

Research and Implement of Rigid Body Fracturing Simulation Based on Ogre and
Newton Engine

Jiangfan Ning
School of Computer Science

National University of Defense Technology

Shi Lu
School of Computer Science

National University of Defense Technology

Bo Wu
School of Computer Science

National University of Defense Technology

Sikun Li
School of Computer Science

National University of Defense Technology

Abstract-Recently, the fracture simulation of rigid body has
gained more and more attention in the area of computer
graphics for its widely use in movies, computer games and
military simulation. With the amalgamation of graphic
rendering engine and physics engine, a fracture simulation
framework of rigid body can be constructed fast and easily.
The basic concepts and principles of OGRE and Newton game
dynamics are introduced and the OgreNewt is adopted to bind
the two engines. At last, the implementation of rigid body
fracture simulation is given and the results demonstrate that
our framework is robust and efficient.

Keywords-OGRE, Newton Game Dynamics, Fracture
simulation, Rigid body

I. INTRODUCTION

Fracture is a familiar phenomenon to us and appears in
many popular movies and games, e.g. the splashing debris
caused by explosion in the magnificence war scene in the
movie Avatar and the various fracture special effects of
various materials in the latest 3D game Star Wars: The
Force Unleashed produced by Lucas Arts. With the rapid
development of graphics hardware, people are no longer
satisfied with the traditional simple, stiff and artificial effect
of fracture.

In this paper, we designe a completely real-time rigid
body fracturing simulation architecture based on open-
source graphics rendering engine Ogre combined with a fast
physical system Newton Game Dynamics. With this
simulation architecture, we implement a prototype system
of rigid body fracture simulation. The results can meet the
requirement of reality and real-time interaction.

II. KEY TECHNOLOGY

A. Ogre engine

1) Introduction
OGRE stands for Object-oriented Graphics Rendering

Engine. It is developed using C++. It’s an object-oriented
3D rendering engine and is flexible to use. Its purpose is to
allow developers to develop hardware-based 3D
applications or games more easily and directly. The class

library abstracts the details of more underlying libraries
(Direct3D and OpenGL), and provides an interface based on
real-world objects and other classes. The benefits of
characteristics of object-oriented of Ogre are: abstraction,
encapsulation, and polymorphism [1].

Ogre is a large and confused collection of objects and
modules, because of its completely object-oriented design,
most of the details have been hidden in the mature hierarchy
of structure. Just a simple call can achieve very brilliant
features. The object-oriented framework of Ogre provides
all the object models for the rendering process. Rendering
system abstracts the complex and different underlying API
function into a unified operating interface; the scene graph
also becomes another set of interfaces, and different scene
management algorithm is allowed to adopt; all the
renderable objects, whether dynamic or static, are abstracted
as a set of interfaces, to be called by specific rendering
operation; movable objects provides a set of common
interfaces to accept a variety of operating methods.

2) Core object
Figure1 shows the core objects of OGRE and their

interconnected relationships [2].

Figure 1. A simple UML of OGRE

 Top of the chart is the root object. It is the portal of the
OGRE system, and is used to create all the basic elements,
such as: Scene Managers, Rendering Systems, Render

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1329

Window and Loading Plugins. Root object is the beginning
of everything in Ogre, it provides user with the core object
to achieve specific functions, so the root object is more like
an organizer of Ogre. The rest classes of Ogre can be
divided into the following three roles:

○1 Scene Management: Scene Management describes the
content included in the scene and how they are organized
together. It also provides the interface closest to the natural
for user to call.

○2 Resource Management: A dedicated group of classes
for user to load, reuse or unload the resources for rendering
the terrain, texture, front and all other objects.

○3 Rendering: Rendering is also a subsystem of the
Scene Management class. It organizes all the objects relate
to rendering and provides simpler and high-level interfaces
for user to call. It includes the low-level API objects, such
as the rendering pipeline, all the cache transferred to the
pipeline, and rendering state, etc.

3) Rendering framework
 A typical Ogre rendering framework can be described

with the following pseudo-code:
create AppExample
 call AppExample go method{
 create root example
 load resource;
 select scene manager;
 create camera;
 create viewport;
 create scene;
 create FrameListener;
 }
 call root example loop render method{
 While(!quit){
 ...
 call frameStarted method{
 response system input;
 calculate and set new states of dynamic nodes;
 calculate and set new state of camera;
 ...
 }
 ...
 }
 ...
 }

B. Newton Game Dynamics Engine

 Newton Game Dynamics is an integrated solution for
real-time simulation of physics environments. The API
provides scene management, collision detection, dynamic
behavior and yet it is small, fast, stable and easy to use.

In our framework, we use the Newton Game Dynamics
to handle the collisions between objects and other dynamic
behavior. Newton Game Dynamics is developed by Julio
Jerez and Alain Suero. It can not only provide fast and
accurate collision detection mechanism, but also can be
easily integrated into other applications. The collision
detection mechanism for the implementation is as follows:
Define a collision primitive with the same size for the

entities in the physical world before your creation to
constrain its shape. The multiple entities of the same size
attach to one collision geometry simultaneously. If there are
multiple entities, you can create, impact, and destruct them
by the callback mechanism built in Newton, thus greatly
improve the efficiency of collision detection. When
collision detection is completed, then delete the instance of
the collision.

The collision geometries provided by Newton are: the
Primitive Shapes, such as Boxes, Ellipsoids, Cylinders,
Capsules, Chamfer Cylinders, etc; Convex Hulls, using a
series of points in the space to create the smallest convex;
Tree Collisions, the model built by the collision tree is
endowed with infinite quality, mainly for background model
[3]. In our system, we mainly use the Primitive Shapes and
Convex Hulls as the collision geometries for fragments.

C. The combination of Ogre and Newton

Ogre is a rendering engine, it doesn’t include physics
module. Newton engine is a physical environment for real-
time simulation and is not suitable for rendering. So we
must integrate Newton with OGRE engine. In practice, we
adopt an OOP class library named OgreNewt. OgreNewt is
developed by Walaber, it integrates all the physical interface
functions of Newton SDK to a group of object-oriented
classes based on OGRE so as to binding the collision
geometries in Newton to the entity mesh of OGRE [4][5].
Consequently we can combine the physical characteristic
and rendering characteristic of object.

III. IMPLEMENTATION

A. OgreNewtonApplication

The OgreNewtonApplication class inherits the
ExampleApplication class included in the Ogre example
programme. It contains the following member functions as
showed in Tab I.:

TABLE I. OGRENEWTONAPPLICATION CLASS

public:
OgreNewtonApplication(void);
~OgreNewtonApplication(void);

protected:
void createFrameListener();
void createScene();

private:
OgreNewt::World* m World;
Ogre::SceneNode* msnCam;
Ogre::FrameListener* mNewtonListener;

The function createFrameListener() is used to add a
frame listener of the project to manage the events of the
scene. The function createScene() is used to add entities,
camera, lighting and other necessary information of the
scene for rendering. OgreNewt::World* World is a class
used to create the physical world. Ogre::SceneNode*
msnCam is the carema and the position and angle can be set
by it.

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1330

B. OgreNewtonFrameListener

The OgreNewtonFrameListener class inherits the
ExampleFrameListener class included in the Ogre example
programme and is used to handle the events of the scene. It
contains the following members as showed in Table II.:

TABLE II. OGRENEWTONFRAMELISTENER CLASS

protected:
 OgreNewt::World* m_World;
 SceneNode* msnCam;
 SceneManager* mSceneMgr;
 int count;
 float timer;
public:
 OgreNewtonFrameListener(RenderWind* win,

Camera* cam, SceneManager* mgr, OgreNewt::World* W,
SceneNode* ncam);

 ~OgreNewtonFrameListener(void);
 bool frameStarted(const FrameEvent &evt);

C. Shadow and lighting

To obtain more realistic results, we add shadow and
lighting for our system. The code is given in Table III:

IV. RESULTS

We have implemented a real-time fracture simulation
framework of brittle board hitting by a rigid ball on PC. The
development enviroment is Visual C++.net 2008 and
Microsoft Windows XP SP2. The hardware platform is a PC
with Inter(R) Core(TM)2 6320 1.86 GHz, 2.0 GB RAM and
NVIDIA GeForce 9800 GTX+. Figure2 is the results of our
simulation.

V. SUMMARIES

In this paper, the basic concepts and principles of
professional graphics rendering engine OGRE and Newton
Game Dynamics is introduced. Based on OGRE and
Newton, we implement a rigid body fracture simulation
framework through the OgreNewt class library. Profitting
from the powerful capability of physical simualtion of
Newton, we have gotten actual results with high
performance, the simulation results can meet the
requirement of reality and real-time.

Although the OGRE and Newton is completely open
source, there are still some limitations for constructing
specific application. For instance the OGRE can only use
the pre-defined model file format .mesh, so if we use
models with other file formats, we must try to convert them
to .mesh. This is a troublesome work and some mistakes
may occur during the conversion process. Our future work
may mainly concern on constructing independent physical
and rendering engines based on the existing technologies,
and integrate them into the specific application framework
for given purpose.

REFERENCES

[1] JUKER Gregory. Pro OGRE 3D Programming. Apress, 2006.9

[2] STREETING Steve. OGRE Manual v1.7. The OGRE Team, 2009.12
[3] JEREZ Julio; SUERO Alain. Unoficial Tutorials for Newton Game

Dynamics WIKI [EB/OL]. http://newtondynamics.com/wiki/

index.php5?title=Tutorials.
[4] WALABER. Ogre and Newton with OgreNewt Beginners Guide

WIKI [EB/OL]. http://newtondynamics.com/wiki/index.php5?

title=Tutorial_-Ogre_and_Newton_with_OgreNewt_beginners_ guide
[5] OUYANG Hui-qin; CHEN Fu-min. Research and Implementation of

Binding Physics Engine and Graphics Rendering Engine. Computer

Engineering and Design [J], 2008.11, PP:5580-5582

Figure 2. Results

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1331

TABLE III. SET THE SHADOW AND LIGHTING

//Set the type of shadow
mSceneMgr->setShadowTechnique(Ogre::SHADOWTYPE_STENCIL_MODULATIVE);
//Set the light source
 Ogre::Light* light;
 light = mSceneMgr->createLight("Light1");
//Set the type of light to point light source
 light->setType(Ogre::Light::LT_POINT);
 light->setDiffuseColour(ColourValue(0.5, 0.5, 0.5));//set the diffuse reflection
 light->setSpecularColour(ColourValue(0.5, 0.5, 0.5));//set the specular reflection
 light->setPosition(Ogre::Vector3(-1500,1500,-1500));

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1332

