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Abstract—This paper introduces random perturbations into the
established system of stochastic forest evolution, and studies the
system of stochastic forest evolution in Hilbert space, at the same
time, using Kolmogorov’s inequality and Burkholder-Davis-
Gundy’s inequality, analyzes the existence uniqueness of system
of stochastic forest evolution.
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L INTRODUCTION

There has been much recent interest in application of
deterministic  age-dependent mathematical models in
population dynamics. Population system are often subject to
environment noise[ 1,2].For example, Cushing[3], Henson and
Cushing[4] investigate hierarchical age-dependent populations
with intra-specific competition or predation. Allen and
Thrasher[5] consider vaccination strategies in age-dependent
populations. In addition, Pollard[8],Block and Allen[9]study
the effects of adding stochastic terms to discrete-time age-
dependent models that employ Leslie matrices.

Consider the following forest evolution system:

PP ta)P+ f(t phinQ=(0,A)x(0,T),
oa ot

P(0,2) =F,(a),
P(L.0)=y(AM| At.a)Pt.ada, inf0.T],

in[0, A, )

where P(t,a) is the age-area distribution density of forest.
L(t) is the ratio of reforested area to cut area y(t)is the

reforestation percentage. By p(t,a) is denoted the cut ratio.
f(t, p) denotes affects external environment for system, it is

a reduction of area because forest fires and denudation .
Suppose that —y(t,a)P+ f(t,p) 1is stochastically

perturbed with
—u(t, )P+ (t, p) > —p(LR)P+ f (t, p)+ (L, P)ox(t)
Here a.)(t) is white noise. Then this environmentally perturbed

system may be described by the Ito equation
op

4, =——"dt—uta)Pdt+ (¢, pdt+g(t,P)da, inQ=(0,A)x(0,T)
P(0,a) = B,(a), in[0, A] ©)
P(L.0) = /(05| A(t.2)P(t.a)da, in[0,T]

dP is the differential of P relative to 1 ,ie,
d,P = (0P /ot)dt

A new stochastic differential equation model (2) a forest
evolution dynamic system. is derived. It is an extension of

Eq(1).

In this paper, we shall discussion the existence, uniqueness
for a forest evolution dynamic system Eq.(2).

II.  PRELIMINARIES

Let
V=H 1([0, A))

= {(p lpe (0, A]),% < ([0, A,

where 2—(/) is generalized partial derivatives}
X

V is a Sobolev space. H = L*([0, A]) such that V sH=H -V

V' is the dual space of V .We denote by H . ,| . | and " .

*

the norms in V , H and V' respectively ;by <,> the duality
product between V ,V ,and by (., ) the scalar product in
H ,and M a constraint such that m|x| < m||x|| vxeV.

Letw, be a Wiener process defined on complete
probability space (Q), F, P) ,and taking its values in the
separable Hilbert space K, with increment covariance operator
W .Let (F),_, be the o - algebra generated by

{®,,0<s<t}.then @, is a martingale relative to (F,)_, and

we have the following representation of g, :

o = iﬂ (te »{ei }i , is an orthonormal set of eigenvectors of W ,
(S i i 2

i=1
. (t) are mutually independent real Wiener processes with

incremental covariance 4 >0,We, = A¢, and W = Z; A <o

(“tr’ denotes the trace of an operator [13]). For an operator
B eI'(K,H) be the space of all bounded linear operators from

K into H, we denote by ngzits Hilbert-Schmidt norm, i.e.
|BJ; =tr (BWB)-
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In this paper, @, is a real standard Wiener process. Let
C =C([0,T],H) be the space of all continuous function from
[oT] into H with sup-norm |y  =sup,... [p(s)]- Lj =L"([0,TV)
and L, = L°([0,T];H).

Consider the following nonlinear stochastic equation:

ZE ds—I! u(s,a)P.ds

+[} £(s,P)ds+]; g(s.P)dw,,
P(t,0)=y(t) ()]} A(t,a)Pda

R :PO_-[tO

vte[0,T] (¥
Vte[0,T]

Where P =P(t,a),P, = P(0,a).

The objective in this paper is that, we hopefully find a
unique process P el”(0,T;V)NL2(Q;C(0,T;H)), such that (*)
hold.

For this objective, we assume the following conditions are
satisfied: y(t, a), ﬁ(t,a) are nonnegative measurable, and
0< yy < put,a)<o inQ,
0<p(t)<p<w inQ,
0<y(t)<y<wo inQ.

Let f(t,.): 2 — H be a family operator’s defined a.e.t. and
satisfy:
(a.l) f(t,0)=0;
(a.2) 3k, > 0 such that
[ft,y) - ft.0|<k|y-x|.vxyeC, aet.

Letg,): L, > H), the family of nonlinear operator
defined a.e.t., g(t,x) (K H)and satisfy

(b.1) g(t,0)=0;
(b.2) there exists k, >0 such that
lot.y)-gt. 0], <k y-x|, vxyeC, aet.
f(t,v)and g(t,v) are Lebergue miserable vy ¢ L2, satisfying

following condition(H):
There exist constants ¢>0,&>0,1eR,and a non-negative
continuous function )t eR,such that

2(F VL)o@ <M+ AV +re, veV, aet,
Where, for arbitrary § > 0, y(t) satisfies y(t) = o(e‘ft), as
tooo, ie, lim_, y(t)/e' =0

Remark:
Observe that, owing to continuity and sub exponential

growth of the term, there exists a positive constant y such that

y(t)et g;_/ for all t € R™.As a consequence, (H) implies

2(f(t,v),v)+ Hg(t,v)Hz <—a|M[ +av" + 7, VeV, aet.

III. EXISTENCE AND UNIQUENESS OF SOLUTIONS

A Uniqueness of solutions
Now we shall prove that there exists at most one solution

A

of (*).This result will be deduced mainly from It 0 formula.

Theorem 3.1 Assume the preceding hypotheses hold. Then
exists at most one solution of (*) in 12(0,T;v)~L2(Q:C(0,T;H))

.Proof: Suppose PP, € 1?(0,T;V)n >(Q;C(0,T; H))are two

solutions of (*). Then, applying Ilto formula to P, —P,[" »We

obtain

¢/ oP, oP
|P;t - PZtl2 :2IO<_6_;+6_:_ﬂ(Sba)(Rs - PZs)’ P;s - P25>ds
+2[ (£(5.P,)= £(5.P,,). B, —P,,)ds
t
+2[ (R, =Py, (9(5,P) - (s, P )de,)

¢ 2
+[ la(s.P)-g(s. P ds
Therefore, we get that

|P =Py P< AGAIY I, | PPy [ ds
+203|P =Py || (5P~ F(s,P,) [ds—244 [} | B, P, [ ds
+15119(s,P) - 9(s, Py ds+2J(P, — Py, (9(s, ) —a(s, P, ))deo,.

Now, it follows from (a.2) and (b.2) that for any t [0, t]

E sup‘Pls - PZS‘Z

0<s<t

<(AGBEY ~ 21|+ D], E[P, P [ds+ (K +K) [ E[R, ~Py[L ds 3

+2Esup [ (B, —P,,.(9(r,R,) - g(r, P, )de,).

0<s<t
However, by Burkholder-Davis-Gundy’s inequality, K >0
we have

E sup [P, - Py §

0<s<t
<2(| A(FBE)® = 240 | +1+ K7 + K7 + 2KK7)
x]  Esup |P, =P, |* ds,Vte[0,T].
0<s<t

Now, Gronwall’s lemma obviously implies uniqueness.

B Existence of strong solutions

In order to prove the existence of solution for Eq.(*), we
shall first prove the following lemmas.

We consider the equations

P AGBEY
P'=P +t [-Z— 2D pligs t[0,T],
t 0+j()[ 2 D s] €[0,T]
2E[[F(P") - f (P
{NHGORGE

1 t
SEE.[0

1
<—E| su
4 [ i

O<r<t

ds

N+ n
PR

2
F;n+l _ F;n Psn _ F;n—l Cds

s +4CTE[

N+l n
PR

}+4ka j‘E[sup P _p z}ds
0 0<rss




P'(t,0) = y() A1) [ A(t,a)P'da,t [0, T], @) By iteration from (16), we get

anl-l—nfl
") < @' (T) vn>1 vte[0,T]. an
P APy AP ¢ S
P =p 4 [ P s + Pas—( s, aR'ds &)
> 3 L[ a 5 > s .[, D s L,u( R Therefore
“fs P+ [ g P et e[0T],  Wnzl 2] KT
+[ fePs+ [ gs. P )da tel0T]  WnzL, E[sup PPy }s opr? ™ vl (18)
0<6<T n—1)!

P™!(t,0) = y() (1) [* u(t,a)P""da,t [0, T], Vn=1.  (6)

Obviously, (18) implies that {Rn} is a Cauchy sequence
Lemma 3.1pn, is a Cauchy sequence in 1(Q;C(0,T;H)).

L*(;C(0,T;H)).

Proof: For 1 and the process p' _ pn, it following from . .
n> P R -R & Lemma 3.2 The sequence {Rn} is bounded in 120, T;V).

Ito s formula:

‘ ' . Proof: Indeed, applyin os formula to |p with n>
. immediately yields
NG’ [P~ s+ AR [ (R PR s

1 t H = t 1 2 Pn — |
w2 (FE)- 1R -Rxs+2[ (B =R (o(R)-o(F )+ [Jo®)-oR )& E|P"(T)P=2E < _68; P > ds—2[7 (u(s,a)P™!, P")ds

Where, by definition, p" .= p"(t,a), f (P"):= f(t,P")

~AGBE) El} |P' [ ds+E|R, [ +2E[ (f(R").P")ds (19)
andg(R)=9(.R") + A E [} (P P-)ds — 2E ] (R, P ds

RER F2E[T(F R, P ds + E T [ g(PM) | ds.

j{:\P;*' -Pn, - F;""‘ds+2“[:(':’s"” -P"(g(PH-g(P" " )da,| Since {p"} is convergent in | >(Q3;C(0,T;H)), it will be bounded

<|AGBE) 24,

in this space. Now, it is not difficult to check that there exists

ds+ [ JaPm—g(Pr )| d " , . .
’ S+I‘J“g( -9, .)HZ ° positive constant k >0 .We will estimate one of those terms.
It is easy to deduce.Consequently, (9) yields First, we observe that

E[Sup ‘ P(}HH _ Pon |2]

INCORMGED)

PerI _ Psn

0<f<t T
~ 26( [FR™H|(Pr[+|Pmd
< A ~241, | ES} [PI P[RR [ Jo PR R pes
:
+2E[sup | [7(P" =P, (g(P") - g(R " )dew,) | ao <2kE| [P (R P'|ds
0<o<t
+2E [, [ F(P = F(RM) [P =P [ds+EJ; [ g(P")—g(P™)]f; ds]. < klEjOT[ prt z +(P|+|P! )z}ds
On the other hand, we can get from (b.2) , , ,
<Tk,E(sup |P)"" )+2kT[E(sup P/ )+ E(sup [P )}
EfL 1 9(R)-g(R™) I} ds <KIEJ, sup |B"—R™ [ ds. (12) oo PL oo ocost!
<r<s
In a similar manner, from (a.2) we can obtain =Tk, ‘ R L(QCOTH) +2kT D R L (@:C(0T:H) ‘ i LZ(SI;C(O,T;H)):|’
t . . Which, in addition to (H), lead to the following inequality
2E[ [F(R) - TP —Pr|ds i , : . )
o : z af, B[R ds<2E[, (1R as—E[ o R ds
<[ [P~ pr|ds|+ 4kCTE[ |Pr — R ds , . ?
4T o ° c +AT R +[ r(s)eds.
1 el n ) t n - 5 d ) ) ) L (Q:C(0.T;H)) 0
<4 Bl sup[R™ -R +4k1TJUE sup [R" - s. Since {pr} is convergent in L2(Q:C(0,T; H))-Therefore, there

Now, Burkholder-Davis-Gundy’s inequality implies

exist a constant K’ such that .LT Elp[ ds <k
25[5}3 [, (R =P (9P - g(R)de, } Lemma 3.2 is proved.
et TV Theorem 3.2 Assume the preceding hypotheses and
< GE[(US;}E AN HGORE )M AG7B)* =0 hold. Then, there exist a unique process
SiE[sup R"‘I—R"z:|+72k§J:E|:sup R"—Pr"'z}ds_ 13) P e17(0,T;V) A L2(Q;C(0,T; H)) such that
If we set P=P, +j;[%+ fl(s)}ds+ M().P as. Vte[0,T],
2
P ()= E[:};g P P } 14) Where f e 12(0,T;V),P, e ’(Q,F,,P;H) and y_ is an H-
Then from (10)-(13), it could be deduced that there exists a valued continuous, square integriable F, —martingale. In
positive constant ¢ >0 such that addition, the following energy equality also holds:
n é n t n-1 6P
ACE IO ROt s :‘po‘z+2J';<aj,PS>(is+2J:)(fl(s),E)¢+2J;(Fg,d\/g)+w<<M>>l, P as wdaT],
consequenktlty tlllere exists k >0 such that () denotes the quadratic variation of . .
") <k| ¢ (s)ds. 1 y . .
a4y jo¢ () 6 Proof: See Metiver and Pellaumail [14].
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Now we are in a position to prove the existence of solution to
the problem (*) .
Theorem 3.3 Assume (a.1)-(a.2), (b.1)-(b.2), and (H) hold,
P elP(OT;V)NE(E€QCO.T;H)), there exists a unique solution of the
problem (*) in g(R") - g(R )(in L’ (@ L"(0,.T;T (K, H)))).
Proof: Uniqueness hold from Theorem 3.1.
By virtue of (a.1), the family Atg):V >V defined

as p (¢,p)=— % _ A(?fﬁ)z P satisfies the assumptions in
Theorem 3.2. Consequently, (5)-(7) has a unique solution
P,1 e 1?(0,T;V)n > (€ C(0,T; H)).

We note that from (a.2 ) and (b.2), it follows:
(i) The mapping (t,w)e (0,T)xQa f(t,P') < H belongs to
17(0,T;H);
(i1) The mapping (t,w) € (0,T)xQa g(t,P")el(K,H)
belongs to the space 1?(0,T;I'(K, H)) and therefore

.
.[0 g(t,P)d o, is a continuous and square integrals
F, —martingale .

Consequently, we can use Theorem 3.2 and get that there
exist a unique process

P' e 12(0,T;V) N L2(€;C(0,T; H)), which is the solution of (5)-(7)

for n=1. By recurrence, we obtain a sequence of solutions for
(5)-(7), {R”}n>1 < 12(0,T;V) N L2(€;C(0,T; H)).
Now we want to prove that the sequence {R"} is

convergent to a process p, in 12(0,T;V) N 2(©Q;C(0,T; H)).

which will be the solution of (*) .
First, we observe that Lemma 3.limplies that there exists

in p ¢ 1>(©;C(0,T;H))such that P >R in |%C(0,T;H))-Since
(a.2) and (b.2), Have {(P")— (R )inX(Q L O.T;H))
and g(R") — g(R, )(in L4 L"(0,T:T(K, H)))).

Gt

Letpp R R
oa

ot
—2\2 =72
SoDP” _ AP P dt — su(t, a)P™dt + AGBH) P dt
2 2
+ f(t,P™)dt+g(t,P"Hdw,.

By preceding analysis, we easily obtain that
|oRY|| <M <o,

On the other hand, by virtue of Lemma 3.2 {R"} has a

subsequence which is weakly convergent in | *(0,T;V). But,
since P">P in2(Q;C(0,T;H)), We can assure that
P">P weakly in |2(0,T;V) (in the sequel, we will denote

P" 5P in|?(0,T;V)).In conclusion, we have proved

888

P" 5P inL’(QCOT;H)), @1
fRY—>F(R) InLGL (OT:H)), 22
g(RH—>g(R) INL@L O T:T(K,H)), 23
PP inl’QTyV), (24)

DR" —h inL(@Qx(0,T)yV)

Since the differential operator is continuous, soDP =h.

Theorem 3.3 is completed.
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