
Optimization and Implementation of Unstructured Grid Volume Rendering
Algorithm

Jian Hu, Wenke Wang, Qianli Ma, Sikun Li
School of Computer, National University of Defense Technology

Abstruct-Visibility sorting is one of the key techniques in
volume rendering of unstructured grids. The efficiency of
sorting algorithm greatly affects the efficiency of volume
rendering. Hardware-Assisted Visibility Sorting [1] (HAVS) is
one of the most important volume rendering algorithms. This
paper proposes an optimization algorithm of HAVS by keeping
a sorted list which could decrease the comparing time in the
fragment-level sorting process of k-buffer. The range of k is
also analyzed by experiments. The results of experiment show
that the proposed optimization algorithm obviously improves
the efficiency of HAVS.

Keywords -Volume rendering, Unstructured grids, Fragment,
k-buffer

I. INTRODUCTION

Volume rendering is an important research field in
science computing visualization and it can display the whole
and details of 3D datasets. At present, volume rendering is
considered to be the most important technique in 3D scalar
sets visualization [2]. According to the difference of sorting,
the visibility sorting techniques of unstructured grid volume
rendering are divided into visibility sorting algorithms based
on image space(A-Buffer[3] and R-buffer[4]), visibility
sorting algorithms based on object space(NNS[5] and
GATOR[6]) and visibility sorting algorithms based on both
object space and image space(ZSWEEP[7] and HAVS[1]).
Visibility sorting of fragment-level is one of the key
technique for implementing volume rendering based on
GPU, and the efficiency of sorting algorithm will greatly
affect the efficiency of volume rendering. Visibility sorting
algorithms based on image space must store all the
fragments. The storing cost is too much and the rendering
efficiency is low. Visibility sorting algorithms based on
object space sorts triangle faces before rasterization. The
speed of GPU is limited by the complexion of sorting in
object space and the classification of triangles. Visibility
sorting algorithms based on both image space and object
space takes advantage of the processing ability of GPU in
fragments-level, which shifts much of work from CPU to
GPU and improve the rendering efficiency. Although
ZSWEEP and HAVS are both visibility sorting algorithm
based on both image space and object space, the sorting
efficiency of ZSWEEP in object space is not high, which
leads to too much burden for GPU, making the efficiency of
ZSWEEP lower than HAVS. At present, HAVS is one of
the most important unstructured grid volume rendering
algorithm frameworks based on GPU[7]. However,
fragments in k-buffer are out of order in the fragment
process, and each time the algorithm needs 2k-1

comparisons to get 2 nearest fragments in depth, which
lowers the rendering efficiency.

This paper proposes a visibility sorting algorithm to
optimize the HAVS algorithm by keeping the k-buffer
sorted. Each time the proposed algorithm just needs k
comparison times to get 2 nearest fragments in depth, which
obviously decreases comparison times. In addition, k will
affect the precision and efficiency of the rendering result
(the bigger k is, the more precise of the result and the lower
of the efficiency are). The existing HAVS algorithm
restricks k to 6, which limits the performance of algorithm.
This paper researches on the range of k and obtains a k value
that makes the result more precise and the efficiency higher.
The experimental results show that the proposed algorithm
obviously improves the efficiency of HAVS algorithm and
obtains better performance for large dataset.

II. ANALYSIS OF HAVS ALGORITHM

A. Brief description of HAVS

HAVS is an unstructured grid volume rendering
algorithm based on both object space and image space. The
algorithm sorts the center of triangles using CPU in object
space and sorts fragments using GPU in image space. Figure
1. shows the process of HAVS.

Figure 1. Process of HAVS [1]

1) Visibility Sorting in Object Space
HAVS algorithm sorts triangle centroids using LSD

radix sort and counting sort in object space. It uses the
formula f=f × (-(f>>31)|0x80000000) to convert
floating-point numbers into 32-bit unsigned integers and
divide the integers into four 8-bit blocks. The counting sort
algorithm is utilized to sort each block. Although the
algorithm cost storage, the efficiency is high and can reach

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1458

linear sorting time (O(n+k), n is the length of the input array,
k is the length of the computing array).

2) Visibility Sorting in Image Space
k-buffer is in charge of sorting fragments. Each pixel in

the screen owns a buffer with length k and the buffer is
called k-buffer. k-buffer stores k fragments (f1,f2,…,fk) for
each pixel. Each fragment contains a value vi and the
distance between the viewport and the fragment. For
front-to-back compositing, each time a new fragment fnew is
coming, HAVS compares the distance dnew with the rest k
fragments in the k-buffer (d1,d2,…,dk). Two fragments that
have the smallest distance (denoted as fi and fj) are used to
compute the color and opacity according to the 3D
pre-integrated table. Then the color and opacity are
composited to the framebuffer. Finally, the one that has
smaller distance between fi and fj is deserted and the
remaining fragments are written back to k-buffer. Because
k-buffer can just consider k fragments once, if the fragments
are highly out of order, the rendering result may be incorrect.
When k is small, the comparison time is small, and thus the
speed of the algorithm is high. However, the precision is
low.

B. Time Cost of k-buffer

k-buffer is the key technique of HAVS, which uses a
buffer with length k to store the fragments after rasterizing.
If the number of fragments in buffer is already k, when a
new fragment is coming, the algorithm composites two
fragments nearest to the viewport, deserts the nearest one
and writes back the rest k fragments to the k-buffer. The
process of k-buffer is the process of selecting the two
nearest fragments in depth. Each time it needs 2k-1
comparisons to gain the two nearest fragments because of
the unsorted k-buffer. The details of the process are
described as follows:

When the program starts, the number of fragments in
k-buffer is smaller than k, fnew

is directly inserted into

k-buffer.
When the number of fragments in k-buffer is k, firstly,

select a nearest fragment fi, and then select the second
nearest fragment fj in the rest fragments in the buffer.

Use (vm, vn) and dn-dm to get the color and opacity from
3D preintegrated table. Composite the resulting color and
opacity to the framebuffer.

Desert the one that has the smaller distance between fi
and fj. Write back the remaining fragments to k-buffer.

Suppose the number of pixels in screen is m×n and the
number of fragments in the jth pixel is sj. The total
comparison time required is analyzed as follows:

When the number of fragments in buffer is smaller than
k, fragments are directly inserted into k-buffer, and thus the
comparison time is 0.

When the number of fragments in buffer is k, firstly,
select the nearest fragment from the k+1 fragments, the
comparison time is k. Then, select the second nearest
fragment from the rest k fragments, and the comparison time
is k-1. There are sj-k fragments need to compare, so the total
comparison time is:

1 (-1) (-)jt k k s k
When there only left no more than k fragments, HAVS

needs to select the two nearest fragments. When there are l
fragments, it needs l-1+l-2 comparisons. The total
comparison time is:

2

2

(2 3)
k

l

t l

For all the m×n pixels in screen, the total comparisons
are：

1 21
1 1 2

() ((2 3) (-1) (-))
m n m n k

j
j j l

N t t l k k s k

The average comparisons of each pixels is：

1 1 2

1

 ((2 3) (-1) (-))
m n k

j
j l

l k k s k
N

e
m n m n

From the formula above, the average comparisons of
each pixel increase drastically with the number of fragments
increasing. Therefore, it is necessary to optimize k-buffer
algorithm to decrease the comparisons for efficient
rendering.

III. . OPTIMIZATION OF HAVS

As analyzed above, each time the algorithm needs 2k-1
comparisons to obtain the two nearest fragments because of
the unsorted k-buffer. Although k is small, the number of
fragments and pixels is large, the number of comparisons
will also be very large. For this problem, we sort the
k-buffer in ascending order of the distance of each fragment.
Therefore, each time we select the first fragment in k-buffer
as one of the nearest fragments and select the nearest
fragment in the rest k fragments. Finally, the smaller one
between the two fragments is selected and deserted. The
comparisons decrease to k for each time. The details are as
follows:
· When the number of fragments in k-buffer is smaller than

k, the new fragment compares with the fragments already
in the buffer and is inserted into the right position.

· When the number of fragments in k-buffer is k, select the
first fragment f1 in the buffer as one of the nearest
fragments.

· Select the nearest fragment fi in the rest k fragments.
· Compare f1 and fi, get smaller one fj
· Use (vi,v1) and the difference of distance to get the color

and opacity from 3D preintegrated table. Composite the
resulting color and opacity to the framebuffer.

· desert fj and write the remaining k fragments back to
k-buffer.
The total comparisons required are analyzed as follows:
When the number of fragments in the buffer is smaller

than k, the new fragment should be inserted into the buffer
in order. Fot the lth insertion, the comparisons are l-1. So

the total comparisons are
1

1

1

k

l

t l

 .

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1459

When the number of fragments in the buffer is k, firstly
we select the first fragment in the buffer, which needs no
comparing. And then select the nearest fragment in the rest k
fragments, which needs k-1 comparisons. Finally, we select
the smaller one from the two nearest fragments which needs
1 comparison. There are sj-k fragments need to be compared,
so the total comparisons are:

2 (-1 1) (-)jt k s k

When the number of fragments in the buffer is only k in
the end. We only need to select the first 2 fragments in order,
which needs no comparison. Therefore, the total
comparisons are:

1

1 22
1 1 1

() ((1 -1) (-))
m n m n k

j
j j l

N t t l k s k

The average comparisons are:
1

1 12
2

 ((-))
m n k

j
j l

l k s k
N

e
m n m n

The difference of the average comparisons between the
two algorithms are given as follows:

1

1 2

((1) (1))
2

m n

j
j

k
k s

e e e
m n

The improved efficiency is

1

1

1 2 1

((1) (1))
2 1

2
 ((2 3) (-1) (-)) 4 2()(1)

m n

j
j

m n k m n

j j
j l j

k
k s

e m n

e
l k k s k s m n k

As the dataset increases, the later term of the formula
will be smaller and the improved efficiency will be larger,
and thus the optimization will be more notable.

IV. EXPERIMENTAL RESULTS

k has great impact on the efficiency and precision of
HAVS, the bigger k is, the more precise the result and the
lower the efficiency are. The existing HAVS algorithm
restricks k to 6, which limits the performance of the
algorithm. Our experiments tested the value 6,8,10 and 12
for k. For each value of k, we tested 50 times and obtained
the average time and the optimization efficiency. Figure 2-5
show the comparison of algorithm efficiency and time when
k is 6,8,10 and 12 respectively (red color represents the time
of HAVS and green color represents the time of the
optimization algorithm). Figure 2 and 3 are the test results
of pressure of NASA_yf17(97104 vertexes, 528915 cells).
Figure 4 and 5 are the test results of the pressure grad of
forward step shock flows from wind tunnel (278861
vertexes, 1500000 cells).

Figure 2. k=6 time comparison

Figure 3. k=8 time comparison

Figure 4. k=10 time comparison

Figure5. k=12 time comparison

Our experiments are tested on a PC with Intel Pentium
Dual 1.60GHz Processor(1G RAM) and NVIDIA
GeForce9800 GTX with 512M RAM. Table 1 shows the
rendering time of HAVS and optimization algorithm for
6,8,10 and 12 of k. It is concluded that our optimization
obviously reduced the rendering time. Figure 6 and 7
display the images rendered by our optimization algorithm
for datasets above. Pressure(or Pressure grads) is relatively
bigger in red area, and is relatively smaller in green area.

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1460

Figure 6. Pressure of NASA_yf17

Figure 7. Pressure grad of shock flows

V. CONCLUSIONS

At present, HAVS is one of the most important
unstructured grid volume rendering algorithm frameworks
based on GPU. This paper proposes an optimization
algorithm against the low efficiency of sorting in k-buffer.
We also test different k values and extend the range of k,

which will increase the precision of the final image. The
experimental results show that our optimization algorithm
obviously improves the efficiency of HAVS.

ACKNOWLEDGMENT

This work is supported by the National Basic Research
Program (No. 2009CB723803).

REFERENCES

[1] Steven P. Callahan; Milan Ikits, Joa ˜o L.D. Comba; and Claudio T.

Silva, Hardware-Assisted Visibility Sorting for Unstructured Volume

Rendering, IEEE TRANSACTIONS ON VISUALIZATION AND
COMPUTER GRAPHICS,2005

[2] Tang Ze-sheng，Visualization of 3D Data Sets[M] Beijing:Tsinghua
University Press 1999.12.

[3] L. Carpenter, “The A-Buffer, an Antialiased Hidden Surface
Method,” Computer Graphics (Proc. SIGGRAPH 84), vol. 18, no. 3,
July 1984.pp. 103-108

[4] C. Wittenbrink, “R-Buffer: A Pointerless A-Buffer Hardware
Architecture,” Proc, ACM SIGGRAPH/Eurographics Workshop
Graphics Hardware, pp. 73-80, 2001.

[5] M. Newell; R. Newell; and T. Sancha, “A Solution to the Hidden
Surface Problem,” Proc. ACM Ann. Conf., 1972,pp. 443-450.

[6] B. Wylie, K. Moreland; L.A. Fisk; and P. Crossno; Tetrahedra
Projection Using Vertex Shaders,Proc. IEEE/ACM Symp. Volume
Graphics and Visualization,2002,pp. 7-12

[7] R. Farias; J. Mitchell; and C.T. Silva, ZSWEEP: An Efficient and
Exact Projection Algorithm for Unstructured Volume Rendering,Proc.
IEEE Volume Visualization and Graphics Symp., 2000,pp. 91-99

[8] Silva; C. T., Comba; J. L. D., Callahan; S.P., Bernardon, F. F.. A
survey of gpu-based volume rendering of unstructured grids[J].
Brazilian Journal of Theoretic and Applied Computing, 2005, 12(2):
9–29.

TABLE I. COMPARISON OF HAVS AND THE PROPOSED ALGORITHM

 k=6 HAVS k=6 Optimization

Dataset k-buffer Process Time Total Render Time k-buffer Process Time Total Render Time Improved efficiency

NASA_yf17 0.53595s 0.73655s 0.4519s 0.6525s 11.41%

 k=8 HAVS k=8 Optimization

Dataset k-buffer Process Time Total Render Time k-buffer Process Time Total Render Time Improved efficiency

NASA_yf17 0.6265s 0.8311s 0.56855s 0.77495s 6.97%

 k=10 HAVS k=10 Optimization

Dataset k-buffer Process Time Total Render Time k-buffer Process Time Total Render Time Improved efficiency

Shock flows 1.90356s 2.59302s 1.4758s 2.16497s 16.50%

 k=12 HAVS k=12 Optimization

Dataset k-buffer Process Time Total Render Time k-buffer Process Time Total Render Time Improved efficiency

Shock flows 1.97894s 2.63329s 1.58748s 2.24899s 14.80%

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1461

