
Architecture for Large Scale Reasoning in Business Intelligence

Xinlong Zhang
College of Computer Science

Zhejiang University
zhangxinlong2012@gmail.com

Bin Cao, Yanming Ye
College of Computer Science

Zhejiang University
{caobin, yeym}@zju.edu.cn

Abstract-Business intelligence plays a crucial role in modern
business. Nevertheless, present business intelligence is not in a
position to provide comprehensive business advices owing to
limitations on the scope of data and satisfy the indispensable
timeliness for business activities. To address these problems,
we propose an architecture for business intelligence which
could reason on data from numerous domains and provide
different users with disparate business advices and results.
Furthermore, in our architecture, the production system used
to reason depends on MapReduce programming model to
implement production rule matching concurrently in different
computers with the Rete algorithm. Adopting MapReduce
programming model enables production system to obtain more
impressive efficiency in rule matching, especially when it
comes to a large-scale rules and facts. What’s more, we also
adopt two conflict-resolving polices to decide in which
sequence matched production rules are executed. In this paper,
we firstly describe the architecture and then illustrate the
particular implementation of this architecture.

Keywords-Business intelligence, Production System,
MapReduce, Timeliness

I. INTRODUCTION

For the purpose of companies’ continuous development
as well as eliminating the risk from company’s daily
operation, business leaders are supposed to make decisions
based on the past information and previous experience.
However, due to the rapidly growing number of business
data, business leaders have been incapable of analyzing
these huge data, thereby being unable to make accurate
conclusions from them. Consequently, people begin to
introduce business intelligence into the process of business
decision-making which is first proposed by Gartner Group.

Business intelligence [1, 2] is mainly composed of two
crucial steps. The first one is to extract useful data from
companies’ database and transform these data into useful
knowledge by the means of data mining and OLAP[3]. The
other one is to provide useful advices to business leaders via
knowledge reasoning on the knowledge generated from step
one. In order to implement knowledge reasoning, people
need certain techniques of knowledge representation to
transform knowledge into certain data structures which are
used to describe knowledge and can be accepted by
computers. Generally, there are four basic techniques for
representing the acquired knowledge which are logical
representation, semantic networks, frames and production
rules. In business intelligence, the technique of production
rules is frequently used to represent knowledge. Through
transforming knowledge into production rules, people can

complete the process of reasoning by the firing of facts and
production rules in the production systems.

Nevertheless, there are two limitations on present
business intelligence systems. First, most of present
business intelligence systems only serve a hint of companies,
thereby only containing knowledge confined to certain
related domains. Second, attend with increasing number of
business data and the production rules transformed from
such data, the central production system employed in
Business intelligence nowadays need to spend a lot of time
on production rules matching and thus cannot satisfy
timeliness which is essential to business intelligence.

Therefore, we would propose architecture for business
intelligence which could reason on information from
multiple domains to serve a great many firm. In the
meanwhile, this architecture introduces MapReduce[4]
programming model which is widely used to perform
large-scale data in the distributed and parallel way as well as
employs necessary conflict-resolving polices. Therefore,
this architecture can enable production system to perform
production rules matching concurrently in different
computers as well as provide many corporate with more
comprehensive results, thereby improving the efficiency in
production rules matching and finally achieve better
timeliness.

This paper is organized as follows. Section 2 describes
some rerlated works. Then we will generalize the
architecture we proposed in section 3 and discuss in details
the implementation and prototype of this architecture in
section 4. In section 5, we would make conclusion about
this paper and point out several negative aspects that should
be eliminated for achieving better job in the future.

II. RELATED WORK

So as to improve the efficiency in production rule
matching in all kinds of intelligence system, numerous
researches and experiments have been done. Forgy proposed
the efficient algorithm of Rete[5] in1970s and then several
improved algorithms[6,7,8] for Rete are proposed.But all
these algorithms only implement reasoning on single
computer and thus could not provide satisfactory speed in
rule matching, so some scientists began to study how to
implement rule matching and firing concurrently. In the
term of parallel rule matching, C. Dou proposed a
highly-parallel two layer match architecture [9] using
specific associative matching processor (AMP) to speed up
the time for rule matching of production system. Different
from above architecture, we propose a MapReudce-based

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1544

architecture for production system which could implement
rule matching in any number of computers, thereby can get
better efficiency in rule matching. In the term of parallel
rule firing, Ishida and Stolfo employed data dependency
graph[10,11] to analyze the interdependency of two rules
and ultimately proposed a selection algorithm for parallel
rule matching. Moreover, Ching-Chi Hsu and Feng-Hsu
Wang proposed an Object Pattern Matching model[12] to
interpret the dependency between production rules and
based on the rule dependency analysis they developed a new
conflict resolution principle, Search Ahead Conflict
Resolution(SACR), to implement parallel rule firing.
Compared with them, the architecture we propose could fire
rules concurrently through dividing firing results into certain
categorizes.

III. ARCHITECTURE

The architecture (Figure 1) we proposed consists of user,
master, worker, data mining, OLAP and data pool.

The working process of this architecture is made up of
two parts. The first part is to collect information and
transform them into production rules. Another one is to
reason based on these production rules in the production
system. Now we will discuss these two parts respectively.

A. The process of managing data

Compared with traditional business intelligence, our
architecture could include information from multiple
domains and thus has the capacity to provide more
comprehensive results for users. For instance, a company
engaged in transportation industry must consider numerous
factors regarding many domains such as weather, the price
of oil, political environment and so on. Therefore, due to the
limitation on the necessary information, traditional business
intelligence cannot offer this company such useful advices
as which transport routes this company should choose.
However, due to the inclusion of many domains, the
business intelligence based on our architecture would
definitely help this company with the route-choosing
problem.

The key steps of this process are as follows:
1. System collects a myriad data from many domains

such as meteorology, stock market, every industry and so on
and stores these data in the data warehouse.

2. System searches the data in the warehouse for useful
information through data mining and then employs OLAP to
obtain knowledge from such useful information.

3. System transforms knowledge obtained in the last step
into production rules and passes these production rules to
production system for reasoning.

B. The process of reasoning
The process of reasoning in the MapReduce-based

production system could be divided into five phases as
follows:

1)Preparation stage:
In this phase, firstly masters would analyze production

rules from multiple domains into sub-rules. Then these

sub-rules would be distributed to multiple workers under the
consideration of load balance.

2)Build phase:
In this phase, each worker would build received

sub-rules into a Rete net respectively with the Rete
algorithm.

3)Map Phase:
In this phase, the master would pass facts coming from

multiple sources to workers with certain strategy firstly.
Then facts on every worker would go through the
accordingly Rete net one by one and workers would
transmit fired sub-rules and corresponding facts to workers
which implement reduce phase.

4)Reduce phase:
In this phase, workers would receive results generated

from last phase and reduce them so as to find the production
rules which can be fired. Then workers would return these
fired production rules to master.

5)Conflict-resolving phase:
In this phase, master would insert all of fired production

rules into agenda which could decide the execution order of
these rules. After every production rule matching with
certain fact is executed, master would transmit results to
corresponding persons or organizations.

From the description above, we could know that this
architecture would definitely improve the efficiency for rule
matching especially in terms of large-scale production rules
and could provide results for clients who expect them.

IV. IMPLEMENTATION AND PROTOTYPE

Before illustrating our architecture, we will give some
definitions and notations.

Definition 1 (Production rule)
Production rule is made up of LHS and RHS. LHS is

finite set of condition and RHS is a finite set of action or
conclusion.

Definition 2 (Sub-rule):
Sub-rule is the rule which contains only one condition

coming from specific production rule. Therefore, LHS of
sub-rule possesses merely one condition. And RHS of
sub-rule also only contains one action which could generate
a mark indicating such sub-rule has been fired by certain
fact.

Definition 3 (Sub-rule base):
After the production rules in the rule base is analyzed

into sub-rules, the sub-rules of this rule base can be viewed
as the following matrix:

1,1 1,

(, ,)

,1 ,

m

n m SR

n n m

SR SR

MR

SR SR

In the matrix above,

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1545

1. n represents for the number of production rules.
2. m represents for the max number of sub-rules

generated from all of production rules.
3. SR represents for sub-rule defined in the definition 2.

4. We use jiSR , to represent for the j sub-rule

generated from i production rule, where mi 1

and nj 1 .

5. If the number of sub-rule generated from certain
production rule is less than m, then we could equate the rest
sub-rule of such production rule with null.

Definition 4 (index):
We could denote certain sub-rule by index uniquely.

Then srSR , is the s sub-rule of r production rule,

when srindex , .

Now we would discuss the particular implementation
and prototype of the production system in our architecture.

1) Transformation phase
At first, the system searches the data from the data

warehouse for useful information through data mining and
employs OLAP to obtain knowledge from such useful
information. Then the system transforms knowledge
obtained into production rules which would be passed to the
master.

2) Preparation phase
At first, the master collects production rules coming

from business intelligence and analyzes these production
rules into sub-rules to constitute a sub-rule base. Then the
master retrieves the load information of every worker in this
distributed system and depends upon such load condition to
distribute sub-rules to workers. In this process of
distribution, besides load balance we should also take net
transmission into account because the time for transmitting
sub-rules may be quite huge comparatively.

3) Build phase
At first, every worker that have received sub-rules builds

a Rete net respectively based on its own sub-rules with the
Rete algorithm. After that, every worker sends a message to
inform master that the Rete net is built. The Rete algorithm
can provide impressive efficiency for rule matching, though
is at the expense of some space costs.

4) Map phase
At first, the master receives facts from many sources

such as sensors, web server, ERP system and stock market
and passes such facts to all of workers implementing
mapping in a queue. When facts arrive at workers, the
process of rule matching begins. The pseudo code for Map
function is showed in Figure 2:

Function Map ($fact key, array($Sub-Rule) value)
{
 for every Sub-Rule sub-rule in value
 {

if fact matches with this sub-rule;

 {
 Obtaining the rule generating this sub-rule

and the index of this sub-rule;
 Store the pair of Key/value: $fact,

array($rule, $index);
 }
 }
}

Figure 2. The pseudo code for Map function

As Figure 2 shows, this function receives facts in a
queue and an array of sub-rule as arguments. Then this
function implements the process of rule matching. When
certain sub-rule is fired by fact, this fact would be stored as
key as well as the rule generate such sub-rule and the index
of such rule would be stored as value.

After Map phase, the pairs of key and value would be
transmitted to other workers which implement reduce phase.
In this process of transmission, every pair of key and value
with the same key would be passed to the same worker

5) Reduce phase
The workers implementing reduce phase can be the

workers implementing the map phase totally but workers
would not implement reduce phase unless their map phases
have been completed. The pseudo code for Reduce function
is showed in Figure 3:

Function Reduce ($fact key, array ($rule, $index)
value)

{
 for every ($rule, $index) in array
 {

 obtaining rule’s present annexing result ($rule,
$index’) and annex index as ($rule, $index’ &
$index);

 if (all indexes rule possesses have been
annexed)

 Store the pair of key and value: $fact,
$rule;

 }
}

Figure 3. The pseudo code for Reduce function

As Figure 3 shows, reduce function receives the pairs of
key and value generated from map phase as arguments.
When all sub-rules that certain production rule possesses are
fired by a fact, this fact would be stored as key as well as
this production rule would be stored as value and this pair of
key and value would be returned to the master.

6) Conflict-resolving phase
After the completion of rule matching, facts and rules

which match successfully would be inserted into agenda. At
this time, there are three conflicting situations: one fact
matches with multiple production rules, one production rule
is fired by multiple facts and multiple facts match with
multiple production rules. Therefore, we need certain
polices to decide which sequence we can adopt to execute
the actions of production rules.

As the business intelligence based on our architecture
could serve users from many industries, the results from

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1546

business intelligence could be categorized according to
different industries.

In our architecture, we design two polices to resolve
conflicts.

Parallel executing policy: When the execution results of
certain production rules are not contained in the same
category of industry, these production rules can be executed
concurrently. This strategy is conducive to save time for
rule executing and thus users can acquire their expected
results timely.

Priority policy based on complexity of rules: When the
execution results of certain production rules belong to the
same category of industry, these production rules ought to
be executed sequentially. At this time, we would choose the
most complex production rule at present to execute firstly.

V. . CONCLUSION AND FUTURE WORK

In this paper we presented the definitions and particular
implementation of MapReudce-based architecture for
production system which is designed for business
intelligence. Our architecture is capable of reasoning on
information from multiple domains for users of many fields
such as transportation, IT and so forth and satisfying the
timeliness required by business intelligence through
implementing matching rules on different workers and
certain conflict-resolving policies.

Even if this architecture can improve the efficiency for
rule matching, it still suffers from several limitations
expected solved in the future. First, we are supposed to
improve the stability and reliability of this architecture by
the means of checkpoints, redundancy policy and so forth.
Moreover, we need to provide certain policy to ensure
information security because production rules are spread

among different workers. Anyway, we still have a lot of
work to improve this architecture.

REFERENCES

[1] F. Cody, T. Kreulen, V. Krishna, S. Spangler. The integration of

business intelligence and knowledge management. IBM System
Journal, 2002, PP 697-713.

[2] P. Luhn. A business Intelligence System. IBM journal of Research
and Development, 2010, PP 314-319.

[3] Surajit Chaudhuri, Palo Alto. An overview of data warehousing and
OLAP technology. ACM SIGMOD Record, 1997.

[4] Jeffery Dean, Sanjay Ghemawat. MapReduce: simplified data
processing on large clusters. Communications of the ACM, V.51, N.1,
2008.

[5] Charlee L Forgy. Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligence, V. 19, N. 1,
1982, PP 17-37.

[6] Anurag Acharya, Milind Tambe. Collection oriented match: Scaling
Up the Data in Production System. Proceedings of the second
International Conference on Information and Knowledge
Management, 1993, PP 516-526.

[7] Ian Wright, James Marshall. The execution kernel of RC++: RETE, a
faster RETE with TREAT as a special case. International Journal of
Intelligent Games and Simulation, 2003, PP 36-48.

[8] B. Berstel. Extending the RETE algorithm for eventmangement.

Temporal Representation and Reasoning, 2002, PP 49-51.
[9] C. Dou. A highly-parallel match architecture for AI production

system using application-specific associative matching processors.

Application-Specific Array Processors, 1993, PP 180-183.
[10] Toru Ishida, S. Stolfo. Towards Parallel Execution of Rules in

Production system Programs. ICPP-85,1985, PP 568-575.

[11] Toru Ishida. Parallel Firing of Production System Programs. IEEE
Trans. KDE, V.3, N. 1, 1991, PP 11-17.

[12] Ching-Chi Hsu, Feng-Hsu Wang. The Search Ahead Conflict

Resolution for Parallel Firing of Production Systems.

Figure 1. The architecture for large scale reasoning in business intelligence

The 2nd International Conference on Computer Application and System Modeling (2012)

Published by Atlantis Press, Paris, France.
© the authors

1547

