

Software and Hardware Implementation of

IIR Based on Matlab&Acceldsp

Chen Hongyan
Department of Computer Science and Technology,

Tongji University,
Shanghai, China

eller2009@163.com

Wang Lisheng
Department of ComputerScience and Technology,

Tongji University,
Shanghai, China

lishwang@tongji.edu.cn

Abstract-Since the IIR design is very difficult and time-
consuming by using the hardware description language
directly, this paper presents a simpler and more efficient
method for IIR digital filter design. This design is based
on Batterworth analog filter, using the impulse response
invariant method. The design steps are: design non-
quantitative IIR filter using Matlab; convert the
designed IIR filter of M language into hardware
description language using AccelDSP; then verify and
synthesize the IIR design using ISE 10.1 of Xilinx. The
design is verified by timing simulation and can be
implemented on FPGA directly. The key of this design is
to analyze the IIR digital filter algorithm, then describe
it through the synthesizable m language and finally
convert the m program to RTL design by using
AccelDSP. The aim of this paper is to simplify the IIR
digital filter design.

Keywords-IIR digital filter, Butterworth analog filter,
AccelDSP, Matlab, ISE.

I. INTRODUCTION

In digital signal processing, digital filtering occupies an
extremely important position. Digital filtering is a basic
processing algorithm in the application of the voice and
image processing, pattern recognition and spectral analysis.
There are many advantages in many signal processing
applications by using digital filters instead of analog filters.
It is easy to realize different magnitude and phase frequency
characteristics by digital filter, overcoming the voltage drift,
temperature drift and noise problems which are the
performance-related with analog filters [1].

Digital filter is divided into infinite impulse response
filter (IIR) and finite impulse response filter (FIR).
Compared with the FIR, IIR can use a lower order to obtain
high selectivity with small storage units used and the signals
delay small. The design of IIR can use the results and design
ideas of analog filter design. The workload of IIR design is
relatively smaller than FIR. In the same of gate level and in
the same clock speed, IIR can provide a better band
attenuation than FIR. In short, the design of IIR is more
economic and effective. Under the normal circumstance, n-
order IIR has the same performance with the 2n-order FIR.

Practically, 20-order Butterworth IIR filter can achieve
approximate ideal linear phase [1] [2].

IIR unit response is infinite, which is the same with the
analog filter. So, the key of IIR design is converting H(s) to
H(z), namely the discretization of analog filter. This paper
presents the design of IIR digital filter by using the design
idea of Butterworth analog filter, synthesizing the algorithm
described in M language into the algorithm written in
hardware description language [1].

II. FUNDAMENTAL OF IIR DIGITAL FILTER

Digital filter is a discrete time systems of filtering
function, discrete systems can be divided into types,
recursive and non-recursive. Generally, IIR is recursive,
while the FIR is non-recursive. Since the input and output
signals of digital filter are both discrete-time signal and
sequence, the concepts, methods and conclusions of
discrete-time systems are all applicable to digital filters.

IIR is a recursive causal linear time-invariant system, the
differential equation of IIR digital filter is as follows:

0 1

y () () ()
M N

i j
i j

n b x n i a y n j

Where N (>=1) represents the order of the filter, and
the ai and bi terms represent the coefficients of the IIR
digital filter, which consequently determine the filter
characteristics [10]. From the up equation, we can know the
output of IIR is equal to the linear combination of each
delayed input and output signal. So the IIR is a feedback
system. Generally, IIR system can be described by the basic
devices: adders, multipliers and delay units. The typical
structure of IIR can be divided into three types: direct,
cascade and parallel [1].

The Z transfer function of the differential equation is
as described below:

0 1

() () ()
M N

i j

i j
i j

Y z b z X z a z Y z

Then, the system function of IIR can be given by:

0 1

(z) () / () () / (1)
M N

i j
i j

i j

H Y z X z b z a z

There are two Implementation methods of digital filter,
software implementation and hardware implementation. This
paper firstly realize the IIR by using software simulation
Matlab, then convert high-level language programs to

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1411

hardware description language programs through synthesis
tool AccelDSP. This design can improve the efficiency of
digital filter design and narrow the difference between the
software and hardware programs [2].

This IIR design is based on the theory of Butterworth
analogy filter. With maximal flat amplitude characteristics in
the passband, Butterworth analog filter decreases
monotonically with the frequency increasing in the positive
frequency range. The amplitude square function is as follows:
|Ha|2=1/(1+(jΩ/jΩc)2N),where N is the order of Butterworth
analog filter. The N is greater, the approximation of stopband
and passband is the better and transition belt is steeper [1].

The IIR design steps based on Butterworth analogy
filter are as follows:

a) Translate the required characteristic frequency
parameters of the IIR into the parameters of a low-pass
analog filter;

b) Obtain the transfer function Hp(z) of low-pass
analog filter through the analog approximation method;

c) Obtain the corresponding digital low-pass system
function Hp(z) by Hp(s), through the mapping relation of s
plane and z plane;

d) Obtain the system function H (z) of IIR by Hp(z),
through the frequency transformation in the digital domain.

In this paper, IIR digital filter is designed based on the
analogy filter through mapping the analogy filter to the
digital filter. As a “sample” of the digital filter, the analogy
filter should meet the performance requirements of the
digital filter. The main mapping methods are: Impulse
response invariant method; Bilinear transform invariant
method and Step response method. In this design, the
Impulse response invariant method is used [1] [9].

Impulse response invariant method is to make the unit
impulse response sequence h(n) of the digital filter imitate
the unit impulse response of the analog filter h(t). h(t) is
sampled with the equal intervals, making h(n)=h(nT),where
T is the sampling cycle.

H(s) is the Laplace transform of h(t) and H(z) is the Z
transform of h(n).The relation of H(z) and H(s) is as follows:

(z) | (1 /) ((2 /))kTz e
k

H T H s j T k

From the above formula, we can know Impulse
response invariant method is transforming the s plane of
analog filters into z plane of digital filters.

III. SOFTWARE DESIGN OF IIR DIGITAL FILTER

There are many methods for designing the IIR, such as
the following types:

a) Through mapping the analogy to digital based on
the sophisticated analog filters (Butterworth, chebyshev and
Elliptic [1]);

b) Through zero-pole trial and error method or through
amplitude squared error minimization in the frequency
domain or time domain method;

c) Computer-aided design method.
This paper design IIR utilizing the Impulse response

invariant method. Firstly, excogitate a Butterworth analog

filter prototype equivalent to IIR; secondly, map the
Butterworth analog filter to the IIR. Since there are a lot of
simple and ready-made formulas for analog filter and design
parameters have been tabulated, the software design IIR
digital filter is becoming simpler and more accurate by using
this method.

Matlab Signal Processing Toolbox provides the
functions about the Butterworth filter design, such as buttap,
buttord, butter. Function [z,p,k]=buttap(n) can design the n-
order normalized Butterworth analog low-pass filter
prototype that can also be designed by the Matlab FDAToolg
[2]. According to the following procedures, the IIR design
can be completed. The software design procedures of IIR are
presented in Figure 1.

The software design procedures of IIR are as follows:
a) Confirm every digital low-pass filter

specification(passband cutoff frequency ωp, passband
attenuation αp, stopband cutoff frequency ωs, stopband
attenuation αs);

b) Transform the digital low-pass filter specifications
into the analog low-pass filter specifications. Design the
Butterworth low-pass filter prototype by using Matlab
FDAToolg and functions;

c) Obtain the system function H(z) by transforming
the s plane of analog filters into z plane of digital filters ,
confirming the filter coefficients {an} and {bn} of IIR.

The following is the core code of the IIR digital filter
design which is transformed by the Butterworth analog low-
pass prototype.

%Design the Butterworth analog low-
pass prototype
Function[A,B]=butter_iir(wp,ws,Rp,As)
[n,wn]=buttord(wp,ws,Rp,As,‘s’);
[z,p,k]=buttap(n);
[b,a]=zp2tf(z,p,k);

[b1,a1]=lp2lp(b,a,wn);
%Obtain the filter coefficients {az} and
{bz} of IIR.
[bz,az]=impinvar(b1,a1);

Toward running the upward code on Matlab, the

coefficients {az} and {bz} of IIR digital filter can be
received. The coefficients {az} and {bz} are the key of the
next design procedure, which are used for the convolution
with the input signals. Through the Convolution transform,
the output signal of IIR digit filter can be acquired.

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1412

Figure 1 software design procedures of IIR

 Figure 2 Design processes of AccelDSP

IV. HARDWARE MODULAR OF IIR DIGITAL FILTER

The better implementation way of digital signal
processing algorithms is describing the algorithms by using
high-level language. And then convert the high-level
language into the hardware description language (Verilog or
VHDL) automatically. This method can improve the
efficiency of design development. This way can be realized
through the two tools: AccelDSP Synthesis Tool and System
Generator of Xilinx. AccelDSP Synthesis Tool can transform
the M language into hardware description language (Verilog
or VHDL); while the System Generation Tool is based on
the Simulink. The module designed by the System
Generation Tool can be used to construct larger systems that
can be converted into the actual circuit by using the Xilinx
ISE [6].

The M programs under AccelDSP Synthesis Tool are
named the “synthesized” M programs, which should observe
the following rules so as to convert the M programs into the
hardware circuits [3]. The M programs of AccelDSP
programming rules are including:

a) Every design should contain a top-level M script
and at least a implementation function;

b) The implementation functions should be contained
in an independent M file and called by the M script;

c) The M script must contain loop functions where the
implementation functions are be called, imitating the data
flow of the real hardware.

Although the Matlab Signal Processing Toolbox
provides the functions about the IIR digital filter design, but
these functions can’t be synthesized. So the M script and M
file in this IIR design must be rewritten in this IIR design [3].

The main work of this paper is to overcome the
difficulty of IIR design by using the hardware description
language directly. According to the M programs rules of
AccelDSP, at least an M script and an M file for calling by
the M script should been programmed in this design. The
Design processes of AccelDSP are showed in Figure 2 [5].

AccelDSP synthesis tool is used to transform a
MATLAB floating-point design into a hardware module that
can be implemented in a Xilinx FPGA. The AccelDSP
Synthesis Tool features an easy-to-use Graphical User
Interface that controls an integrated environment with other
design tools such as MATLAB, Xilinx ISE tools, and other
industry-standard HDL simulators and logic synthesizers [6].

In this paper, hardware modular of IIR digital filter is
implemented by AccelDSP. While AccelDSP Synthesis Tool
is started, it will connect the Matlab automatically.
AccelDSP Synthesis Tool can not only transform M
programs into the hardware design automatically, but also
convert M programs into the modules of System Generator,
so as to establish a greater system design.

The specific operation steps of AccelDSP are as
follows:

a) Reads and analyzes the Matlab floating-point
design;

b) Automatically creates an equivalent MATLAB
fixed-point design;

c) Invokes a Matlab simulation to verify the fixed-
point design;

d) Provides you with the power to quickly explore
design trade-offs of algorithms that are optimized for the
target FPGA architectures;

e) Creates a synthesizable RTL HDL model and its
corresponding testbench to ensure bit-true, cycle accurate
design verification;

f) Provides scripts that invoke and control down-stream
tools such as HDL simulators, RTL logic synthesizers, and
Xilinx ISE implementation tools [6].

The input signal of this IIR design is random noise
coupled with a sine function, the core code of the IIR input
signal design is shown below:

%Define the constants of the input signals

MM = 200; Fs= 40000;SS= 1000;
% Define the sine function
data = 5 * sin(2 * pi * [1:MM] / (Fs/SS))+2;
% Define the noise
rand('state',0);
noise = 2*(rand(1,MM)-0.5);
% the input signals can be received
indata = data + noise

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1413

Through the above code we can get the IIR input
signals, the IIR output signals can be obtained through
calling the m file-iir function in the loop function of the m
script-iir_script. The iir function realizes that the output
signal can be received by entering the input signal into the
IIR digital filter. The core code of iir function is shown
below.

function [y] = iir(indata)
%define the coefficients {an} and {bn} of IIR digital
filter
coeff_a=[1.0000 0.2635 0.1241 -0.0215 0.0026];
coeff_b=[0.0000 0.7685 0.5876 0.0428];
p = length(coeff_a);
q = length(coeff_b);
% define and initialize the variable quantities

persistent x_n, y_n;
if isempty(x_n)

x_n = zeros(q,1);
y_n = zeros(p,1);

end
% Obtain the output signal of IIR

x_n(2:q) = x_n(1:q-1);
x_n(1) = sample;
y = coeff_b*x_n - coeff_a*y_n;
y_n(2:p) = y_n(1:p-1);

y_n(1) = y;

To imitate the flow of data in the actual circuit, there

should be a script function programed. The iir function
should be called in the loop function of iir_script. The core
code of iir_script is shown below.

% define and initialize the constants
MM = 200; Fs= 40000; SS= 1000;
% define the input signals of IIR
data =5 * sin(2 * pi * [1:MM] / (Fs/SS));
rand('state',0);
noise = 2*(rand(1,MM)-0.5);
indata = data + noise;
% call iir function for every input signal
for n = 1:MM
 outdata(n) = iir(indata(n));
end

% Draw input response
figure(1);subplot(2,1,1);plot(data);
axis([1 MM -6 6]);
title(['Input = ',num2str(SS),' Hz']);
subplot(2,1,2);plot(noise);axis([1 MM -6 6]);
title('Noise');
% Draw output response
figure(2);subplot(2,1,1);plot(indata);
axis([1 MM -6 6]);
title('Combined Input');
subplot(2,1,2);plot(outdata);
axis([1 MM -6 6]);

title('Filtered Output');

The hardware modular of IIR digital filter can be
completed according to the AccelDSP operation flow,
converting the float-point algorithm into the gate-level
circuit. The concrete steps are as follows:

a) New a project in AccelDSP and load iir function
and iir_script under this new project;

b) According the operation flow of AccelDSP,
complete the following steps: verify float-point programs;
analyse the struct of the files; quantification; transform float-
point into fixed-point; verify the fixed-pointed programs;
generate the RTL files;

c) There are two kinds hardware description languages
of RTL files generated with the testbench files of each
generated RTL file. The generated RTL files can be
simulated by using the modelsim or the ISE simulator.

The AccelDSP tool in this paper is served as a link of
the hardware design and software design of IIR digital filter,
narrowing the differences between them. The M language
programs can be transformed into the VerilogHDL or
VHDL source code using AccelDSP tool. VerilogHDL or
VHDL source code can be runned on the related hardware.

 AccelDSP can complete the transformation of
floating-point arithmetic into fixed-point algorithm
automatically. It can also implement every operation step of
FPGA implementation needed, such as RTL code
generation, RTL verification, gate-level verification and the
hardware verification in the In-circuit. With AccelDSP
analyzing the dynamic simulation results, it is easy to
confirm the correct word length and calibration. Users can
adjust the length of word, calibration, saturation
dynamically. The AccelDSP provide the underflow and
overflow of data report, fixed-point report, generating RTL
report, verifying fixed-point report, verifying RTL report
and so on. From these reports, the errors can be easily
founded and modified quickly.

V. HARDWARE IMPLEMENTATION OF IIR DIGITAL FILTER

Although AccelDSP can complete all of operation steps
which are needed in the FPGA implementation, it is needed
to set the running environment of this IIR digital filter design
by using ISE 10.1 of Xilinx for the verification on the
specific FPGA.

The Integrated Software Environment (ISE) is the
Xilinx design software suite that allows users and designers
to take their design from design entry through Xilinx device
programming. The ISE Project Navigator manages and
processes your design through ISE design flow, as show in
Figure 3 [7].

 To verify the correctness of the hardware modular
of IIR digital filter, the generated RTL files from AccelDSP
can be debugged and runned on ISE 10.1 of Xilinx. The
design and verification flow of ISE10.1 is shown in Figure 3
[4][7][8].

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1414

Figure 3. Operation flow of ISE

Figure 4. Up-level circuit of IIR

According to Operation flow the Fig 3, the specific
steps of this design are as follows [4] [8]:

a) New a project in ISE and load the generated RTL
files(VHDL or Verilog)of the AccelDSP in the new project;

b) Compile the RTL files of the IIR design and correct
all of the errors;

c) Synthesis the IIR design and make behavior
simulation, the up-level circuit of IIR is shown in Figure 4;

d) Implementation the IIR design through the
following operations: functional simulation; static timing
analysis; timing simulation;

e) Xilinx device programming and parameters
configuration;

f) Generate netlist and bitstream files and download
them into the FPGA;

g) Verify the In-circuit design of IIR on FPGA.
Through the above operations, the IIR digital filter

design can be completed. Through the verification , it can be
concluded that the In-circuit design of IIR can be runned
correctly and effectively on FPGA.

VI. CONCLUSION

The aim of this paper is to raise a simple and efficient
design method of the IIR filter. From the above discussion,
the complete operation flow of the IIR design can be
concluded. Firstly, the software design of IIR is completed

by Matlab; secondly, the hardware modular of IIR digital
filter is achieved by using AccelDSP; finally, hardware
modular of IIR can be transformed into the hardware circuit
by using ISE, and then it can be realized on FPGA. The
innovation of this paper lies in designing and implementing
the IIR filter with AccelDSP. This design method
overcomes the difficulty of the IIR filter design with
hardware description language directly. This design method
has a lot advantages, such as with higher sampling
frequency and real-time than the IIR design on the
traditional DSP chip and with less time, less money and
more flexible than the IIR design on the large ASIC.

REFERENCES

[1] Liu Hai Tang, ”Signal and Systems”[M], Xi’an: Xi'an Jiaotong

University Press, July 2009, ISBN: 9787560509709.
[2] Xv Mingyuan,Liu zhenli,”MATLAB Simulation of the Application in

Signal Processing”[M], Xi'an University of Electronic Science and

Technology Press, Nov. 2007, ISBN: 9787560619040.
[3] Yuan Jiangnan, Tang Biyu,Chen Huihuang. “AccelDSP Based

Adaptive Filter Design”[J], Journal of Xiamen University (Natural

Science), Mar.2010,Vol.49,No.2.
[4] Tian Yun, Xv Wenbo.”Xilinx FPGA”[M].,Beijing: Tsinghua

University Press, Nov.2008, ISBN:9787302184256.

[5] Landry, R., Jr.; Calmettes, V.; Robin, E.”High speed IIR filter for
XILINX FPGA”[C]. 1998.

[6] XILINX. “AccelDSP synthesis tool (user guide) ”[0L]. Xilinx Inc.,

2008.
[7] XLINX. “XLINX ISE 10.1 user guide ” [OL].Xilinx Inc.,2008.

[8] XILINX. ”Virtex-II Pro and Virtex-II Pro X Platform FPGAs:

Complete Data Sheet, 4.5 edition”[OL]. Xilinx Inc., 2005.
[9] Zhang Ke , Wu Binbin,Zhang Wei and SuhHeejong .”The application

of the IIR filters based on FPGA in the DTV field”[C]. 2009.

[10] Zhenbin Gao , Xiangye Zeng , Jingyi Wang , Jianfei Liu. ”FPGA
implementation of adaptive IIR filters with particle swarm optimiz

ation algorithm”[C].2008

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1415

