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Abstract—To study the M/M/C(n) queuing system in which a 
sever can service multiple customers at the same time, the 
stability equations is constructed, by which the stability 
probability is solved, and then some system operation indexes 
are obtained. Furthermore, based on those operation indexes, 
the number of customers on simultaneous service is optimized, 
some properties for the optimal solutions are obtained, and 
then two algorithms are given to solve the optimal problem. 
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I. Introduction 

Queuing theory have been widely used in so many areas, 
such communication, computer net work, business, etc. In 
traditional queuing models, one server can only service one 
customer at the same time. But in many practice, for 
example, a server can service multiple customers 
simultaneously. For example, a network server can service to 
multiple clients simultaneously ， server of an online 
customer service system can provide customer service for 
multiple users, etc. 

When a server can service multi-customer at a same time, 
the system’s operation efficiency will be effect by the 
number of customers on simultaneous service. For different 
service number, how does the queuing system operation 
efficiency change? Which service number can optimize the 
system efficiency? We will study those problems. 

The remainder of the paper is organized as follows. 
Section 2 describes our modeling assumptions and constructs 
the system model. Section 3 discusses the optimize models, 
and some properties for the optimal solutions are obtained, 
based on which algorithms are given to solve optimal 
problems. Section 4 gives a numerical example to illustrate 
our results. Finally, Section 5 is a concluding section. 

II. Model 

Consider the following M/M/C(m) queuing system: 
Customers arrive according to a homogeneous Poisson 
process with intensity  . The number of server is C , and 
each server can service multi-customer simultaneously. The 
service time of each service is an independent negative 
exponential distribution random variable. The service rate of 

server Cii ,...,2,1,   is )(mi , which depend on the 

number of customer on simultaneous service, m . 

Given the number of customer on simultaneous service 

for server Cii ,...,2,1,   by im , where 
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service rate of the queuing system will be 
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The maximum service rate of the queuing system with k  

on service customer is max ( )
i

k k i
m

u u m .   

The decision maker can adjust the queuing system’s 
simultaneous service number n . If the customer number k  
no more than n , the queuing system can simultaneous 

service all k  customers, and the service rate is k ; else, 

the queuing system can only simultaneous service n , and 

the service rate is n .  

Denote kP  represent the stability probability of that the 

re are k  customer in the queuing system. By use of the 
related theory of markov  chain, we can obtain the following  
state transition equation:  
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Rearrange the above equation, we can obtain: 
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where /k k   is called traffic intensity.  

Also because that 
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          (4) 

Substituting this into formula (3), we can obtain the solution 

of kP .  

If 1n  , then the customer number approach infinity 

with probability 1, the queuing system will never approach 
stability. 
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By use of the solution of kP , we can obtain the follows 

system stability operating indexes: 

1) Average Waiting Queue Length (average waiting 
customer number in the system) 
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2) Average Queue Length (average customer number in 
the system)  
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3) Average Waiting Time of Customers 

( ) ( )s sW n L n                                 (7) 

4) Average Stay Time of Customers  

( ) ( )q qW n L n                              (8) 

Smaller the value of the above four indexes, better the 
operation situation of the queuing system. In the next section, 
we will discuss how to control the number of simultaneous 
serviced customer of the queuing system to minimize those 
indexes. 

III. Decision of the Number of Simultaneous Service 
Customer n 

In the four operation index, Average Waiting Queue 
Length and Average Waiting Time of Customers are 
consistently, Average Queue Length and Average Stay 
Time of Customers are consistently. Therefore, we only 
need to discuss the following two problems. 

1) Minimize the Average Waiting Queue Length 
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Denote the optimal solution of which by sN . 

2）Minimize the Average Queue Length 
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Denote the optimal solution of which by qN . 

Let 1 min{ max 1 2 }l kN l k         and 

2 max{ max 1 2 }l kN l k         denote the 

maximum and minimum customer number that maximize or 

minimize the service rate k  respectively. Obviously, 

1 2N N . Let 3N  denote the maximal k  that makes 

service rate k  grater than arrive rate . 

Follow from the forgoing discussing, we know that only 

if n <1, the queuing system can approach to stability. 

Because that for any given 3n N , the system’s traffic 

intensity no less than 1, so we only need to discuss model (9) 

and (10) in the in the bound of 3{1,2,..., }N .  

The optimal solution sN  and qN  have the following 

property. 

Theorem 1 1 2 3q sN N N N N    . In the other 

word, the optimal solution of model (9) no less than 2N , 

and the optimal solution of model (10) no more than 1N . 

Prof. 1) We will prove that 2 sN N  firstly. We only 

need to prove that for all 2n N , 2( ) ( )s sW n W N , or 

2( ) ( )s sL n L N . 
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2) We next prove 1qN N . We only need to prove that 

for all 1n N , 1( ) ( )q qW n W N  or 1( ) ( )q qL n L N . 

For any 1n N , follow from the definition of 1N , we 

have 
1Nn   , so that 1( ) ( )q qL n L N . 

Combine 1) and 2), the theorem is proved.                  � 

For Convenient, denote 
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Then formula (5) and (6) can be rewritten to  
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nA  and nB  have the following recurrence relations 
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 (12) 
By use of Theorem 1 and recurrence rations formula 

(12), we can give follows algorithms to solve optimal model 
(9) and (10) respectively:: 

Algorithm 1 (Minimize the Average Waiting Queue 
Length/ Average Waiting Time of Customers) 

Step1: Input value of each parameter, and let 2n N , 
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Step2: If 1n  , then compute ( )sL n  by formula (11); 

Step3: If ( )s sL n L , then ( )s sL L n , sN n ; 

Step4: If 3n N , then 
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A
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
  , 1n n  , go to 

step 2; 

Step5: Output the minimal average waiting queue length 

sL , the minimal average waiting time of customers 

s sW L   , and the related optimal number of 

simultaneous serviced customer sN . 

 

Algorithm 2 (Minimize the Average Queue Length/ 
Average Stay Time of Customers)  

Step1: Input value of each parameter, and let 1n  , 

1 11A   , 1 0B  , qL   , 0qN  ; 

Step2: If 1n  , then compute ( )sL n  by formula (11); 

Step3: If ( )q qL n L , then ( )q qL L n , qN n ; 

Step4: If 1n N , then 
1
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1n n  , go to step 2; 

Step5: Output the minimal average queue length qL , 

the minimal average stay time of customers q qW L   , 

and the related optimal number of simultaneous serviced 

customer qN . 

IV. Numeral Study 

Consider a queuing system, there is 1 server, customers 
arriving according to a Poisson process with intensity 2; the 
service rate is 

16
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And the related traffic intensity is 

12 ( 3)
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By analysis k , when k =3 or 4, k  approach its 

maximum 0.5, thus 1N =3 and 2N =4; when k  10, 

1k  , thus 3N =9. Therefore, we only need to discuss the 

optimal solution from 1 to 9. 

Table 1 gives operation indexes of the system for 
different n . In which, when 1n  , traffic intensity 
n=1.25>1, the system can not approach stability; when 

13n N  , the average queue length obtains minimum 

2.0902, and the average stay time obtains minimum 1.0451; 

when 25n N  , the average waiting queue length 

obtains minimum 0.0757, and the average waiting time 
obtains minimum 0.0378. 

 

Table 1 Operation indexes for different n  

n n Ls(n) Ws(n) Lq(n) Wq(n) 

1 1.2500 - - - - 

2 0.6250 0.8013 0.4006 2.3397 1.1699 

3 0.5000 0.2049 0.1025 2.0902 1.0451 

4 0.5000 0.1025 0.0512 2.1926 1.0963 
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5 0.5500 0.0757 0.0378 2.2999 1.1499 

6 0.6250 0.0764 0.0382 2.4080 1.2040 

7 0.7143 0.1060 0.0530 2.5487 1.2744 

8 0.8125 0.2225 0.1112 2.8274 1.4137 

9 0.9167 1.0946 0.5473 4.1334 2.0667 

 

V. Conclusion 

We studied a queuing system in which a serer can 
service multi-customer simultaneously. For given 
simultaneous service number, we obtained four operations 
indexes of the system: Average Waiting Queue Length, 
Average Queue Length, Average Waiting Time, and 
Average Stay Time. Based those indexes, optimize models 

are constructed, and some properties for the optimal 
solutions are obtained, and then two algorithms are given to 
solve the two optimal problems respectively. 
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