

A Research of USB Device Redirection Mechanism
over IP network in Desktop Cloud System

Yi-min ZHOU

Dept. of Computer
School of Optical-Electrical and Computer Engineering,

University of Shanghai for Science and Technology
Shanghai, China, 13901854513

Hui-hui GUO

Dept. of Computer
School of Optical-Electrical and Computer Engineering,

University of Shanghai for Science and Technology
Shanghai, China, 18801929086

Abstract—As most existing device sharing technologies are only
abstract operations sharable, such as read and write, virtual
desktop users can’t share the device-specific characteristics of
USB devices attached to cloud terminal. In this paper, we propose
USB device redirection as a peripheral bus extension over an
Internet Protocol (IP) network. Cloud terminal extends the local
peripheral bus to a virtual desktop (VD). The main component of
this extension is a virtual peripheral bus driver, which resides in
the lowest layer in an operating system. Our experiments show
that this approach enables virtual desktop applications to access
diverse features of all USB devices and has sufficient I/O
performance.

Keyword-desktop cloud; virtual desktop; USB device redirection;
IP Network

I. INTRODUCTION

With the rapid development of computing technology and
high-speed internet technology, more and more enterprises
commit to implement high resource utilization and data
security. Conventional work environment that comprise
multiple computers connected via a local area network (LAN)
is unable to meet enterprise users’ demands. Cloud computing
is a new way of internet resource utilization [1]. Resources
provided via internet are virtualized and can be dynamic
expanded, which greatly improves the utilization of enterprise
resource and data security.

Desktop cloud system is a private cloud [2] and it has taken
significant changes to traditional desktop management. It
allows cloud terminal to access cross-platform applications and
the whole virtual desktop through a thin-client or any devices
that connected to network [3]. Universal Serial Bus (USB) [4] is
one of the most sophisticated peripheral interfaces, providing
serialize I/O, hot-plug and universal connectivity. It has
become a general interface for most personal computer and
intelligent devices.

Many existing device sharing technologies that based on
LAN have been proposed. However, these technologies are
implemented through the sharing of abstract functions that
reside in a high-level of operating system, such as read and
write. Some low-level features, such as format and divide USB
storage device operations, can’t be shared, so virtual desktop
can’t access these new features of cloud terminal USB devices.

In this paper, we propose USB device redirection as a

peripheral bus extension over an Internet Protocol (IP) network.
Cloud terminal expands the local peripheral bus to a virtual
desktop. We defined the expanded peripheral bus driver as
virtual peripheral bus driver and it resides in the lowest layer of
operating system. Using a virtual peripheral bus driver, virtual
desktop can accesses a diverse range of terminal USB devices
over networks.

II. RESEARCH BACKGROUND AND TARGET

A. Research Background

An operating system is used to manage various resources
on a computer. It also provides some generalized interfaces for
applications (e.g., read and write). However, most traditional
device sharing mechanisms only allow applications to access
remote devices through these abstract functions [5]. Computers
could not share any more lower-layer operations.

Take a storage device as an example in desktop cloud
system. When a hard disk is shared by conventional sharing
mechanism, such as samba [6] or NFS, virtual desktop can’t deal
with this device directly. It controls this device with file
operations provided by remote procedure calls which are
similar to system calls and works fine for storing and retrieving
data. However, with the constantly emerging of new-featured
USB devices, conventional device sharing mechanisms could
not share these new functions for the following reasons:

First, it is the upper-layer abstract functions that sharable,
the more fine-grained and device-specific operations are not
supported. For example, in LINUX operating system, NFS is
implemented using virtual file system (VFS). As VFS resides
in an upper-level layer and VFS protocol does not define
lower-level methods, such as format or eject a remote storage
device, virtual desktop unable to share these I/O operations
when using conventional sharing mechanisms.

Second, since the complex differences between operating
systems, to achieve a high degree of interoperability is difficult.
Many conventional sharing mechanisms only support the same
operating system because they extend abstraction layer for
sharing. As different operating system may have different
abstraction layer and it always causes bad interoperability.

Considering the deficiency of conventional device sharing
mechanism, it is urgently for us to develop a new device
sharing mechanism, which providing device sharing for the

This project is financially supported by Innovation Program of Shanghai
Municipal Education Commission (11YZ121).

National Conference on Information Technology and Computer Science (CITCS 2012)

© 2012. The authors - Published by Atlantis Press197

new-featured USB devices as they are released and possessing
a high interoperability.

B. Research Target

 In traditional operating system, the device driver is used
to communicate with the local physical device and provides an
interface to allow user-land applications to access device
functionality. This mechanism leads to the drawbacks
mentioned above.

 Nowadays, the improvement of computer hardware
makes intelligent peripheral buses (e.g., USB) commonplace.
A device driver is usually separated into two parts: a bus driver
manipulating peripheral interfaces and a per-device driver
controlling devices on the peripheral interfaces. Device drivers
are generally responsible for data transmission with the local
attached device, while the operating system provides dynamic
device configuration.

In this paper, USB device redirection approach extends the
peripheral bus over an IP network by using a virtual bus driver.
The virtual bus driver provides an interface to remote
redirected device by encapsulating peripheral bus request
commands in IP packets and transmitting it through the LAN.
Figure 1 shows the evolution of device driver architecture.

(Stage: conventional (left), current (middle) and virtual (right) respectively)

Figure1. Evolution of Device Driver Architecture

USB device redirection approach fully utilizes existing
dynamic device management mechanism and resolves the
drawbacks of traditional approaches for the following reasons:

First, redirected device is functionally and diversely
available. Since redirection operations are implemented in the
lowest layer of an operating system, the bus driver layer
conceals only the bus differences and does not affect the
per-device operations. Meanwhile, a variety of USB devices
can be redirected in this way, because a virtual bus driver is
independent of the per-device driver, and it supports all the
devices on the peripheral interfaces.

Second, there is no need to modify either existing operating
system or applications to access remote redirected devices. As
the virtual bus driver conceals the implementation details of
network redirection mechanism and device drivers control
remote devices through the virtual bus driver, components of
the operating system and applications do not notice any
difference between the access interfaces of redirected devices

and locally-attached ones.

III. USB DEVICE REDIRECTION

 In this section, we first discuss USB device driver model,
and then detailed describe the design and implementation of
USB device redirection.

A. USB Device Driver Model

 Figure 2 shows each layer of USB device driver. The
granularity of operations on the lower layer is fine-grained.
Data size and temporal restrictions of each operation are
smaller than that in the upper layer.

Figure 2. USB Device Driver Model

A USB Per-Device Driver (USB PDD) is used to control
individual USB device. When applications or other device
drivers request I/O operations to a USB device, USB PDD
converts I/O requests to a series of USB commands and then
transmits them to USB Core Driver in the form of USB
Request Blocks (URBs). A USB PDD only uses a device
address, an endpoint address, an I/O buffer and some additional
information required for device communication.

 USB Core driver is responsible for the dynamic
configuration and management of USB devices. When a new
USB device is attached to the bus, USB Core Driver
enumerates it and then loads an appropriate USB PDD for this
device. USB Core Driver also provides a set of interfaces to the
upper USB PDDs and lower USB Host Controller Drivers.

 A USB Host Controller Driver (USB HCD) is used to
manage the data transmission between host computer and USB
devices. USB HCD receives URBs from USB Core Driver and
then divides them into smaller requests, named Transfer
Descriptors (TDs). TDs are scheduled by their transfer types
and are linked to appropriate frame lists in HCD for delivery to
manipulate USB devices.

B. Design and Implementation

Figure 3 shows the implementation of USB device
redirection in desktop cloud system. We add a Virtual Host
Controller Interface driver (VHCI) as a virtual bus driver. The
VHCI acts as a USB HCD and it converts a URB into a request

198

block and sends it to remote redirected USB device. A Stub
driver in cloud terminal is also added as a new type of USB
PDD. It is used to decode received packets from remote
machine, extract the URBs, and then submit them to the local
USB device.

Figure 3. Design and Implementation of USB Device Redirection

When cloud terminal that attaching a USB device is
connected to a virtual desktop via IP network, the VHCI driver
informs USB Core Driver of port status change. USB Core
Driver maps a USB PDD according to received USB device
information, and then loads an appropriate USB device driver.

When virtual desktop applications access to mapped device,
USB PDD calls usb_submit_urb(struct *urb, ..) to encapsulate
I/O requests into URBs and submit them to a lower layer. The
VHCI driver translates a URB into a SUBMIT PDU (Protocol
Data Unit) (shown in TableⅠ) and transmits it to the Stub
driver by calling vhci_tx_loop(struct *urb, ..).

TABLE I. SUBMIT AND RETURN PDU (PROTOCOL DATA UNIT)

Byte SUBMIT RETURN

0-3 SUBMIT RETURN
4-7
8-11
12-15

bus number
device number
sequence number

16-19

IN/OUT & I/O type & endpoint reserved

20-23
24-27
28-31

transfer flags
buffer length
number of included transaction

32-35
36-39

transaction interval
control buffer

error count
transfer status

40- isochronous descriptors (if available)
 I/O buffer (if available)

The Stub driver receives the SUBMIT PDU via
stub_rx_loop(struct *urb, ..), creates a new URB from it, and
then submits the URB to a real USB host controller by
usb_submit_urb(struct *urb, ..). USB HCD translates incoming
URBs to a series of TDs corresponded to the actual USB
processing frame, which will control the host controller chip to
finish I/O operations of USB device.

When I/O operations completed, USB HCD transmits
return URBs to the Stub driver through USB Core Driver. The
Stub Driver calls stub_tx_loop(struct *urb, ..) to set up a
RETURN PDU (shown in Table Ⅰ), which includes the status
of I/O and input data if available, and then transmit it through
the IP network. The VHCI driver receives a RETURN PDU
and translates it to URBs via vhci_rx_loop(struct *urb, ..), and
finally transmits it to USB PDD through USB Core Driver.
Table Ⅱ shows functions mentioned above.

TABLE II. USB DEVICE REDIRECTION FUNCTIONS

void vhci_tx_loop(struct urb *urb, ..) {
struct pdu *pdu;
while (1) {

if(vhci_urb_enqueue(pdu, urb)<0) break;
if (vhci_send_pdu_submit(pdu) < 0) break;
if (vhci_send_pdu_unlink(pdu) < 0) break;
wait_event_interruptible(pdu->waitq_tx,
(!list_empty(&pdu->priv_tx)||!list_empty(&pdu->unlink_tx))); }

}
void stub_rx_loop(struct urb *urb, ..) {

struct pdu *pdu;
while (1) {

if (usbip_event_happened(pdu)) break;
stub_rx_pdu(pdu);
if(stub_urb_dequeue(urb, pdu)<0) break; }

}
void stub_tx_loop(struct urb *urb, ..) {

struct pdu *pdu;
while (1) {

if (usbip_event_happened(urb)) break;
if(stub_urb_enqueue(pdu, urb)<0) break;
if (stub_send_ret_submit(pdu) < 0) break;
if (stub_send_ret_unlink(pdu) < 0) break;
wait_event_interruptible(pdu->waitq_tx,
(!list_empty(&pdu->priv_tx)||!list_empty(&pdu->unlink_tx))); }

}
void vhci_rx_loop(struct urb *urb, ..) {

struct pdu *pdu;
while (1) {

if (usbip_event_happened(pdu)) break;
vhci_rx_pdu(pdu);
if(vhci_urb_dequeue(urb, pdu)<0) break; }

}

The desktop cloud system transfers all PDUs by a TCP/IP

connection, which is established by user-land software. Socket
descriptor passed to the VHCI and Stub driver is implemented
via /proc file system. The reason why we do not use UDP/IP
protocol is that the characteristics of the transmission errors of
USB and UDP/IP are quite different.

IV. EVALUATION AND CONCLUSION

A. Evaluation

In this section, we will show performances and
characteristics of USB device redirection approach. A desktop

199

cloud system is usually based on Virtual Desktop Infrastructure
(VDI) solutions [7]. The foundation of virtual desktop solutions
is server virtualization. Hypervisor is the core of the most
popular virtualization technologies. We can use it to create a
customized virtual desktop (VD). Administrator in cloud side
deploys the operating system and a variety of applications for
each user. Cloud terminal is connected to virtual desktop
through the IP network, and then visits the virtual desktop via
desktop displays protocol.

TABLE III. EXPERIMENTAL MACHINE INFORMATION

Type Cloud Terminal VDs in Cloud Side
CPU Samsung S5PV210

(ARMCortex-A8)
QEMU Virtual CPU (cpu64-rhel6)

Clock 600MHz-1GHz 2.26GHz

Memory 312M 1G

Operating
System

Debian6.0.4
(linux-2.6.35.7)

Ubuntu11.04(linux-3.0.0-16)
Windows XP SP3
Windows 7 Ultimate SP1

TABLE IV. EXPERIMENT RESULTS

Virtual Desktop in Cloud Side Device
Information

Linux Windows XP Windows 7

Read and Write Speed (MB/s) U-Disk
Data Size

Read Write Read Write Read Write

10M 3.107 2.875 2.728 2.457 2.835 2.594
50M 2.665 2.491 2.564 2.347 2.474 2.378

100M 2.653 2.488 2.471 2.354 2.476 2.367

500M 2.493 2.407 2.378 2.212 2.439 2.198

1G 2.458 2.386 2.382 2.079 2.382 2.127
5G 2.336 2.277 2.263 2.106 2.338 2.083

Printer I/O Operations Performance
Printing OK OK OK
Copying OK OK OK
Scanning OK OK OK

Sound Card I/O Operations Performance

Audio In OK OK OK

Audio Out OK OK OK

Figure 4. Architecture of Desktop Cloud System

Figure 4 builds the experimental environment for USB

device redirection approach. Table Ⅲ shows machine
information of cloud terminal and virtual desktop. Cloud
terminal visits virtual desktop via spice [8], an open source
desktop displays protocol. USB Devices to be evaluated
include three types: storage, control and audio. We choose
Teclast Coolflash USB3.0 U-disk as storage device, capacity
for 8G and USB2.0 compatible. The control device we select is
a Samsung SCS-4x20 series PCL6 multi-function printer.
Audio device is a sound card, 7.1 Channel Sound. Table Ⅳ
shows the evaluation results.

B. Results and Conclusion

 By the experiments, we show that it is reasonable to
expand the peripheral bus over an IP network to implement
USB device redirection in desktop cloud system. We can
functionally use various remote USB devices and different
operating systems can access remote redirected devices
without any modification. Furthermore, the I/O performance of
remote USB devices in LAN is sufficient for actual usage.

 As far as USB device redirection mechanism works
properly, it still has the following drawbacks. First, since
device redirection is implemented in a lower layer of an
operating system and the raw device functions are being shared,
it is unable to provide concurrent access to a remote USB
device. Second, as the proposed approach is sensitive to IP
network, issues such as network delay and jitters will influence
usage of remote redirected devices. Third, USB device
redirection mechanism has only been widely applied in LAN
environment at present.

 In future work, with the application of network lock
mechanism, concurrent access to a remote redirected device
will be realized. Meanwhile, the rapid progress of networking
technologies will alleviate problems of network delay and
jitters. Besides, we will continue to improve the USB device
technology to support various network environments
efficiently, such as a wireless network and a wide area network
(WAN).

REFERENCES
[1]. Q. Zhang, L. Cheng, and R. Boutaba, Cloud computing: state-of-the-art

and research challenges, Journal of Internet Services and Applications
(JISA), Vol. 1, No. 1, pp. 7-18, February 2010.

[2]. Xinyu Miao; Jing Han; The Design of a Private Cloud Infrastructure
Based on XEN, 2011 10th International Symposium on Distributed
Computing and Applications to Business, Engineering and Science.

[3]. A. Berryman, P. Calyam, A. Lai, M. Honigford, VD Bench: A
Benchmarking Toolkit for Thin-client based Virtual desktop
Environments, Proc. of IEEE CloudCom (2010).

[4]. Universal Serial Bus Revision 2.0 specification.
http://www.usb.org/developers/docs/.

[5]. Wonhong Kwon, Han Wook Cho, and Yong Ho Song; Design and
Implementation of Peripheral Sharing Mechanism on Pervasive
Computing with Heterogeneous Environment, College of Information
and Communications, Hanyang University, Seoul, Korea (2007).

[6]. SAMBA, http://us1.samba.org/samba/.

[7]. Prasad Calyam, Rohit Patali, Alex Berryman, Albert M, Lai, Rajiv
Ramnath; Utility-directed resource allocation in virtual desktop clouds,
Computer Networks 55 (2011) 4112–4130.

[8]. SPICE, http://spice-space.org/.

200

