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Abstract—An ACO-based hyper-parameter selection for least 
squares support vector machines (LS-SVMs) was trained to 
predict the topology of transmembrane β strands proteins. It 
should be stressed that it is very important to do a careful 
model selection of the tuning parameters for LS-SVM. In this 
paper, a novel hyper-parameter selection method for LS-SVMs 
is presented based on the ant clony optimization (ACO). 
Optimal LS-SVMs parameters for RBF kernel are selected to 
predict the topology of the transmembrane β strands proteins. 
The feasibility of this method is examined on one test database 
set. For the testing database, the present LS-SVMs method 
with RBF kernel predicts higher accuracy than SVM and 
HMM method. The simulation result shows that this prediction 
model for transmembrane β strands proteins is accurate. 

Keywords-transmembrane β strands; LSSVM; ACO; 
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I. Introduction 

Membrane proteins are an abundant and functionally 
relevant subset of proteins that putatively include from 
about 15 up to 30% of the proteome of organisms fully 
sequenced. These estimates are mainly computed on the 
basis of sequence comparison and membrane protein 
prediction. It is therefore urgent to develop methods capable 
of selecting membrane proteins especially in the case of 
outer membrane proteins, barely taken into consideration 
when proteome wide analysis is performed. This will also 
help protein annotation when no homologous sequence is 
found in the database [1]. 

At present, two types of membrane proteins have been 
characterized: The first includes all the proteins that to a 
different extent interact with the lipid bilayer of the 
cytosplamic membrane of all cells [2]; the second group 
includes those proteins that during the last 10 year have 
been discovered in the outer membrane of bacteria, 
chloroplasts, and mitochondria [3]. A major distinguishing 
feature of membrane proteins of the first type is that they 
span the cytoplasmic membrane with α-helixes, whereas 
those of the second type interact with the outer membrane 
with antiparallel β-strands forming barrels, existing as 
monomers and oligomers [4]. These chains, referred to as 
β-barrel membrane proteins [3,5], comprise the archetypal 
trimeric porins of Gram-negative bacteria consisting of 
water-filled channels that nonspecifically mediate the 
passive transport of ions and small hydrophilic molecules 
(<6 kD) or select for certain molecules such as 
malto-oligosaccha-rides [6].  

Outer membrane proteins solved so far at atomic 
resolution interact with the external membrane of bacteria 
with a characteristic β barrel structure comprising different 
even numbers of β strands (β barrel membrane proteins). In 
this they differ from the membrane proteins of the 
cytoplasmic membrane endowed with α helix bundles (all 
alpha membrane proteins) and need specialized predictors 
[1].  

Support vector machine (SVM) has been applied to 
predict the transmembrane β-strands of the outer membrane 
proteins. Paper [7] describes a method developed for 
predicting transmembrane β-barrel regions in membrane 
proteins using machine learning techniques: artificial neural 
network (ANN) and SVM. The SVM model was modified 
by adding 36 physicochemical parameters to the amino acid 
sequence information. ANN- and SVM-based methods were 
combined to utilize the full potential of both techniques. In 
paper [8], three feature classes were calculated from protein 
sequences: amino acid compositions, dipeptide 
compositions and weighted amino acid index correlation 
coefficients. Then, three feature classes were combined and 
inputted into a support vector machine (SVM) based 
predictor to identify Outer membrane proteins (OMPs) from 
other folding types of proteins.  

According to Vapnik’s ‘‘the nature of statistical learning 
theory’’ [9], using tactics such as introducing a kernel 
function, both nonlinear pattern recognition problems and 
regression problems can be converted into linear ones, and 
finally deduced to mathematical problems of Quadratics 
Programming (QP). This category of SVM uses the 
inherently sparse loss functions, such as epsilon-insensitive 
loss function, Laplacian loss function, Huber’s robust loss 
function and so on [10]. They are derived from statistical 
tools and theories, leading to sparse and robust 
approximations of certain problems [11-13]. However, it 
requires solving a QP with inequality constraints, which is 
complicated and time consuming. And to keep the 
sparseness and robustness of estimation, loss function 
should be carefully chosen depending on the problem [14]. 

Least squares support vector machines (LS-SVMs) are 
introduced by Suykens et al. as reformulations to standard 
SVMs [15-16] which simplify the training process of 
standard SVM in a great extent by replacing the inequality 
constraints with equality ones. The simplicity of LS-SVMs 
promotes the applications of SVM and many pattern 
recognition and regression problems have been tackled with 
LS-SVMs in the last decade [17]. 
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Similar to SVM, LS-SVMs also has the problem of 
parameter selection. A novel algorithm of parameter 
selection is proposed based on the principles of the ant 
colony optimization (ACO). ACO is based on the behavior 
of a group of artificial ants in search of a shortest path from 
the source to the destination. These artificial ants mimic real 
ants in nature in search of food from the nest to the 
destination. The ants deposit a chemical substance called 
pheromone that other ants can sense on their journey to the 
destination. The ants interact with each other and the 
environment using the pheromone concentration. As with 
any perfume, if not reapplied, the scent evaporates. As the 
ants travel, the longer paths lose their pheromone 
concentration making the ants to choose the shortest path 
[18]. In this paper, ACO is applied to select the 
hyper-parameters of LS-SVMs. 

II. Least squares support vector machines for nonlinear 
function estimation 

For a regression problem with training set  ,k kx y , 

1, 2, ,k N  , ,n
k kx R y R  ,  in the primal 

weight space, optimal problems of LS-SVMs can be 
formulated as follows: 
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where   : hnnR R   is a function mapping the 

input space into a so-called higher dimensional (possibly 
infinite dimensional) feature space, weight vector 

hnw R is in primal weight space, ie R  is error 

variables, b  is bias term and   is an adjustable constant. 

According to Eq. (1), we construct the Lagrangian 
function as 
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where ( 1, )i i N    are the Lagrange multipliers 

(called support vector). The conditions for optimum are 
given by 
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After eliminating variables of ( , )w e , we obtain the 
solution 
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where   and b  are the solution to Eq. (4).  

The kernel function ( , )iK x x  is any symmetric 

function that satisfies Mercer’s condition. The typical 
examples of kernel function include linear, polynomial, 
radial basis function (RBF) kernel. 

III. Hyper-parameter selection based on ACO 

A Ant colony optimization (ACO) 

ACO belongs to the class of biologically inspired 
heuristics. The basic idea of ACO is to imitate the 
cooperative behavior of ant colonies. ACO for solving 
combinatorial optimization problems was put forward by 
Colorni et al. [19]. The principle of these methods is based 
on the way that ants search for food and find their way back 
to the nest. During trips of ants a chemical trail called 
pheromone is left on the ground. The role of pheromone is 
to guide the other ants towards the target point. For one ant, 
a path is chosen according to the quantity of pheromone 
[20]. 

In ACO [21], a finite size colony of artificial ants is 
created. Each ant builds a solution. While building its own 
solution, each ant collects information based on the problem 
characteristics and its own performance. The performance 
measure is based on a quality function ( )F  . The ACO 
method can be applied to discrete combinational problems, 
where solutions to the optimization problem can be 
expressed in terms of feasible paths on a graph. Among all 
feasible paths, ACO aims to locate the one with a minimum 
cost. The problem of selecting the consequent of fuzzy rules 
can be designed as a combinational problem and solved by 
ACO. The information collected by the ants during the 
search process is stored in pheromone trails s associated to 
the connection of all edges. The ants cooperate in finding 
the solution by exchanging information via the pheromone 
trials. Edges can also have an associated heuristic value g . 
The g  value represents a priori information about the 
problem instance definition or run-time information 
provided by a source different from the ants. The heuristic 
information is auxiliary in ACO and ACO works even 
without the use of it. Once all ants have completed their 
tours (i.e., at the end of the each iteration), ACO algorithms 
update the pheromone trails using all the solutions produced 
by the ant colony. 

The whole ACO algorithm can be described by taking 
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the traveling salesman problem (TSP) as an example. The 
TSP is to find a minimal length with each city visited once. 
We are given a set of 

N cities, represented by nodes, and a set E of edges with 

fully connecting nodes N. Let ijl  be the length of the 

( , )edge i j , that is the distance between cities i and j, with 

,i j E . At each iteration t, an ant in city i has to choose 
the next city j to head for from among those cities that it has 
not yet visited. The probability of picking a certain city j is 
calculated using the distance between cities i and j, and the 
amount of pheromone on the edge between these two cities. 
Ant colony system (ACS) algorithm was introduced to 
improve the performances of the basic algorithm [22] on big 
size problems [23]: 

B ACO-based hyper-parameter selection 

There are two key factors to determine the optimized 
hyperparameters using ACO: one is how to represent the 
hyper-parameters as the particle’s position, namely how to 
encode. 

Another is how to define the fitness function which 
evaluates the goodness of an ant. These two key factors are 
given as follows: 

Encoding hyper-parameters: the optimized 
hyper-parameters for LS-SVMs include kernel parameter 
and regularization parameter. In solving hyper-parameter 
selection by the ACO, each ant is requested to represent a 
potential solution, namely hyper-parameters combination. 
So let us denote an m-hyper-parameters combination as a 
vector of dimension m. For example, if radial basis function 
is chosen as a kernel function, we denote the vector as 

) （ , , where   is the regularization parameter,   
are kernel parameter.  

Fitness function: the fitness function is the 
generalization performance measure. There are some 
different descriptions for the generalization performance 
measure.  

In ACO, the fitness value is used to evaluate goodness of 
the particles, namely hyper-parameter combination. An ideal 
fitness value should reflect the generalization performance 
of LS-SVMs for different hyper-parameter combination.  

The k -fold cross-validation method is used to define 
the fitness value. K -fold cross validation is one way to 
improve over the holdout method. The data set is divided 
into k  subsets, and the holdout method is repeated k  
times. Each time, one of the k  subsets is used as the test 
set and the other k -1 subsets are put together to form a 
training set. Then the average error across all k  trials is 
computed. The advantage of this method is that it matters 
less how the data gets divided. Every data point gets to be in 
a test set exactly once, and gets to be in a training set k -1 
times. The variance of the resulting estimate is reduced as 
k  is increased. The disadvantage of this method is that the 
training algorithm has to be rerun from scratch k  times, 
which means it takes k times as much computation to make 
an evaluation. A variant of this method is to randomly 
divide the data into a test and training set k  different 
times. The advantage of doing this is that you can 

independently choose how large each test set is and how 
many trials you average over [24]. 

In the simulations, k  is five. To define the fitness 
value, we perform the five-fold cross validations with data 
in the training set for each particle and the average correct 

rate is taken as the fitness value, denoted as 5Avetest  

[25]. 

Therefore, the corresponding fitness can be determined. 
The fitness of a particle is evaluated by the following 
formulation: 

5if Avetest                               (7)          

where if  is the fitness of ant i, and 5Avetest  is the 

fitness value. 

V. Results and discussion 

A Selection of the optimal LS-SVMs parameter 

Some 600 sequences of outer membrane proteins are 
annotated in the Swiss Prot database, 400 of which are from 
bacteria. 

The precision and convergence of LS-SVM are affected 
by regularization parameter   and kernel width  . For 
the effective application of LS-SVMs, there is a need for a 
method to estimate these two parameters. So in order to 
obtain high level for predicting transmembrane   strands, 
  and   in the LS-SVMs have to be tuned by ACO 
method.  

The optimal values for the regularization parameter   

and the kernel parameters   with RBF kernel are shown 
in Fig. 1. In the final optimal LS-SVMs parameters are:   
= 1311.9,   = 0.6655. 

 
Fig. 1 The optimal values for the regularization parameter γ and the 

kernelparameters σ of LS-SVM with RBF kernel 

B Simulation results of the testing database 

We have predicted the transmembrane   strands for 
the testing database and compared our results with SVM 
and HMM method. The results are presented in table 1. 
From this table, we observe that the present method for 
LS-SVMs with RBF kernel predicts the transmembrane β 
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strands with higher accuracy than SVM and HMM method. 
These indicate LS-SVM is a powerful tool for predicting 
transmembrane   strands and our LS-SVMs model 
presented in this paper is accurate and valid. 

 

Table 1 Comparisons of the performance between ACO-based 
hyper-parameter selection for LS-SVMs and other methods. 

 
2Q  ( )Q   ( )Q c  ( )P   ( )P c  ( )C  ( )Sov 

LS-SVM 
Testing 

0.90 0.86 0.88 0.87 0.86 0.83 0.89 

SVM-Testing 0.82 0.83 0.82 0.81 0.78 0.73 0.81 
HMM testing 0.78 0.75 0.72 0.74 0.76 0.68 0.76 

 

VI. Conclusion 

We develop a least-squares support vector machines 
(LS-SVMs) model, which can predict the topology of β 
membrane proteins. LS-SVM has the problem of parameter 
selection. The selection of hyper-parameters plays an 
important role to the performance for transmembrane   
strands prediction of LS-SVMs. The ACO method was 
proposed to select hyper parameter of LS-SVM. Simulation 
results are provided for showing the efficiency of the 
proposed method. From experimental result we observe that 
the present method for LS-SVMs with RBF kernel predicts 
the transmembrane β strands with higher accuracy than 
SVM and HMM method. Research results show that this 
model has high prediction precision, and it satisfies the need 
of β membrane proteins prediction. 

Acknowledgement 

The authors acknowledge the support of the South 
China Normal University and South China University of 
Technology. The work was support by the project of 
research of support vector machine in classification and 
regression, under project number Guangdong financial 
education (2008) 342. The work was also support by 
Guangdong province natural science fund (project No. 
8151063101000040). 

REFERENCES 
[1] Pier Luigi Martelli, Piero Fariselli, Anders Krogh, and Rita Casadio. 

A sequence-profile-based HMM for predicting and discriminating β 
barrel membrane proteins. Bioinformatics, vol. 18 suppl.1 2002 
s46-s45. 

[2] White, S.H. and Wimley, W.C. Membrane protein folding and 
stability:Physical principles. Annu. Rev. Biophys. Biomol. Struct. 
1999 28: 319–365. 

[3] Schulz, G.E. 2000. β-barrel membrane proteins. Curr. Opin. Struct. 
Biol. 10: 443–447. 

[4] Cowan, S.W. and Rosenbusch, J.P. 1994. Folding pattern diversity of 
integral membrane proteins. Science 264: 914–916. 

[5] Gouaux, E. 1998. Roll out the barrel Nat. Struct. Biol. 5: 931–932. 

[6] Irene Jacoboni, Pier Luigi Martelli, Piero Fariselli, Vito De Pinto, and 
Rita Casasio. Prediction of the transmembrane regions of β-barrel 
membrane proteins with a neural network-based predictor. Protein 
Science (2001), 10:779–787.  

[7] Navjyot K. Natt, Harpreet Kaur, and G. P. S. Raghava. Prediction of 
Transmembrane Regions of β-Barrel Proteins Using ANN- and 
SVM-Based Methods. PROTEINS: Structure, Function, and 
Bioinformatics 56:11–18 (2004).  

[8] Zou L, Wang Z, Wang Y. Prediction of outer membrane proteins using 
support vector machine with combined features. Sheng Wu Gong 
Cheng Xue Bao. 2008 Apr;24(4):651-8. Chinese.  

[9] V. Vapnik, The Nature of Statistical Learning Theory,Wiley, New 
York, USA, 1995. 

[10] V. Vapnik, S. Golowwich, A. Smola, Support vector method for 
function approximation, regression estimation and signal processing, 
Adv. Neural Inform. Process. Systems MIT Press 9 (1997) 281–287. 

[11] G.W. Flake, S. Lawrence, Efficient SVM Regression Training with 
SMO, Machine Learning, Vol. 46, Kluwer Academic Publishers, 
Netherlands, 2002, pp. 271–290. 

[12] B. Scholkopf, A.J. Smola, R.C. Williamson, P.L. Bartlett, New 
support vector algorithms, Neural Comput. 12 (4) (2000) 1207–1245. 

[13] Smola, A.J. and B. Schölkopf: A Tutorial on Support Vector 
Regression. Statistics and Computing 14(3), 199-222 (2004). 

[14] Wen Wen, Zhifeng Hao, Xiaowei Yang. A heuristic weight-setting 
strategy and iteratively updating algorithm weighted least-squares 
support vector regression. Neurocomputing 71 (2008) 3096– 3103. 

[15] J.A.K. Suykens, J. Vandewalle, Least squares support vector machine 
classifiers, Neural Process. Lett. 9 (3) (1999) 293–300. 

[16] J.A.K. Suykens, L. Lukas, J. Vandewalle, Sparse approximation using 
least squares support vector machines, in: Proceedings of the IEEE 
International Symposium on Circuits and Systems (ISCAS 2000), vol. 
2, 2000, pp. 757–760. 

[17] X.C. Guo, J.H. Yang, C.G. Wu, C.Y. Wang, Y.C. Liang. A novel 
LS-SVMs hyper-parameter selection based on particle swarm 
optimization. Neurocomputing 71 (2008) 3211– 3215. 

[18] Jianping Wang, Eseosa Osagie, Parimala Thulasiraman, Ruppa K. 
Thulasiram. HOPNET: A hybrid ant colony optimization routing 
algorithm for mobile ad hoc network. Ad Hoc Networks 7 (2009) 
690–705.  

[19] Colorni A, Dorigo M, Maniezzo V. The ant system: an autocatalytic 
process. Technical report no. 91-016, Politecnico di Milano, Italy, 
1991. 

[20] Saadettin Erhan Kesena, M. Duran Toksari, Z¨ ulal G¨ ung¨ 
orc,ErtanG¨ unerc. Analyzing the behaviors of virtual cells (VCs) and 
traditionalmanufacturing systems: Ant colony optimization 
(ACO)-basedmetamodels. Computers & Operations Research 36 
(2009) 2275 – 2285. 

[21] Dorigo, M., & Stützle, T. (2004). Ant colony optimization. MIT. July. 

[22] Dorigo M, St ¨ utzle T. Ant colony optimization. Cambridge, MA: 
MIT Press; 2004. 

[23] Dréo J, Pétrowski A, Siarry P, Taillard E. Métaheuristiques pour 
l'optimisation difficile. Eyrolles; 2003. 

[24] http://en.wikipedia.org/wiki/Cross-validation. 

[25] P. Meinicke, T. Twellmann, H. Ritter, Discriminative densities from 
maximum contrast estimation, in: S. Becker, S. Thrun, K. Obermayer 
(Eds.), Advances in Neural Information Processing Systems, vol. 15, 
MIT Press, Cambridge, 2002, pp. 985–992. 

 

4




