separation-searc

hing (second)

p1=50, p2=50, n=5,

m=10.
0.1306 0.1235 0.1015 0.1232

p1=50, p2=50,

n=10, m=15.
0.1472 0.1452 0.1278 0.1275

p1=50, p2=50,

n=15, m=20.
0.1711 0.1679 0.1586 0.1612

p1=50, p2=50,

n=20, m=25.
0.1892 0.1862 0.1715 0.1763

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1314

