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Abstract-In this paper, we study a basic problem based on 
bracket manipulations in computational geometry: how to 
judge if two solid convex polygons intersect or not. A key 
idea in our criteria is that the signs of some brackets of the 
homogeneous coordinates of the vertices of the two convex 
bodies are all we need in carrying out the judgment. 
Experiments show that the uniformity of representation by 
bracket is significant and efficient in practical computation. 
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I. INTRODUCTION 

Judging whether two given convex polygons intersect 
is a basic task in planar computational geometry and 
computer graphics. As we know, this problems can be 
easily described theoretically. The most popular method 
with complexity O(log2 n) is given by Dobkin & 
Kirkpatrick [1, 2],  Muller & Preparata [3], Shamos & 
Hoey [4, 5]. However, from the application point of view, 
the efficiency of the above criteria still bears much 
concern, and finding more robust detection method is an 
active research topic nowadays. 

One interesting thing is that if two planar convex 
polygons are separate, then there exists a line between 
them but not touching any of them. This idea leads to a 
separation-searching algorithm. In the other side, a 
concept, namely bracket, is put forward in this paper. By 
introducing bracket [6], we can apply it to our separation-
searching algorithm. Moreover, the simple and uniform 
algebra expression is obtained for the computation of 
geometric objects. 

The rest of this paper is arranged as follows. In 
Section 2, some notations and preliminaries are 
introduced. In Section 3, the details of our algortithm are 
discussed. In Section 4, Experimental results are showed. 
In Section 5, conclusions are summarized. 

II.  NOTATIONS 

Definition 1. In R2, three points x1, x2, and x3 with 
the coordinates form xi=(xi1, xi2) for i=1, 2, 3, their 
bracket [x1 x2 x3] is defined as follows: 

 
 
 

 x11 x21 x31  

[x1 x2 x3]= x12 x22 x32 . 
 1    1    1    

 
Obviously, once x1, x2, and x3 are counterclockwise, 

the sign of [x1 x2 x3] is nonnegative and is zero if the three 
points are collinear. Another interesting thing is that the 
bracket [x1 x2 x3] can be regarded as twice the signed area 
of the trangle △ x1x2x3.  By the convexity of covex 
polygon, we have the following definition. 

Definition 2. A convex polygon 12…n is positive 
orientation, if and only if [i(i+1)k]>0 for any i, k=1, 
2, …, n, where k is not equal i or i+1. 

In this paper, we always assume that the given convex 
polygon 12…n is positive orientation. For a vertex i of a 
convex polygon 12…n, the two vertices joined to i are 
denoted by i-1 and i+1 respectively. Such indices are 
always modulo n. Often, we drop the bold face notation 
for points.  

Definition 3. A discrete real function f(x) where x=1, 
2, …, n is a discrete unimodal function if for some value 
m , it is weakly monotonically decreasing (or increasing) 
for x≤m and weakly monotonically increasing (or 
decreasing) for x≥m. 

Figure 1 shows the example of discrete unimodal 
function. 

 

 

 

 

 

 

 

 
Figure 1.  Discrete unimodal function 

Definition 4. A discrete real function f(x) where x=1, 
2, …, n is a discrete bimodal function if for some value 
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m , f(m), f(m+1), …, f(n), f(1), f(2), …, f(m-1) form a 
discrete unimodal function. 

Figure2 shows the example of discrete bimodal 
function. 

 

 

 

 

 

 

 

 

Figure 2. Discrete bimodal function 
The signification of discrete bimodal function is that 

we can easily find its maximum value and minimum value 
with complexity O(log n) by [7]. Then the following 
lemma holds. 

Lemma 1. For a convex polygon 12…n and a line 
segment 1`2`, then the signed distance d(x) where x=1, 
2, …, n from vertex x to line segment 1`2` is a discrete 
bimodal function. 

Proof. Without loss of generality, we assume that all 
the vertices are on the same side of line segment 1`2`, as 
shown in Figure 3. Clearly, d(x) have its maximum value 
and minimum value. Let d(k) be the maximum value and 
d(i) be the minimum one. We can see that d(i), d(i-1), …, 
d(k), d(k-1), d(k-2), …, d(i+1) form a discrete unimodal 
function.  □ 

 

 

 

 

 

 

 

Figure 3. Proof of lemma 1   
Since [1`2`i] can be regarded as twice the signed area 

of the trangle △ 1`2`i, the signed distance d(i) is 
proportional to [1`2`i]. 

III. SEPARATION-SEARCHING ALGORITHM 

For two convex polygons in one plane, the following 
lemma is true. 

Lemma 2. Two convex polygons do not intersect if 
and only if there exists a line passing through one edge of 

a polygon such that the two polygons are on different 
sides of the line and one polygon does not touch the line 
at all. 

Let 12…n and 1`2`…m` be two convex polygons. We 
have m vectors like that Mi=([i`(i+1)`1], [i`(i+1)`2], …, 
[i`(i+1)`n]) for i=1, 2, … , m and n vectors like that 
M`k=([k (k+1) 1`], [k(k+1) 2`], …, [k(k+1) m`]) for k=1, 
2, …, n. Based on the bracket, the above lemma can be 
written as: 

Lemma 3. For two convex polygons 12… n and 
1`2`…m`, they do not intersect if and only if at least one 
vector of Mi or M`k is composed of negative elements.  

Obviously, the scalars of Mi or M`k  is a discrete 
bimodal function. That is to say, we can obtain an 
algorithm to judge intersection of two polygons with 
complexity O(nlog n).  

Algorithm: Separation-searching Detection 

Input:  The coordinates of points 1, 2, …, n and 1`, 
2`, …, m` respectively. 

Output:  “Intersection” or “No Intersection”. 
Step 1:  Set i=1. 
Step 2:  If i≤m,  

scan Mi, find the maximum value of Mi 

and let it be q. 
If q<0,  

output “No intersection” and exit. 
If i>m, 
  goto Step 4. 

Step 3:  Set i=i+1, goto Step 2. 
Step 4:  Set i=1. 
Step 5:  If i≤n,  

scan M`k, find the maximum value of M`k 
and let it be q. 

If q<0,  
output “No intersection” and exit. 

If i>n, 
output “Intersection” and exit. 

Step 6:  Set i=i+1, goto Step 5. 

IV. EXPERIMENT 

In our experiments, we take one convex polygon as 
inscribed in a circle and the other convex polygon as 
inscribed in a branch of a hyperbola. The total number of 
tests is p1+p2, where p1 is the number of intersection and 
p2 is the number of separation, and each time we 
randomly choose n and m points sequentially from the 
circle and the huperblola respectively to form the vertices 
of our convex polygons. On a 2.40GHz CPU and 2.00GB 
RAM PC with the operating system of Windows 7, the 
tests were implemented in Matlab 6. Tab. 1 shows the 
performance of the different methods respectively. 
Though the complexity of our algorithm is more than the 
other methods, it can be see that our algorithm use less 
time in most situation from Tab.1. 

k 

i 

1`                                                     

m                                   
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V. CONCLUSION  

In this paper, we present a novel approach based on 
bracket to solve some planar computational geometric 
problem. It is how to judge whether two convex polygons 
intersect. Although the complexity of our algorithm is  
O(nlog n) more than the one of traditional methods O(log2 

n), it based on bracket has simple expression and steady 
robustness. It deserves to be specially noted that only 
bracket manipulation in our algorithm, which can be more 
easily realized in hardware programming. That is to say, 
algorithm based on bracket has still much room for 
improvement in application and this is one focal point of 
our future works. 
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TABLE 1.  PERFORMANCE WITH DIFFERENT METHODS 

 
Time of Dobkin & Kirkpa

trick (second)  

Time of Muller & Prepar

ata   (second) 

Time of Shamos & Hoe

y    (second) 

Time of separation-searc

hing  (second) 

p1=50, p2=50, n=5, 

m=10. 
0.1306 0.1235 0.1015 0.1232 

p1=50, p2=50, 

n=10, m=15. 
0.1472 0.1452 0.1278 0.1275 

p1=50, p2=50, 

n=15, m=20. 
0.1711 0.1679 0.1586 0.1612 

p1=50, p2=50, 

n=20, m=25. 
0.1892 0.1862 0.1715 0.1763 
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