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Abstract—This paper introduces random perturbations into the 
established system of stochastic forest evolution, and studies the 
system of stochastic forest evolution in Hilbert space, at the same 
time, using Kolmogorov’s inequality and Burkholder-Davis-
Gundy’s inequality, analyzes the existence uniqueness of system 
of stochastic forest evolution. 
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I. INTRODUCTION 

There has been much recent interest in application of 
deterministic age-dependent mathematical models in 
population dynamics. Population system are often subject to 
environment noise[1,2].For example, Cushing[3], Henson and 
Cushing[4] investigate hierarchical age-dependent populations 
with intra-specific competition or predation. Allen and 
Thrasher[5] consider vaccination strategies in age-dependent 
populations. In addition, Pollard[8],Block and Allen[9]study 
the effects of adding stochastic terms to discrete-time age-
dependent models that employ Leslie matrices. 

Consider the following forest evolution system: 
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where ( , )P t a is the age-area distribution density of forest. 

( )t  is the ratio of reforested area to cut area ( )t is the 

reforestation percentage. By ( , )t a  is denoted the cut ratio. 

( , )f t p  denotes affects external environment for system, it is 

a reduction of area because forest fires and denudation . 
   Suppose that ( , ) ( , )t a P f t p   is stochastically 

perturbed with  

     ( , ) ( , ) ( , ) ( , ) ( , ) ( )t a P f t p t a P f t p g t P t  


      , 

Here ( )t


 is white noise. Then this environmentally perturbed 

system may be described by the 
^

It o  equation 
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td P is the differential of P relative to t ,i.e, 

( / )td P P t dt    

A new stochastic differential equation model (2) a forest 
evolution dynamic system. is derived. It is an extension of 
Eq(1). 

In this paper, we shall discussion the existence, uniqueness 
for a forest evolution dynamic system Eq.(2).  

II. PRELIMINARIES 
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V is a Sobolev space. 2 ([0, ])H L A  such that ' 'V H H V   .     

'V  is the dual space of V .We denote by . , . and
*

.  

the norms in V , H and 'V  respectively ;by .,.  the duality 

product between V , 'V ,and by  .,.  the scalar product in 

H ,and m  a constraint such that .m x m x x V    

Let t  be  a Wiener process defined on complete 

probability space ( , , )F  ,and taking its values in the 
separable Hilbert space K, with increment covariance operator 
W .Let 

0( )t tF 
 be  the σ﹣algebra generated by  

 ,0s s t   ,then t  is a martingale relative to 
0( )t tF 
 and 

we have the following representation of 
t :  

1

( )t i i
i

t e 




  ,  1i i
e


 is an orthonormal set of eigenvectors of W , 

( )i t are mutually independent real Wiener processes with 

incremental covariance 0i  ,
i i iWe e  and 

1
tr ii

W 


    

 (‘tr’ denotes the trace of an operator [13]). For an operator 
( ,B K H ） be the space of all bounded linear operators from 

K  into H , we denote by 
2

B its Hilbert-Schmidt norm, i.e. 
2

2
( )TB tr BWB . 
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In this paper, 
t  is a real standard Wiener process. Let 

([0, ], )C C T H  be the space of all continuous function from 

[0, ]T  into H  with sup-norm 
0sup ( )s TC

s   , ([0, ]; )P P
VL L T V  

and ([0, ]; )P P
HL L T H . 

Consider the following nonlinear stochastic equation: 
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Where 
0( , ), (0, ).tP P t a P P a   

  The objective in this paper is that, we hopefully find a 
unique process 2(0, ; ) ( ; (0, ; )),P

tP I T V L C T H    such that (*) 

hold.  

For this objective, we assume the following conditions are 
satisfied:  ( , ), ,t a t a   are nonnegative measurable, and 
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Let 2( , ) : Hf t L H  be a family operator’s defined a.e.t. and 

satisfy:  
(a.1)  ( ,0) 0;f t   

(a.2) 
1 0k   such that 

1( , ) ( , ) , , , . . .
c

f t y f t x k y x x y C a e t      

Let 2( , ): ( , )Hg t L K H  , the family of nonlinear operator 

defined a.e.t., ( , ) ( , )g t x K H and satisfy 

（b.1） ( ,0) 0g t  ; 

 (b.2)  there exists 
2 0k   such that 

22
( , ) ( , ) , , . . .

c
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  ( , )f t v and ( , )g t v  are Lebergue miserable 2
Hv L  , satisfying 

following condition(H): 
There exist constants 0, 0, R     ,and a non-negative 

continuous function  ( ),t t R  ,such that   
2 2 2

2
2 ( , ), ( , ) ( ) , , . . .,tf t v v g t v v v t e v V a e t          

Where, for arbitrary 0, ( )t   satisfies ( ) ( ),tt e   as 

, . .,t i e  lim ( ) / 0t
t t e   

Remark: 
Observe that, owing to continuity and sub exponential 

growth of the term, there exists a positive constant 


 such that 

( ) tt e 


  for all t R .As a consequence, (H) implies 
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III. EXISTENCE AND UNIQUENESS OF SOLUTIONS  

A Uniqueness of solutions 

  Now we shall prove that there exists at most one solution 

of (*).This result will be deduced mainly from 
^

It o  formula. 

Theorem 3.1 Assume the preceding hypotheses hold. Then 
exists at most one solution of (*) in 2 2(0, ; ) ( ; (0, ; ))I T V L C T H   
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Therefore, we get that 
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Now, it follows from (a.2) and (b.2) that for any [0, ]t t  
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However, by Burkholder-Davis-Gundy’s inequality, 0K   
we have  
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  Now, Gronwall’s lemma obviously implies uniqueness. 

B Existence of strong solutions  

In order to prove the existence of solution for Eq.(*), we 
shall first prove the following lemmas. 

We consider the equations 
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It is easy to deduce.Consequently, (9) yields  
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Now, Burkholder-Davis-Gundy’s inequality implies 
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Then from (10)-(13), it could be deduced that there exists a 
positive constant 0c   such that 
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Obviously, (18) implies that  n
tP  is a Cauchy sequence  
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Since  nP is convergent in 2 ( ; (0, ; ))L C T H , it will be bounded 

in this space. Now, it is not difficult to check that there exists 
positive constant ' 0k   .We will estimate one of those terms. 
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Since  nP is convergent in 2 ( ; (0, ; ))L C T H .Therefore, there 

exist a constant 'k such that 21 '
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Lemma 3.2 is proved. 
Theorem 3.2 Assume the preceding hypotheses and 

0)( 2 A  hold. Then, there exist a unique process 
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t
M denotes the quadratic variation of 

tM . 

Proof:  See Metiver and Pellaumail [14]. 
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  Now we are in a position to prove the existence of solution to 
the problem （*）. 
Theorem 3.3 Assume (a.1)-(a.2), (b.1)-(b.2), and (H) hold, 
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By preceding analysis, we easily obtain that  
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Since the differential operator is continuous, so DP h .  

Theorem 3.3 is completed. 
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