

A Research of the Development of VME Bus in
VxWorks

Yi-min ZHOU

Dept. of Computer
School of Optical-Electrical and Computer Engineering,

University of Shanghai for Science and Technology
Shanghai, China, 13901854513

JUN WANG

Dept. of Computer
School of Optical-Electrical and Computer Engineering,

University of Shanghai for Science and Technology
Shanghai, China, 15121043705

Abstract—Based on the principle of the VME bus and combined
with lithography machine control system, This paper briefly
introduced the development of VME bus under VxWorks
operating system, including the bus address space allocation and
interrupt setting method. VG5, VME bus master board, is GE
Fanuc's high-performance PowerPC single board computer
running in the system of VxWorks and it is suitable of standard
6U VME classis. We analysis and modify BSP to achieve
interruption and access of board register, and ultimately
implement communications between boards on the VME bus.

Keywords-VxWorks operating system; VME bus; BSP; VG5

I. INTRODUCTION

With the rapid development of embedded systems,
embedded operating system has been widely used in various
areas, such as network communications, industrial control,
communications, defense and aerospace. WindRiver's
VxWorks operating system occupies an important position in
the field of embedded applications due to the features of
preemptive scheduling, interrupt latency and the system kernel
can be cut.

VME (VersaModule Eurocard) bus was first introduced by
Motorola and it is a 32 industrial open standard backplane bus,
which later become the IEEE standard. After years of
upgrading, the VME system has been developed very well.
Products that developed around VME system throughout many
high reliability required areas, such as industrial control,
aerospace, transportation and medical.

II. VME BUS CHASSIS

A. Control System Composed of VME Chassis

Lithography machine control system implements
communications between various functional boards through
the VME bus. VME lithography machine control system is
functionally divided into various subsystems to complete
real-time functions. In general, the coupling functions are
divided into the same subsystem and we will achieve the
sub-system functions through a VME bus chassis.

An integral VME Chassis is composed of VME bus, VME
bus control panel and VME function board. Controlling of each
subsystem is implemented by subsystem control panel and its
core software is solidified in the flash.

In the scheduling of VME bus control panel processor,
different functional boards on the VME bus cooperated to

achieve functions of the subsystems. Subsystem control panel
completes the communication between the host computer and
other subsystems via Ethernet and RS232.

Figure 1. Lithography Lighting Projector Subsystems

B. Master- Slave Board on VME Chassis

A VME chassis card, sized for 6U, is a flexible, scalable
and multi-processor supportable bus system, which using
master-slave structure. As VME bus is one of the VME bus
system shared resources, it only allows one master device to
drive VME bus at the current time.

Master: launch the data transfer request. Multiple masters
can reside in the VME bus.

Slave: response to requests from master. A board card can
be both the master and the slave. Most I/O board card is slave
and a small part is master. Generally, A master is also a slave.

Arbiter: give master the right of bus controlling. A system
can only have one arbiter, which is usually played by the
system control board located in the first slot.

Figure 2. Architecture of VME Chassis

Pic2 shows a typical VME chassis. Master CPU board in
the left slot acts as an arbiter, and it is also the Slave. VME
sub-boards inserted in the 1-4 slots are slaves. Port P1 is a
standard VME interface, which supports 24-bits address and
16-bits data. Port P2 is an expanded port that supports 32-bits

National Conference on Information Technology and Computer Science (CITCS 2012)

© 2012. The authors - Published by Atlantis Press222

address and data.

It is the hardware that decides whether a board is a master,
slave or arbiter, and it cannot be determined by software.

III. VME BUS ADDRESS MAPPING

A. Mapping Principle

It’s consist of I/O(A16),Standard(A24),Extend(A32). A16
dimensional size was 64 K, A24 was 16 M, A32 was 4G to
maximum in theory, but it could use some address space of all
actually.

Local CPU could map external VME BUS address space on
local CPU address space so as to make local CPU visit VME
BUS.

The other mapping method called Slave window mapping,
which mapped part of the local RAM on VME BUS so as to
visit local RAM by VME BUS.

 Address Modifier is mainly used for designing VME
BUS address and visiting method, which had six control lines
to make the following set:

1) Authority Level: It made no sense to VxWorks between
root users or normal users’ mode, for all VxWorks were root
users’ mode, otherwise I/O cards used hardware jumper wire to
set;

2) The mode of visiting: the data, the program or block
transmission;

3) The size of address: Short I 、/O Standard or Extended.

B. Configure BSP

VxWorks BSP had nine macro definitions to configure the
three address space. Define the following nine macros to set the
VME Master window mapping in the card VG5’s BSP.

VME_A16_MSTR_SIZE the size of the window of
A16 storage space

VME_A16_MSTR_BUS the first address of the bus
of A16 window

VME_A16_MSTR_LOCAL the local address of A16
window

VME_A24_MSTR_SIZE the size of the window of
A24 storage space

VME_A24_MSTR_BUS the first address of the bus
of A24 window

VME_A24_MSTR_LOCAL the local address of A24
window

VME_A32_MSTR_SIZE the size of the window of
A32 storage space

VME_A32_MSTR_BUS the first address of the
bus of A32 window

VME_A32_MSTR_LOCAL the local address of A32
window

When these values set up, the Master window mapping

completed, also was the VME bus address mapped on the local
CPU address. If to disable a window wanted, as long as to set
the size of the corresponding window zero. The default
memory mapping of VG5 was show as Fig3.

Slave window mapping made local RAM map on the VME
bus so as to serve other masters for visitation. The BSP macro
definition of the Slave window mapping is familiar with the
Master window mapping, VG5 mapped all the local memory
on the A32_Slave window.

Fig3 .Memory Mapping of VG5

If several cards needed to map the local memories on VME,
address space setting shouldn’t have overlapping conflicts and
to set the space size as 4K as far as possible.

The method of the CPU to visit some registers of VME: the
base address of the local VME address space + the address of
the card in VME space + registers offset value.

Assuming that a piece of VME card mapped inner register
on VME BUS (A24), the value of the VME address is
0x200000, and a register offset value is 0x100. Take Fig8 as
example, VxWorks could visit the value of register as long as
visiting 0Xe0200100 in the VG5. The value of 0xE0200100
could also got by sysBusToLocalAdrs () provided by VxWorks
system.

C. Experiment

Several VG5 boards work in VME master mode. Assuming
we put 4 VG5 boards in one VME case, all of them will access
to VME sub-board and working in VME_master mode.
Meanwhile, local memory should mapped to VME bus, where
other boards can access to contents in other memory.

Assuming we choose VME A24 mapping mechanism. We
map 64K contents in the last 1M in each board to VME bus for
accessing. Setting parameters are as follows:

Parameters in VME master: default settings.

Parameters in VME laver:

VME_A24_SLV_LOCAL………0x1ff00000 /* from the
last 1M of memory */

VME_A24_SLV_SIZE …………0x10000 /* 64k size
shared to the VME bus */

The following parameter settings are different in each board
as follows:

CPU0: VME_A24_SLV_BUS………0x0

223

CPU1: VME_A24_SLV_BUS………0x100000

CPU2: VME_A24_SLV_BUS………0x200000

CPU3: VME_A24_SLV_BUS………0x300000

Meanwhile, we should set the default
VME_A32_SLV_SIZE to 0 in BSP, or change
VME_A32_SLV_BUS in each board to a different value to
avoid conflict. After the parameter settings of each VG5 board,
we should compile them to a VxWorks mirror image
respectively.

IV. VME BUS INTERRUPT

A. VME Bus Interrupt Principle

VME bus supported 7 level priorities. Several VME bus
cards could requested the same lever interrupts at the same time.
In the VME bus system which contained several processors, an
interrupt lever could only be used by one processor card, that
was to say VME bus had 7 interrupt to use, a processor could
use any lever for interrupting, certainly a processor card could
use several VME bus to interrupt.

For several equipments could use one interrupt and
different processor card could use different interrupt lever. The
interrupt handling steps were shown as following:

Figure 4.The Process of. Interrupt

First, A VME interrupt was generated at first; I/O card
selected an interrupt line to set, which would generate a
corresponding lever interrupt. If CPU approved the interrupt, it
stepped into the interrupt response phase.

Second, CPU put the values of the interrupt lever on the
A01-A03 address lines, and then set IACK signal lines. IACK
signal lines was transmitted as the daisy chain mode on the
VME backplane, every card should confirm whether the
interrupt was generated by itself from the first tank, if do the
card would step into the interrupt response phase continuously,
otherwise it transferred to the next one.

At last, I/O card put the interrupt data on the data bus, and
set DTACK signal line. VME bridges on the CPU card read the
interrupt data, and then mapped them on the corresponding
interrupt. Above all the interrupt response phase was
completed.

B. Interrupt in VxWrosks

The interrupt vendor table in a VxWorks system has 256
entries. As some vendors has been used in VG5 system, we
recommend to use even vendors ranged from 0x70 to 0xff.

VME interrupt priority ranges from 1 to 7, and 7 is the

highest priority. VxWorks operating system enables VME
interrupt by calling sysIntEnable () function.

1) Interrupt processing flow is as follows:

a) VxWorks operating system binds the interrupt service
program to a appropriate interrupt vendor by calling
intConnect() function.

b) VxWorks operating system enables the interrupt by
calling sysIntEnable() function. Step 1 and 2 are usually called
when system processing initialization or the board driver
initialization.

c) VME sub-board requests VME interrupt and informs
the host controller of the interrupt priority and value via
interrupt response mechanism.

d) When interrupt response completed, system triggers
the CPU interrupt of the host controller.

e) When CPU interrupt occurred, system suspends the
processing programs. According to the interrupt vendor table,
system locates and processes the interrupt service program via
interrupt vendor.

f) After interrupt service program executed, system quit
interrupt and reprocess suspended programs.

C. Experiments

1) Experiment 1: Trigger VME interrupt on VG5 board.

For VG5, composed of PowerPC, if we make VME as a
slave, how do we trigger a VME interrupt?

In VxWorks operating system, we only need to call
sysBusIntGen() function, provided by BSP. This function
usually exists in the driver code in VME chip. The original
function is as follows:

……STATUS.sysBusIntGen
……int.lever………/*interrupt.lever.generate…*/
……int.vector……/*interrupt.vector.for.interupt*/

2) Experiment 2: board reset function setting

We propose to insert several VG5 board into one case.
When we reset one VG5 board, other board may be reset. This
is because reset VG5 is implemented by reset VME bus, other
VG5 boards in this bus may receive the reset signal.

It can be software configured to determine whether do rest
action to VME bus in VG5 board. When we call
sysVmeResetOn() function to reset VG5 board, rest signal
triggered by VME bus will reset other boards in this case.

This function can be forbidden by calling sysVmeResetOff()
function.

3) Experiment 3: how to schedule VME interrupt in
different I/O board into different CPU board.

For some special applications, such as there are 2 CPU
boards and several I/O sub-board in VME case. How can we
implement that VME interrupts triggered by some I/O
sub-boards impact on CPU0 and others triggered by other I/O
sub-boards have an effect on CPU.

224

Assuming that, CPU0 locates in slot 1 and CPU resides in
lot 2 in a VME case. TMB0 and TMB1 act as VME slave and
they are inserted in slot 5 and 6 respectively. We can do the
following settings:

Setting the TMB0 interrupt priority to TRQ3 and TMB1 to
IR4; setting IRQ3 interrupt enable and IRQ4 disable in CPU0;
setting IRQ3 disable and IRQ4 enable. VME interrupt priority
enable and disable functions are sysIntEnable () and
sysIntDisable ().

Then, interrupt triggered by TMB0 and TMB1 will
respectively occurred in CPU0 and CPU1.

V. CONCLUSION

In this paper, we introduced the analysis and configuration
methods of VME bus in VxWorks operating system. We
mainly focus on the bus address space mapping principle and
interrupt settings. The VME bus driver has been widely applied
in practical project at present.

ACKNOWLEDGE

This project is supported by Shanghai Microelectronics
Equipment Co., Ltd.

REFERENCES
[1]. Wind River Systems Inc, VxWorks Programmer’s Guide. Wind River

Systems,2001

[2]. Wind River System Inc, VxWorks BSP Reference: VG5

[3]. GE Fanuc Automation, VME_UNIVERSE: VME bus Driver and Tools
for Linux. 2004

[4]. A. Aloisio, P. Branchini, F. Cevenini, “ Timing analysis of
asynchronous block transfer cycles on VME and VME 64x physical
layers”, IEEETrans. on Nucl. Sci., vol. 51, n. 3, pp. 401-406, Jun. 2004

[5]. B. G. Penaflor, J. R. Ferron, M. L. Walker, D. A. Piglowski, and R.
D.Johnson, “Real-time control of DIII-D plasma discharges using a
Linuxalpha computing cluster,” Fus. Eng. Des. Vol. 56-57, pp. 739–
742,2001

[6]. K. G. Ricks, D. J. Jackson, and W. A. Stapleton, “An evaluation of the
VME architecture for use in embedded systems education,” in
Proc.Workshop on Embedded Systems Education (WESE 2005) Held in
Conjunction with the EMSOFT 2005 Embedded Systems Software
Conference, Jersey City, NJ, Sep. 22, 2005, pp 59–65.

[7]. K. Hwang, Advanced Computer Architecture: Parallelism,
Scalability,Programmability. New York: McGraw-Hill, 1993.

[8]. W. D. Peterson, “VME Technology Frequently Asked Questions,”
[Online].Available: http://www.vita.com/vmefaq.html.

[11]A. Aloisio, P. Branchini, F. Cevenini, V. Izzo, S. Loffredo, R.
Lomoro,“Signal integrity and timing issues of VME64x double edge
cycles”,IEEE Trans. on Nucl. Sci., vol. 53, n. 2, pp. 520-525, Apr. 2006.

225

